導航:首頁 > 網路數據 > ht大數據

ht大數據

發布時間:2023-02-27 11:39:23

大數據可視化工具哪個做出來最漂亮

非編程篇/可直接上手的工具
1. Excel
Excel是最容易上手的圖表工具,善於處理快速少量的數據。結合數據透視表,VBA語言,可製作高大上的可視化分析和dashboard儀表盤。
單表或單圖用Excel製作是不二法則,它能快速地展現結果。但是越到復雜的報表,excel無論在模板製作還是數據計算性能上都稍顯不足,任何大型的企業也不會用Excel作為數據分析的主要工具。
2. 可視化 BI(Power BI \Tableau \ 帆軟FineBI等等)
也許是Excel也意識到自己在數據分析領域的限制和眼下自助分析的趨勢,微軟在近幾年推出了BI工具Power BI。同可視化工具Tableau和國內帆軟的BI工具一樣,封裝了所有可能分析操作的編程代碼,操作上都是以點擊和拖拽來實現,幾款工具的定位稍有不同。
Power BI
最大的明顯是提供了可交互、鑽取的儀錶板,利用Power Pivot可直接生產數據透視報告,省去了數據透視表。
Tableau
可視化圖表較為豐富,堪稱一等, 操作更為簡單。
帆軟FineBI
企業級的BI應用,實用性較強,因2B市場的大熱受到關注。千萬億級的數據性能可以得到保證,業務屬性較重,能與各類業務掛鉤。
對於個人,上手簡單,可以騰出更多的時間去學習業務邏輯的分析。
編程篇
對於尋求更高境界數據分析師或數據科學家,如果掌握可視化的編程技巧,就可以利用數據做更多的事情。熟練掌握一些編程技巧,賦予數據分析工作更加靈活的能力,各種類型的數據都能適應。大多數設計新穎、令人驚艷的數據圖幾乎都可以通過代碼或繪圖軟體來實現。
與任何語言一樣,你不可能立刻就開始進行對話。要從基礎開始,然後逐步建立自己的學習方式。很可能在你意識到之前,你就已經開始寫代碼了。關於編程最酷的事情在於,一旦你掌握了一門語言,學習其他語言就會更加容易,因為它們的邏輯思路是共通的。
1. Python語言
Python 語言最大的優點在於善於處理大批量的數據,性能良好不會造成宕機。尤其適合繁雜的計算和分析工作,而且,Python的語法干凈易讀,可以利用很多模塊來創建數據圖形比較受IT人員的歡迎。
2. PHP語言
PHP這個語言鬆散卻很有調理,用好了功能很強大。在數據分析領域可以用php做爬蟲,爬取和分析百萬級別的網頁數據,也可與Hadoop結合做大數據量的統計分析。
因為大部分 Web 伺服器都事先安裝了 PHP 的開源軟體,省去了部署之類的工作,可直接上手寫。
比如 Sparkline(微線表)庫,它能讓你在文本中嵌入小字型大小的微型圖表,或者在數字表格中添加視覺元素。
一般 PHP會和 MySQL 資料庫結合使用,這使它能物盡其用,處理大型的數據集。
3. HTML、JavaScript 和 CSS語言
很多可視化軟體都是基於web端的,可視化的開發,這幾類語言功不可沒。而且隨著人們對瀏覽器工作越來越多的依賴,Web 瀏覽器的功能也越來越完善,藉助 HTML、JavaScript 和 CSS,可直接運行可視化展現的程序
不過還是有幾點需要注意。由於相關的軟體和技術還比較新,在不同瀏覽器中你的設計可能在顯示上會有所差別。在 Internet Explorer 6 這類老舊的瀏覽器中,有些工具可能無法正常運行。比如一些銀行單位仍舊使用著IE,無論是自己使用還是開發的時候都要考慮這樣的問題。
4. R語言
R語言是絕大多數統計學家最中意的分析軟體,開源免費,圖形功能很強大。
談到R語言的歷史,它是專為數據分析而設計的,面向的也是統計學家,數據科學家。但是由於數據分析越來越熱門,R語言的使用也不瘦那麼多限制了。
R的使用流程很簡潔,支持 R 的工具包也有很多,只需把數據載入到 R 裡面,寫一兩行代碼就可以創建出數據圖形。
當然還有很多傳統的統計圖表。

② 智慧水利具體能帶來哪些功能上的實現

智慧水利一旦實施,便能夠實現自動化澆灌農作物,根據植物生長過程中,對於水分的需求,進行准確定量的澆水。

③ 如何入門大數據

大數據
數據科學並沒有一個獨立的學科體系,統計學,機器學習,數據挖掘,資料庫,分布式計算,雲計算,信息可視化等技術或方法來對付數據。
但從狹義上來看,我認為數據科學就是解決三個問題:
1. data pre-processing;(數據預處理)
2. data interpretation;(數據解讀)
3.data modeling and analysis.(數據建模與分析)
這也就是我們做數據工作的三個大步驟:
1、原始數據要經過一連串收集、提取、清洗、整理等等的預處理過程,才能形成高質量的數據;
2、我們想看看數據「長什麼樣」,有什麼特點和規律;
3、按照自己的需要,比如要對數據貼標簽分類,或者預測,或者想要從大量復雜的數據中提取有價值的且不易發現的信息,都要對數據建模,得到output。
這三個步驟未必嚴謹,每個大步驟下面可能依問題的不同也會有不同的小步驟,但按我這幾年的經驗來看,按照這個大思路走,數據一般不會做跑偏。
這樣看來,數據科學其實就是門復合型的技術,既然是技術就從編程語言談起吧,為了簡練,只說說R和Python。但既然是薦數據科學方面的書,我這里就不提R/Python編程基礎之類的書了,直接上跟數據科學相關的。
R programming
如果只是想初步了解一下R語言已經R在數據分析方面的應用,那不妨就看看這兩本:
R in action:我的R語言大數據101。其實對於一個沒有任何編程基礎的人來說,一開始就學這本書,學習曲線可能會比較陡峭。但如果配合上一些輔助材料,如官方發布的R basics(http://cran.r-project.org/doc/contrib/usingR.pdf),stackoverflow上有tag-R的問題集(Newest 『r』 Questions),遇到復雜的問題可在上面搜索,總會找到解決方案的。這樣一來,用這本書拿來入門學習也問題不大。而且這本書作者寫得也比較輕松,緊貼實戰。
Data analysis and graphics using R:使用R語言做數據分析的入門書。這本書的特點也是緊貼實戰,沒有過多地講解統計學理論,所以喜歡通過情境應用來學習的人應該會喜歡這本入門書。而且這本書可讀性比較強,也就是說哪怕你手頭沒電腦寫不了代碼,有事沒事拿出這本書翻一翻,也能讀得進去。
但如果你先用R來從事實實在在的數據工作,那麼上面兩本恐怕不夠,還需要這些:
Modern applied statistics with S:這本書里統計學的理論就講得比較多了,好處就是你可以用一本書既復習了統計學,又學了R語言。(S/Splus和R的關系就類似於Unix和Linux,所以用S教程學習R,一點問題都沒有)
Data manipulation with R:這本書實務性很強,它教給你怎麼從不同格式的原始數據文件里讀取、清洗、轉換、整合成高質量的數據。當然和任何一本注重實戰的書一樣,本書也有豐富的真實數據或模擬數據供你練習。對於真正從事數據處理工作的人來說,這本書的內容非常重要,因為對於任何研究,一項熟練的數據預處理技能可以幫你節省大量的時間和精力。否則,你的研究總是要等待你的數據。
R Graphics Cookbook:想用R做可視化,就用這本書吧。150多個recipes,足以幫你應付絕大多數類型的數據。以我現在極業余的可視化操作水平來看,R是最容易做出最漂亮的圖表的工具了。
An introction to statistical learning with application in R:這本書算是著名的the element of statistical learning的姊妹篇,後者更注重統計(機器)學習的模型和演算法,而前者所涉及的模型和演算法原沒有後者全面或深入,但卻是用R來學習和應用機器學習的很好的入口。
A handbook of statistical analysis using R:這本書內容同樣非常扎實,很多統計學的學生就是用這本書來學慣用R來進行統計建模的。
Python
Think Python,Think Stats,Think Bayes:這是Allen B. Downey寫的著名的Think X series三大卷。其實是三本精緻的小冊子,如果想快速地掌握Python在統計方面的操作,好好閱讀這三本書,認真做習題,答案鏈接在書里有。這三本書學通了,就可以上手用Python進行基本的統計建模了。
Python For Data Analysis: 作者是pandas的主要開發者,也正是Pandas使Python能夠像R一樣擁有dataframe的功能,能夠處理結構比較復雜的數據。這本書其實analysis講得不多,說成數據處理應該更合適。掌握了這本書,處理各種糟心的數據就問題不大了。
Introction to Python for Econometrics, Statistics and Data Analysis:這本書第一章就告訴你要安裝Numpy, Scipy, Matplotlib, Pandas, IPython等等。然後接下來的十好幾章就是逐一介紹這幾個庫該怎麼用。很全面,但讀起來比較枯燥,可以用來當工具書。
Practical Data Analysis: 這本書挺奇葩,貌似很暢銷,但作者把內容安排得東一榔頭西一棒子,什麼都講一點,但一個都沒講透。這本書可以作為我們學習數據分析的一個索引,看到哪塊內容有意思,就順著它這個藤去摸更多的瓜。
Python Data Visualization Cookbook: 用Python做可視化的教材肯定不少,我看過的也就這一本,覺得還不錯。其實這類書差別都不會很大,咬住一本啃下來就是王道。
Exploratory Data Analysis 和 Data Visualization
Exploratory Data Analysis:John Tukey寫於1977年的經典老教材,是這一領域的開山之作。如今EDA已經是統計學里的重要一支,但當時還是有很多人對他的工作不屑一顧。可他愛數據,堅信數據可以以一種出人意料的方式呈現出來。正是他的努力,讓數據可視化成為一門無比迷人的技術。但這本書不推薦閱讀了,內容略過時。要想完整地了解EDA,推薦下一本:
Exploratory Data Analysis with MATLAB:這本書雖然標題帶了個MATLAB,但實際上內容幾乎沒怎麼講MATLAB,只是每講一個方法的時候就列出對應的MATALB函數。這本書的重要之處在於,這是我讀過的講EDA最系統的一本書,除了對visualization有不輸於John Tucky的講解外,對於高維的數據集,通過怎樣的方法才能讓我們從中找到潛在的pattern,這本書也做了詳盡的講解。全書所以案例都有對應的MATALB代碼,而且還提供了GUI(圖形用戶界面)。所以這本書學起來還是相當輕松愉悅的。
Visualize This:中譯本叫「鮮活的數據」,作者是個「超級數據迷」,建立了一個叫http://flowingdata.com的網頁展示他的數據可視化作品,這本書告訴你該選擇什麼樣的可視化工具,然後告訴你怎樣visualize關系型數據、時間序列、空間數據等,最後你就可以用數據講故事了。如果你只想感受一下數據可視化是個什麼,可以直接點開下面這個鏈接感受下吧!A tour through the visualization zoo(A Tour Through the Visualization Zoo)
Machine Learning & Data Mining
這一塊就不多說了,不是因為它不重要,而是因為它太太太重要。所以這一部分就推兩本書,都是」世界名著「,都比較難讀,需要一點點地啃。這兩本書拿下,基本就算是登堂入室了。其實作為機器學習的延伸和深化,概率圖模型(PGM)和深度學習(deep learning)同樣值得研究,特別是後者現在簡直火得不得了。但PGM偏難,啃K.Daphne那本大作實在太燒腦,也沒必要,而且在數據領域的應用也不算很廣。deep learning目前工業界的步子邁得比學術界的大,各個domain的應用如火如荼,但要有公認的好教材問世則還需時日,所以PGM和deep learning這兩塊就不薦書了。
The Element of Statistical Learning:要學機器學習,如果讓我只推薦一本書,我就推薦這本巨著。Hastie、Tibshirani、Friedman這三位大牛寫書寫得太用心了,大廈建得夠高夠大,結構也非常嚴謹,而且很有前瞻性,納入了很多前沿的內容,而不僅僅是一部綜述性的教材。(圖表也做得非常漂亮,應該是用R語言的ggplot2做的。)這本書注重講解模型和演算法本身,所以需要具備比較扎實的數理基礎,啃起這本書來才不會太吃力。事實上掌握模型和演算法的原理非常重要。機器學習(統計學習)的庫現在已經非常豐富,即使你沒有完全搞懂某個模型或演算法的原理和過程,只要會用那幾個庫,機器學習也能做得下去。但你會發現你把數據代進去,效果永遠都不好。但是,當你透徹地理解了模型和演算法本身,你再調用那幾個庫的時候,心情是完全不一樣的,效果也不一樣。
Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber 數據挖掘的教材汗牛充棟,之所以推薦這本韓家煒爺爺的,是因為雖然他這本書的出發點是應用,但原理上的內容也一點沒有落下,內容非常完整。而且緊跟時代,更新的很快,我看過的是第二版,就已經加進去了social network analysis這種當時的前沿內容。現在已經有第三版了,我還沒看過,但應該也加入了不少新內容。其實這本書並不難讀,只是篇幅較長,啃起來比較耗時。
其實這兩本書里單拎出來一塊內容可能又是幾本書的節奏,比如bayesian方法,再拿出兩三本書來講也不為過,我個人用到的比較多,而且也確實有不少好書。但並非是所有data scientist都要用到,所以這一塊就不再細說。
還有一些印象比較深刻的書:
Big Data Glossary: 主要講解大數據處理技術及工具,內容涵蓋了NoSQL,MapRece,Storage,Servers,NLP庫與工具包,機器學習工具包,數據可視化工具包,數據清洗,序列化指南等等。總之,是一本辭典式的大數據入門指導。
Mining of Massive Datasets:這本書是斯坦福大學Web Mining的講義,裡面很多內容與韓家煒的Data Mining那本書重合,但這本書里詳細地講了MapRece的設計原理,PageRank(Google創業時期的核心排序演算法,現在也在不斷優化更新)講解得也比較詳細。
Developing Analytic Talent: 作者是個從事了十幾年數據工作的geek,技術博客寫得很有個人風格,寫的內容都比較偏門,通常只有具備相關數據處理經驗的人能體會出來,絲毫不照顧初學者的感受。比如他會談到當數據流更新太快時該怎麼辦,或者MapRece在什麼時候不好用的問題,才不管你懂不懂相關基礎原理。所以這本書不太適合初學者閱讀。這本書其實是作者的博客文章的集結,用how to become a data scientist的邏輯把他近幾年的博客文章串聯了起來。
Past, Present and Future of Statistical Science:這本書是由COPSS(統計學社主席委員會,由國際各大統計學會的帶頭人組成)在50周年出版的一本紀念冊,裡面有50位統計學家每人分別貢獻出的一兩篇文章,有的回憶了自己當年如何走上統計學這條路,有的探討了一些統計學的根本問題,有的談了談自己在從事的前沿研究,有的則給年輕一代寫下了寄語。非常有愛的一本書。
其它資料
Harvard Data Science:這是H大的Data science在線課,我沒有修過,但口碑很好。這門課需要費用8千刀左右,比起華盛頓大學的4千刀的Data science在線課雖貴一倍,但比斯坦福的14千刀要便宜將近一半(而且斯坦福的更偏計算機)。如果想自學,早有好心人分享了slides: (https://drive.google.com/folderview?id=0BxYkKyLxfsNVd0xicUVDS1dIS0k&usp=sharing)和homeworks and solutions: (https://github.com/cs109/content)
PyData:PyData是來自各個domain的用Python做數據的人每年舉行一次的聚會,期間會有各路牛人舉行一些規模不大的seminar或workshop,有好心人已經把video上傳到github,有興趣的去認領吧(DataTau/datascience-anthology-pydata · GitHub)
工具
R/Python/MATLAB(必備):如果是做數據分析和模型開發,以我的觀察來看,使用這三種工具的最多。R生來就是一個統計學家開發的軟體,所做的事也自然圍繞統計學展開。MATLAB雖然算不上是個專業的數據分析工具,但因為很多人不是專業做數據的,做數據還是為了自己的domain expertise(特別是科學計算、信號處理等),而MATLAB又是個強大無比的Domain expertise工具,所以很多人也就順帶讓MATLAB也承擔了數據處理的工作,雖然它有時候顯得效率不高。Python雖然不是做數據分析的專業軟體,但作為一個面向對象的高級動態語言,其開源的生態使Python擁有無比豐富的庫,Numpy, Scipy 實現了矩陣運算/科學計算,相當於實現了MATLAB的功能,Pandas又使Python能夠像R一樣處理dataframe,scikit-learn又實現了機器學習。
SQL(必備):雖然現在人們都說傳統的關系型資料庫如Oracle、MySQL越來越無法適應大數據的發展,但對於很多人來說,他們每天都有處理數據的需要,但可能一輩子都沒機會接觸TB級的數據。不管怎麼說,不論是用關系型還是非關系型資料庫,SQL語言是必須要掌握的技能,用什麼資料庫視具體情況而定。
MongoDB(可選):目前最受歡迎的非關系型資料庫NoSQL之一,不少人認為MongoDB完全可以取代mySQL。確實MongoDB方便易用,擴展性強,Web2.0時代的必需品。
Hadoop/Spark/Storm(可選): MapRece是當前最著名也是運用最廣泛的分布式計算框架,由Google建立。Hadoop/Spark/storm都是基於MapRece的框架建立起來的分布式計算系統,要說他們之間的區別就是,Hadoop用硬碟存儲數據,Spark用內存存儲數據,Storm只接受實時數據流而不存儲數據。一言以蔽之,如果數據是離線的,如果數據比較復雜且對處理速度要求一般,就Hadoop,如果要速度,就Spark,如果數據是在線的實時的流數據,就Storm。
OpenRefine(可選):Google開發的一個易於操作的數據清洗工具,可以實現一些基本的清洗功能。
Tableau(可選):一個可交互的數據可視化工具,操作簡單,開箱即用。而且圖表都設計得非常漂亮。專業版1999美刀,終身使用。媒體和公關方面用得比較多。
Gephi(可選):跟Tableau類似,都是那種可交互的可視化工具,不需要編程基礎,生成的圖表在美學和設計上也是花了心血的。更擅長復雜網路的可視化。

④ 大數據可視化項目的難點有哪些

最主要是選擇正確的視覺通道來映射數據

其實這個就涉及到前、後的問題,前面需要准確的進行數據預處理; 後面可視化也需要熟練的使用畫圖手段。
而這兩個步驟是完全不一樣的思路, 要切換好很費力, 這就是難點

⑤ 成都海天數聯科技有限公司怎麼樣

簡介:成都海天數聯科技有限公司國內技術領先的大數據產品和應用開發廠商,憑借在大數據領域雄厚的產品研發和應用開發實力,公司迅速成為國內大數據領域的落地應用開發專家,是目前國內少數能夠自研完整的大數據系列產品並具備大數據應用開發能力的整體解決方案商。公司的核心人員來自於國內外最著名的IT企業和科研機構,員工95%具備國內知名大學本科及碩士以上學歷,研發人員接近60%,其中超過20%具備國內外著名大學計算機相關專業博士學歷。公司名稱:成都海天數聯科技有限公司 外文名稱:ChengDu htdataTechnologiesCo.,Ltd   總部:成都  經營范圍:產品研發、生產、營銷及開發服務公司簡介:成都海天數聯科技有限公司是集大數據產品研發、銷售和技術服務於一身的高科技企業,專注於大數據平台系列產品的研發和大數據行業應用的開發。核心人員全部來自於國內外著名的IT企業和頂尖的科研機構,公司員工95%具有知名大學本科及碩士以上學歷,研發人員佔50%以上,其中超過30%擁有國內外著名大學計算機科學博士學歷。海天數聯依據中國用戶的特點,推出大數據基礎平台、數據集成系統、大數據建模、大數據可視化平台、大數據質量管理、BI等系列產品,並具備一流的大數據落地開發能力。公司注重技術的積累和創新,每年堅持將30%以上的銷售收入用於產品研發和技術改進,持續優化產品,更好地服務於廣大行業用戶。海天數聯的核心人員累計為政府、教育、醫療、電信、金融、能源、大型企業等行業數百家客戶的數據中心提供完善的數據產品及數據業務、信息安全、虛擬化雲平台產品方案以及技術實施服務,深刻了解行業客戶的信息化現狀和未來的發展需求。面向雲計算和大數據時代,海天數聯將以技術領先、安全可靠的大數據產品和數據應用解決方案,更加周到完善的技術服務,與廣大客戶攜手共進,為中國IT產業的發展做出自身應有的貢獻。   公司使命:  持續為客戶創造價值,為中國的企業和行業客戶提供基於數據洞察和數據決策的基礎產品和方案服務。 公司願景:  用5-8年的時間,把公司建設成為中國大數據領域的國產領導品牌。 公司價值觀:  簡單、公平、價值、共贏  結果導向、目標清晰、嚴謹自律 公司文化 分享、責任、平等、高效 讓優秀的人更有激情,讓奮斗的人更有成就!
法定代表人:劉科
成立時間:2016-12-14
注冊資本:1000萬人民幣
工商注冊號:510109000985063
企業類型:有限責任公司(自然人投資或控股)
公司地址:中國(四川)自由貿易試驗區成都高新區天府二街138號3棟18層1801號

閱讀全文

與ht大數據相關的資料

熱點內容
靜態網站模板大氣 瀏覽:504
無線網密碼怎麼改fast 瀏覽:211
程序原始數據採集的方法有哪些 瀏覽:42
max發光材質教程 瀏覽:675
蘭州linux培訓 瀏覽:818
手機qq怎樣查看帳號和密碼 瀏覽:142
word2010無法保存文件 瀏覽:743
ppt里怎樣添加視頻文件在哪裡 瀏覽:405
如何把隱藏在電腦中的文件找出來 瀏覽:574
ios照片分類app 瀏覽:65
excel如何調用exe文件 瀏覽:8
蘋果按下主屏幕以升級 瀏覽:461
win10塵埃3雙擊沒反應 瀏覽:160
如何一個人開發app 瀏覽:864
資料庫中實體的完整性如何保持 瀏覽:831
哪個二手車網站便宜啊 瀏覽:489
濟南地鐵app買了票怎麼退 瀏覽:424
食用油行情看哪個app 瀏覽:776
怎麼移動迅雷下載到一半的文件 瀏覽:803
哪些紅頭文件的抬頭下面是雙紅線 瀏覽:638

友情鏈接