1. 電商企業是如何依靠大數據進行精準營銷的
信息大數據時代,電商企業採用信息技術來收集和儲存大量的消費者信息資源,並對其進行分析處理,來進行精準的市場定位,以及確定目標消費群體,為實施精準營銷做第一手准備。之後利用大數據平台對目標消費群體進行屬性分析、篩選、分類標記,建立用戶個性標簽,針對用戶的不同個性需求,提供精準的個性化產品和服務,實現線上廣告的精準投放。
電商企業想要做全局性和系統性的決策,不能僅憑大量的數據,還要加上商業分析,大數據與商業分析的結合才能稱得上是大數據精準營銷。在商業分析里,必須先了解市場,了解某個領域的消費者真正的需求;其次要了解行業,包括行業的特徵、要求和規則;最後才是懂企業的運營,把多個模塊和資源有序地整合起來,從而共同創造價值。這些具備後,用大數據進行適度輔佐,在商業的主導下,真正發揮大數據的作用。下面我們將用一個例子來說明:電商企業是如何依靠大數據進行精準營銷的。
項目背景:
年中大促期間,電商平台的護膚品各類品牌競爭激烈,某護膚品品牌想藉助大數據營銷平台完成兩款面膜的線上推廣。利用大數據平台的精準定向方式,針對全國18歲以上的女性進行線上廣告的推送,為活動網站引入高質量客流,促進消費者和品牌的深度互動。
投放方案
1、優選投放媒體
優選幾個國內主流媒體和與產品相關性高的高質量媒體,分別採用Banner、信息流和視頻貼片的廣告形式進行投放。通過平台一站式操作對這些媒體進行競價廣告投放。當用戶點擊廣告後對其進行標記。
2、MOB數據定向
通過MOB大數據,智能分析移動設備擁有者的屬性以及設備中的APP構成,鎖定女性用戶且安裝有美妝類APP的移動設備,針對這對這類設備進行全媒體廣告投放,對用戶進行廣告包圍,加深用戶印象,增加用戶購買意向。
3、重定向
標記活動落地頁到訪人群,當他們瀏覽有可競價廣告位的媒體時,發起追蹤投放,吸引對本廣告內容感興趣的訪客重新返回活動落地頁。
4、投放優化
通過投放反饋的數據,我們從這幾方面進行優化:
1、媒體平台優化,篩選出高點擊率媒體平台,排除低點擊率平台;
2、投放時段優化,排除低點擊率時段,集中投放在高點擊率時段;
3、素材優化,篩選出高點擊率素材並替換掉低點擊率素材。
投放效果
在本次的線上推廣中,小蜜蜂數據平台全程實時監測投放數據,其中18~24歲的女性訪客量佔比為50%;25~29歲的女性訪客量佔比為32%;30~34歲的女性訪客量佔比為18%。每位獨立訪客的付費比預期值要低20%,點擊量比預期值要高25%,到站轉化率超過預期值高15%。
此案例可看出電商企業借用大數據進行精準營銷可大大提高電商廣告的精準度和命中率,在減少交易成本的同時也提高了交易效率,大大提升了整體的電商服務水平,實現企業利益最大化。
2. 阿里,騰訊和百度的互聯網大數據應用有何不同
網路、阿里巴巴和騰訊三大互聯網企業都擁有大數據,三大互聯網巨頭的數據都用來優化自己業務的運營效果,從這個層面看,其數據價值應用場景比較類似。但由於其業務和商業模式的不同決定了三者數據資產的不同,也決定了三者未來大數據策略的不同,尤其是基於大數據的開放和合作角度看,網路和阿里巴巴相對更加開放。對於重視大數據開放和合作的互聯網企業,他們最為期待的是借著大數據開放的策略,與更多的傳統行業交換更多的數據,從而更好的豐富其在線下數據,形成線上和線下數據的協同,從中拓展新的商業模式,如智能硬體和大數據健康。
從數據類型看,騰訊數據最為全面,這與其互聯網業務全面相關,其最為突出的是社交數據和游戲數據,其中:社交數據最為核心的是關系鏈數據、用戶間的互動數據、用戶產生的文字、圖片和視頻內容;游戲數據主要包括大型網游數據、網頁游戲數據和手機游戲數據,游戲數據中最為核心的是游戲的活躍行為數據和付費行為數據,騰訊的數據最大的特點是基於社交的各種用戶行為和娛樂數據。阿里最為突出的是電商數據,尤其是用戶在淘寶和天貓上的商品瀏覽、搜索、點擊、收藏和購買等數據,其數據最大特點是從瀏覽到支付形成的用戶漏斗式轉化數據。網路的數據以用戶搜索的關鍵詞、爬蟲抓取的網頁、圖片和視頻數據為主,網路的數據特點是通過搜索關鍵詞更直接反映用戶興趣和需求,網路的數據以非結構化數據更多。
網路、阿里巴巴和騰訊的數據應用場景
網路、阿里巴巴和騰訊的數據應用場景都有共同的體系,該體系一共分為七層,代表了企業不同層面的數據價值應用場景,形成了企業運營的數據價值金字塔:
(1)數據基礎平台層。金字塔的最底層也是整個金字塔的基礎層,如果基礎層搭建不好,上面的應用層也很難在企業運營中發揮效果,這一層的技術目標是實現數據的有效存儲、計算和質量管理;業務目標是把企業的所有用戶(客戶)數據用唯一的ID串起來,包括用戶(客戶)的畫像(如性別、年齡等)、行為以及興趣愛好等,以達到全面的了解用戶(客戶)的目的;
(2)業務運營監控層。這一層首要的是搭建業務運營的關鍵數據體系,在此基礎上通過智能化模型開發出來的數據產品,監控關鍵數據的異動,通過各種分析模型等可以快速定位數據異動的原因,輔助運營決策;
(3)用戶/客戶體驗優化層。這一層主要是通過數據來監控和優化用戶/客戶的體驗問題。這裡面既運用了結構化的數據來監控,也運用非結構化的數據(如文本)來監控體驗的問題。前者更多的是應用各種用戶(客戶)體驗監測的模型或者工具來實現,後者更多的是通過監測微博、論壇和企業內部的客戶反饋系統的文本來發現負面的口碑,以及時的優化產品或服務;
(4)精細化運營和營銷層。這一層主要通過數據驅動業務精細化運營和營銷。主要可以分為四方面:第一,構建基於用戶的數據提取和運營工具,以方便運營和營銷人員通過人群定向把客戶提取出來,從而對客戶進行營銷或運營活動;第二方面,通過數據挖掘的手段提升客戶對活動的響應;第三,通過數據挖掘的手段進行客戶生命周期管理;第四,主要是用個性化推薦演算法基於用戶不同的興趣和需求推薦不同的商品或者產品,以實現推廣資源效率和效果最大化,如淘寶商品的個性化推薦;
(5)數據對外服務和市場傳播層面。數據對外服務一般為服務該互聯網企業的客戶或用戶,如網路通過提供網路輿情、網路代言人、網路指數等服務其廣告主客戶;淘寶通過數據魔方、淘寶情報和在雲端等產品服務其客戶;騰訊通過騰訊分析和騰訊雲分析等服務其開放商客戶。在市場傳播層面,主要通過有趣的數據信息圖譜和數據可視化產品來實現(如淘寶指數、網路指數、網路春節遷徙地圖)。
(6)經營分析層面。主要通過分析師對大數據進行統計,形成經驗分析周報、月報和季度報告等,對用戶經營情況和收入完成等情況進行分析,發現問題,優化經營策略。
(7)戰略分析層面。這方面既要結合內部的大數據形成決策層的數據視圖,也要結合外部數據尤其是各種競爭情報監控數據、國外趨勢研究數據來輔助決策層進行戰略分析。
雖然網路、阿里巴巴和騰訊在企業運營的數據價值的應用體繫上有共同的特點,但由於企業的商業模式以及數據資產不同,他們在整體的大數據發展策略也有顯著的不同。
網路大數據策略
網路大數據最重要的是來源是通過爬蟲搜集的100多個國家的近萬億網頁數據,數據量是在EB級的規模。網路的數據非常多樣化,其收集的數據既有為非結構化的或者半結構化的數據,包括網頁數據、視頻和圖片等數據,也有結構化的數據,如用戶的點擊行為數據,廣告客戶的付費行為數據等。
網路大數據主要服務三類人群:一類是互聯網網民,通過大數據和自然語言處理技術讓網民的搜索更加准確;第二類是廣告主,通過大數據讓廣告主的廣告和搜索關鍵詞的匹配度更高,或者和網民正在看的網頁內容匹配度更高;第三類是,也是在重點推進的網路大數據引擎,重點是服務傳統行業擁有一定規模數據的企業。
網路大數據引擎代表了互聯網企業數據服務能力開放和合作的趨勢,網路大數據引擎由以下三方面構成:
開放雲:網路的大規模分布式計算和超大規模存儲雲,開放雲大數據開放的是基礎設施和硬體能力。過去的網路雲主要面向開發者,大數據引擎的開放雲則是面向有大數據存儲和處理需求的「大開發者」。據網路相關人員稱,網路開放雲還擁有CPU利用率高、彈性高、成本低等特點。網路是全球首家大規模商用ARM伺服器的公司,而ARM架構的特徵是能耗小和存儲密度大,同時網路還是首家將GPU(圖形處理器)應用在機器學習領域的公司,實現了能耗節省的目的。
數據工廠:數據工廠為網路將海量數據組織起來的軟體能力,與資料庫軟體的作用類似,不同的是數據工廠是被用作處理TB級甚至更大的數據。網路數據工廠支持超大規模異構數據查詢,支持SQL-like以及更復雜的查詢語句,支持各種查詢業務場景。同時網路數據工廠還將承載對於TB級別大表的並發查詢和掃描,大查詢、低並發時每秒可達百GB。
網路大腦:網路大腦將網路此前在人工智慧方面的能力開放出來,主要是大規模機器學習能力和深度學習能力。此前它們被應用在語音、圖像、文本識別,以及自然語言和語義理解方面,並通過網路Inside等平台開放給了智能硬體。現在這些能力將被用來對大數據進行智能化的分析、學習、處理、利用,並對外開放。
網路將基礎設施能力、軟體系統能力以及智能演算法技術打包在一起,通過大數據引擎開放出來之後,擁有大數據的行業可以將自己的數據接入到這個引擎進行處理。從架構來看,企業或組織也可以只選擇三件套中的一種來使用,例如數據存放在自己的雲,但要運用網路大腦的一些智能演算法或者數據存放在網路雲,自己寫演算法。
網路大數據引擎的作用
我們可以從兩方面來具體看網路大數據引擎的作用:
(1)對於 *** 機構:如交通部門有車聯網、物聯網、路網監控、船聯網、碼頭車站監控等地方的大數據,如果這些數據與網路的搜索記錄、全網數據、LBS數據結合,在利用網路大數據引擎的大數據能力,則可以實現智能路徑規劃和運力管理;衛生部門擁有流感法定報告數據、全國流感樣病例哨點監測和病原學監測數據,如果和網路的搜索記錄及全網數據結合,便可進行流感預測、疫苗接種指導。
(2)對於企業:很多企業也擁有海量大數據,不過很多企業的大數據處理和挖掘能力比較弱,如果應用網路大數據引擎,則可以對海量數據進行可靠低成本的存儲,進行智能化的由淺入深的價值挖掘。如在2014年4月的網路技術開放日上,中國平安便介紹了如何利用網路的大數據能力加強消費者理解和預測,細分客戶群制定個性化產品和營銷方案。
阿里巴巴大數據策略
阿里巴巴大數據整體發展方向是以激活生產力為目的的DT(data technology,數據技術驅動)數據時代發展。阿里巴巴大數據未來將由「基於雲計算的數據開放+大數據工具化應用」組成:
(1)基於雲計算的數據開放。雲計算使中小企業可以在阿里雲上獲得數據存儲、數據處理服務,也可以構建自己的數據應用。雲計算是數據開放的基礎,雲計算可以為全球的數據開發者提供數據工作平台,阿里分布式的存儲平台和在這個平台上的演算法工具,可以更好的為數據開發者所用;同時,阿里巴巴還需要做好數據的脫敏,把數據的商業定義,每個標簽打得足夠清晰,能夠讓全球的數據開發者在阿里巴巴平台展開數據思維,讓數據為 *** 所用、消費者所用以及行業所用。阿里的大數據開放之後,線上線下的數據能夠串聯起來,所有人都是數據提供方,也是數據的使用者。
(2)在大數據應用上,馬雲已經在整個數據應用上確定了兩個方針:
第一個方針:從IT到DT(數據技術),DT就是點燃整個數據和激發整個數據的力量,被管理所用,被社會所用,被銷售所用,為製造業所用,為消費者信用所用。前文已經分析道,阿里巴巴的數據資產是以電商為主,其中,淘寶和天貓每天會產生豐富多樣的數據,阿里巴巴已經沉澱了包括交易、金融、生活服務等多種類型的數據。這些數據能夠幫助阿里巴巴進行數據化運營(如下圖)。
另外一個其最為重要的應用是金融領域——小微金融。在小微金融企業融資領域。由於銀行無法掌握小微企業真實的經營數據,不僅導致很多企業無法拿到貸款,還因為數據類型的不足導致整個判斷流程過長,阿里已經通過其電商數據中的交易、信用、SNS等多種數據來決定是否可以發放貸款以及放貸的額度。
第二個方針:讓阿里巴巴的數據、讓阿里巴巴的工具能夠成為中國商業的基礎設施。阿里巴巴已經開始在轉型,阿里將由自己直接面對消費者變成支持網商面對消費者,阿里會根據其已有的運營和數據經驗,開發更多的工具,幫助網商成長,讓網商們更懂得用最好的工具、服務去服務好消費者。正如馬雲所言「我相信沒有一個網商不希望擁有自己的客戶,沒有一個網商不希望知道客戶對自己的體驗到底好還是壞,如何持久的擁有這些客戶,我們覺得一個國家的經濟,應該讓給企業家群體去做,我們覺得淘寶網商未來的經濟,是應該留給網商們去決定,而不是我們去做決定」。
騰訊大數據策略
騰訊的大數據目前更多的是為騰訊企業內部運營服務,相對於阿里和網路,數據開放程度並不高。因此,對於騰訊我們主要重點介紹騰訊大數據在服務企業內部的應用場景和服務。
騰訊90%以上的數據已經實現集中化管理,數據集中在數據平台部,有超過100多個產品的數據已經集中管理起來,而且是集中存儲在騰訊自研數據倉庫(TDW)。騰訊大數據從數據應用的不同環節可以分為四個層面,包括數據分析、數據挖掘、數據管理和數據可視化:
(1)數據分析層有四個產品:自助分析、用戶畫像、實時多維度分析和異動智能定位工具。自助分析可以幫助非技術人員通過簡單的條件配置實現數據的統計和展示功能;用戶畫像則是對某一群用戶或者某一業務的用戶實現自動化的人群畫像;實時多維度分析工具則是可以對某一指標可以實現實時的多個維度的切分,方便分析人員從不同角度對某一指標進行多維度分析;異動智能定位工具則實現數據異動問題的智能化定位。
(2)數據挖掘層面的產品應用有:精準廣告系統、用戶個性化推薦引擎和客戶生命周期管理。精準廣告系統如廣點通,是基於騰訊大社交平台的海量數據為基礎,通過精準推薦演算法,以智能定向推廣位導向實現廣告精準投放;用戶個性化推薦引擎根據每位用戶的興趣和喜好,通過個性化推薦演算法(協同過濾、基於內容推薦、圖演算法、貝葉斯等),實現產品的個性化推薦需求;客戶生命周期管理系統,則是基於大數據,根據用戶/客戶的所處的不同生命周期進行數據挖掘,建立預測、預警和用戶特徵模型,以根據用戶/客戶所處的不同生命周期特點進行精細化運營和營銷。
(3)在數據管理層面則有:TDW(騰訊數據倉庫)、TDBank(數據銀行)、元數據管理平台和任務調度系統和數據監控。這一層面主要是實現數據的高效集中存儲、數據的業務指標定義管理、數據質量管理、計算任務的及時調度和計算以及數據問題的監控和告警。
(4)在數據可視化層面有:自助報表工具、騰訊羅盤、騰訊分析和騰訊雲分析等工具。自助報表工具可以自助化的實現結構相對簡單和邏輯相對簡單的報表。騰訊羅盤分為內部版和外部版,內部版則是服務於騰訊內部用戶(產品經理、運營人員和技術人員等)的高效報表工具,外部版則是服務於騰訊合作夥伴如開發商的報表工具。騰訊分析是網站分析工具,幫助網站主進行網站的全方位分析。騰訊雲分析則是幫助應用開發商決策和運營優化的分析工具。
總的來看,網路、阿里巴巴和騰訊三大互聯網企業都擁有大數據,三大互聯網巨頭的數據都用來優化自己業務的運營效果,從這個層面看,其數據價值應用場景比較類似。但由於其業務和商業模式的不同決定了三者數據資產的不同,也決定了三者未來大數據策略的不同,尤其是基於大數據的開放和合作角度看,網路和阿里巴巴相對更加開放。對於重視大數據開放和合作的互聯網企業,他們最為期待的是借著大數據開放的策略,與更多的傳統行業交換更多的數據,從而更好的豐富其在線下數據,形成線上和線下數據的協同,從中拓展新的商業模式,如智能硬體和大數據健康。
這個得從BAT各自的基因來分析。網路主要是以搜索產品,所以大數據對於網路來說主要用於搜索方面,使搜索更加的精準和匹配;阿里巴巴以電子商務為主,所以大數據對於阿里巴巴來說會主要用戶商品方面;騰訊主要是社交,所以大數據對於騰訊來說可能更多的應用於社會網路分析。大數據的主要用途為預測,所以BAT對於大數據的共同點都是為了通過對用戶的分析,進行更加准確的服務和營銷。
阿里有數據魔方,為賣家提供收費服務。
「互聯網」
和
「所有空間」
互聯網 就是指Inter上所有的信息
對網路來說
主要就是中文信息
所有空間
就是指網路中的所有用戶
建了網路空間
(博客+相冊+留言板)
顯然搜索後者
是不包括網路空間 以外的博客的
大數據是大量、高速、多變的信息,它需要新型的處理方式去促成更強的決策能力、洞察力與最佳化處理。大數據為企業獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。
藉助大數據及相關技術,我們可針對不同行為特徵的客戶進行針對性營銷,甚至能從「將一個產品推薦給一些合適的客戶」到「將一些合適的產品推薦給一個客戶」,得以更聚焦客戶,進行個性化精準營銷。
大數據時代下的精準營銷是指通過大數據獲取對象的喜好,行為偏好,對不同對象進行不同營銷。大數據精準營銷的核心可以概括為幾大關鍵詞:用戶、需求、識別、體驗。
億美軟通推出數據雲服務,延續億美的客戶服務、客戶營銷、客戶管理的公司經營理念,通過龐大的消費數據資源,為客戶提供數據驗證,精準營銷等數據級服務。簡單說就是為企業提供數據驗證和數據篩選業務。
-
不用擔心,學好了就會有好的前景。{變數9}
1.大數據重預測,小數據重解釋;2.大數據重發現,而小數據重實證;3.大數據重相關,小數據重因果;4.大數據重全體,小數據重抽樣;5.大數據重感知,小數據重精確。
DCCI互聯網數據中心(DCCI DATA CENTER OF CHINA INTERNET,簡稱DCCI),互聯網監測研究權威機構&數據平台,互動營銷之測量、分析、優化服務提供者。以Panel軟體、代碼嵌入、海量數據挖掘、語義信息處理等多種領先技術手段為基礎,進行網站、用...
互聯網數據中心:是idc 他是主要存放網路數據的(網站+數據+下載站點等)囊括比較廣泛,任何的正規企業或者是中小型站長都是可以進行選擇的。
企業數據中心:它的更加具有針對性,它可以隸屬於互聯網數據中心的一部分的。
3. 大數據精準營銷如何做
精準營銷的實質是根據目標客戶的個性化需求設計產品和服務,而大數據就是手段。大數據精準營銷做法如下:
1、以用戶為導向。
真正的營銷從來都是以用戶為中心的,而大數據把用戶實實在在「畫」在了眼前,營銷者可以根據資料庫內的數據構建用戶畫像,來了解用戶消費行為習慣、以及年齡、收入等各種情況,從而對產品、用戶定位、營銷做出指導性的調整。
2、一對一個性化營銷。
很多銷售在推銷產品時常常會遇到這樣的問題:產品是一樣的,但是用戶的需求是各不相同的,如何把相同的產品賣給不同的用戶?這就需要我們進行「一對一」個性化營銷。利用大數據分析,可以構建完善的用戶畫像,了解消費者,從而做出精準的個性化營銷。
3、深度洞察用戶。
深度洞察用戶,挖掘用戶潛在需求,是數據營銷的基礎。利用數據標簽,可以准確獲知用戶的潛在消費需求。
例如:我們得知一位用戶曾購買過奶粉,那麼我們可以得知,家裡有小孩,相應的可以向他推送早教課程等適合嬰幼兒的產品。洞察消費者需求後再進行投放,營銷的效果將比撒網式有效且更易成交。
4、營銷的科學性。
實踐證明,數據指導下的精準營銷相對於傳統營銷來說更具有科學性。向用戶「投其所好」,向意向客戶推薦他們感興趣的東西,遠遠要比毫無目標的被動式營銷更具成效。
大數據精準營銷包含方面
1、用戶畫像
用戶畫像是根據用戶社會屬性、生活習慣和消費行為等信息而抽象出的一個標簽化的用戶模型。具體包含以下幾個維度:
用戶固定特徵:性別,年齡,地域,教育水平,生辰八字,職業,星座。
用戶興趣特徵:興趣愛好,使用APP,網站,瀏覽/收藏/評論內容,品牌偏好,產品偏好。
用戶社會特徵:生活習慣,婚戀,社交/信息渠道偏好,宗教信仰,家庭成分。
用戶消費特徵:收入狀況,購買力水平,商品種類,購買渠道喜好,購買頻次。
用戶動態特徵:當下時間,需求,正在前往的地方,周邊的商戶,周圍人群,新聞事件如何生成用戶精準畫像大致分成三步。
2、數據細分受眾
在執行大數據分析的3小時內,就可以輕松完成以下的目標:精準挑選出1%的VIP顧客發送390份問卷,全部回收 問卷寄出3小時內回收35%的問卷 5天內就回收了超過目標數86%的問卷數所需時間和預算都在以往的10%以下。
3、預測
「預測」能夠讓你專注於一小群客戶,而這群客戶卻能代表特定產品的大多數潛在買家。當我們採集和分析用戶畫像時,可以實現精準營銷。這是最直接和最有價值的應用,廣告主可以通過用戶標簽來發布廣告給所要觸達的用戶。
這裡面又可以通過上圖提到的搜索廣告,展示社交廣告,移動廣告等多渠道的營銷策略,營銷分析,營銷優化以及後端CRM/供應鏈系統打通的一站式營銷優化,全面提升ROI。
4、精準推薦
大數據最大的價值不是事後分析,而是預測和推薦,我就拿電商舉例,"精準推薦"成為大數據改變零售業的核心功能。
數據整合改變了企業的營銷方式,現在經驗已經不是累積在人的身上,而是完全依賴消費者的行為數據去做推薦。未來,銷售人員不再只是銷售人員,而能以專業的數據預測,搭配人性的親切互動推薦商品,升級成為顧問型銷售。
4. 大數據精準營銷如何做
大數據精準營銷方法如下:
一、建立用戶畫像
根據用戶社會屬性、生活習慣和消費行為等信息而抽象出的一個標簽化的用戶模型,包括用戶固定特徵、興趣特徵、社會特徵、消費特徵、動態特徵等多個層面。然後從已知的數據出發,挖掘和尋找線索,分析用戶需求,進一步開發市場。
傳統時代的營銷,以產品為中心,但是產品是否真的觸達到最有需求的用戶面前,誰也不能保證,而通過大數據建立用戶畫像,對每個消費者進行個性化匹配,一對一營銷,甚至精確算清楚成交轉化率,能夠大大提高投資回報比。
二、用戶分群分析
在大數據分析當中,描述分析是最基本的分析統計方法,其次還涉及到一些數據演算法模型等,如響應率分析模型,客戶傾向性模型等,幫助企業來更有針對性地進行營銷推廣。
大數據分析所能帶來的價值,最大的價值是在預測和推薦上,依賴消費者的行為來分析消費者,將更加了解消費者,也能實現自身產品營銷的最大化。
三、制定營銷策略
有了用戶畫像,進行了相應的用戶分群分析之後,企業能夠更加清楚地了解到用戶的需求,根據用戶需求來推出新的營銷策略。再根據營銷策略推出之後的客戶反響,來進一步驗證策略是否正確,進行進一步的優化調整。
5. 大數據時代移動營銷有哪些趨勢
一、智能終端成為數字營銷的主戰場
隨著智能手機和平板電腦的普及,移動網路的訪問量急劇增長,用戶在智能手機和平板電腦平台上花費的時間也越來越多,中國移動廣告市場呈現快速增長的態勢。
二、大數據的應用讓移動營銷更精準
依託大數據為驅動力將使得移動營銷更加精準、投資回報率更高。大數據移動營銷不僅僅是量上的,更多是數據背後對用戶的感知。
三、移動電商改變整個市場營銷生態
如果說電子商務對實體店生存構成巨大挑戰,那麼移動電子商務則正在改變整個市場營銷的生態。智能手機和平板電腦的普及,上網流量資費的降低,大量移動電商平台的創建,為消費者提供了更多便利的購物選擇。
四、新型城鎮和農村成移動新藍海
隨著國家新型城鎮化戰略的實施和移動終端網路的不斷普及,三四線城市、新興城鎮和農村市場成為移動電商的新藍海。事實上,阿里,京東、1號店、蘇寧雲商等電商近年來已經大跨步進軍三四線城市和農村市場。
五、App營銷是移動營銷主要形式
現階段移動互聯網流量主要由各種App產生,App產生的流量佔70%以上,App的數量在IOS和Android都在百萬個以上,無疑,App成為移動營銷的主要形式。
六、本地化移動營銷市場空間廣闊
本地化移動營銷是人、位置、移動媒體三者的結合。由於廣告主及數字廣告代理商不斷尋求一種既具有高度本地化有高度相關性的傳遞商品信息的方式,本地化移動營銷得以快速發展。
七、移動營銷打造O2O營銷新模式
移動O2O營銷模式充分利用了移動互聯網跨地域、無邊界、海量信息、海量用戶的優勢,同時充分挖掘線下資源,進而促成線上用戶與線下商品服務的交易。在移動互聯時代,企業需要思考如何將線上和線下有效整合,將線上的推廣活動轉化為實際的銷售。
八、RTB成移動廣告投放主導模式
RTB(RealTimeBidding)實時競價,是一種利用第三方技術在數以百萬計的網站上針對每一個用戶展示行為進行評估以及出價的競價技術。與大量購買投放頻次不同,實時競價規避了無效的受眾到達,針對有意義的用戶進行購買。
九、多屏整合成移動營銷必然趨勢
華通明略(MillwardBrown)發布的最新報告顯示,中國消費者使用智能手機、平板電腦等多屏媒體的頻率要高於世界上任何其他地區。多屏整合將成為移動營銷的主導方向。這里的多屏整合包含兩層含義:一是多屏整合的大數據分析。二是多屏的整合營銷。
十、建立戰略聯盟是移動營銷平台方向
大數據時代,大數據、技術和創意將是移動數字營銷公司的核心競爭優勢。建立戰略聯盟是移動營銷平台發展的必然選擇,數字營銷公司建立戰略聯盟可以通過以下途徑:一是大型互聯網企業之間的戰略聯盟。
6. 大數據時代,怎麼做好精準營銷
大數據時代下的精準營銷是指通過大數據獲取對象的喜好,行為偏好,對不回同對象進行不同答營銷。 營銷實驗室Convertlab的DMHub透過多觸點渠道抓取信息,分析並標簽化用戶,充分挖掘用戶數據價值,推送相關營銷內容。
7. 大數據時代下b2c怎麼做精準營銷
大數據時復代下的精準營銷是指通制過客戶數據,更准確的把握客戶習慣和喜好,從而調整公司產品和推廣策略。
b2c座精準營銷通常包含兩方面。一方面是通過網站的數據(太多了就不一一贅述了),調整公司的產品,和網站的設計。另一方面是向用戶推薦其喜歡的產品。
這個領域亞馬遜無疑是世界做的最好的,你可以多多瀏覽亞馬遜網站,看看從客戶的角度有哪些便利。
8. 大數據時代,企業如何做精準營銷
提高用戶轉化率
一、合適的人
二、合適的產品
三、合適的渠道
這三個為你的的優勢及壁壘,你能為你的用戶解決他們所需要的產品。
在這三個為你的殺手鐧,在加上合適的時間和合適的場景,定能讓你轉化率節節攀升!
舉個例子,你通過大數據找到了一批需要筆記本電腦的人,剛好你有蘋果電腦渠道資源,且你拿到的是代購的貨,那麼你就擁有了三把殺手鐧。
合適是場景就是心動的營銷了,你的產品在正好在他們剛發薪資的時候被看到了,那麼增加了他們對你產品的購買率。
通過這個列子,我們能夠簡單地理解什麼叫做精準營銷了,那麼怎麼才能更加深入的了解呢?
一、收集客戶大數據
我們需要收集客戶的那些方面的數據呢?身份信息、行為信息和交易信息。
我們獲得信息渠道有哪些呢?
根部不同來源的性質,我們劃分為第一數據、第二數據和第三數據。
第一數據企業自身獲得的數據,第二數據是通過合作企業獲得的數據,第三數據是通過購買獲得的數據,根據不通來源,最靠譜的是第一數據,但是第一數據需用心沉澱積累。
如何獲得第一數據呢?
企業在運營過程中,會與不同的消費人群擁有更多的觸及點,當然,獲得這些多維度的觸及點的數據,是我們需要深耕的數據渠道。
如,我們大家都喜歡喝可口可樂,竟讓會有用掃一掃出現AR場景,這個時候,我們需要用我們的微信等進行授權,企業通過此觸及點,可以獲得客戶的信息。
若想做到精準化營銷,必要建立企業數據戰略!
二、處理大數據、精準推薦產品
獲得數據的第一步,當然是處理這些數據!
建立不通的維度框架,收集客戶不通維度信息,然後對數據統一整理
建立用戶畫像
我們的客戶基本信息可以了解到,什麼樣的人在購買自己的產品,自己的哪一款產品比較受客戶青睞等一些信息
鎖定我們的人群
當我們多維度考慮到購買我們產品的用戶,可以篩選並縮小我們用戶的圈子。更能精準推薦自己的產品。
精準引流
選擇不同的媒體,讓用戶產生購買慾望
三、建立長期關系
採用會員制或者圈子制度,除了能夠提高用戶的復購率,且能夠起到口碑宣傳的作用,因此我們要用心呵護我們的用戶,去和我們的用戶做朋友,提供我們的價值!
9. 大數據時代電商企業如何實行精準營銷
整合的集成數據技術對於一個成功的分析程序是至關重要的,必須要意識到不回同業務部門對答數據的需求是不同的,數據的形式不能千篇一律。相反,還需要考慮數據供給,IT部門需要將業務類型與數據形式相匹配。並不是所有的業務都需要整合過後的數據。以金融機構的眾多需求為例,風控部門需要未經處理的原始數據,以從中發現異常。比如通過搜尋多組數據中某個人地址信息的,確定其是否申請了多筆貸款等。另一方面,諸如市場部等部門希望實現准確的用戶信息定位,因此只需要其中正確的那組數據。