㈠ 大數據架構師工作職能有哪些
職責一:全局復的技術規制劃
全局技術規劃是專職架構師必須要做的工作,全局技術規劃要能非常明確的指引整個團隊在同一時間向同一個方向前進,這對架構師的心力和體力都是有很大的考驗,全局規劃不僅要與業務緊密溝通,還必須有對應的技術深度和廣度,應採取正確的方法論,勇敢做出判斷和決策!
職責二:統一的方法&規范&機制
專職架構師不僅要能夠做出全局技術規劃,還要能提供統一的方法、規范和機制以保障全局技術規劃的順利有序進行,這是一項相對復雜且繁瑣的過程,需進行全方位的拆解,直到權責清晰對等。
職責三:完備的基礎構建
基礎構建的完備程度對全局技術規劃來說是十分重要的,為全局技術規劃得以順利實施提供了強大的武器庫,因此,專職架構師要制定完備的基礎構建。
職責四:落地的規劃才是架構
這是對專職架構師最大的挑戰,專職架構師應實時關注全局技術規劃實施的進度,把控發展的方向,以確保與規劃預期結果保持一致!
㈡ 大數據架構師崗位的主要職責概述
職責:
1、負責大數據平台及BI系統框架設計、規劃、技術選型,架構設計並完成系統基礎服務的開發;
2、負責海量埋點規則、SDK標准化、埋點數據採集、處理及存儲,業務數據分布存儲、流式/實時計算等應用層架構搭建及核心代碼實現;
3、開發大數據平台的核心代碼,項目敏捷開發流程管理,完成系統調試、集成與實施,對每個項目周期技術難題的解決,保證大數據產品的上線運行;
4、負責大數據平台的架構優化,代碼評審,並根據業務需求持續優化數據架構,保證產品的可靠性、穩定性;
5、指導開發人員完成數據模型規劃建設,分析模型構建及分析呈現,分享技術經驗;
6、有效制定各種突發性研發技術故障的應對預案,有清晰的隱患意識;
7、深入研究大數據相關技術和產品,跟進業界先進技術;
任職要求
1、統計學、應用數學或計算機相關專業大學本科以上學歷;
2、熟悉互聯網移動端埋點方法(點擊和瀏覽等行為埋點),無埋點方案等,有埋點SDK獨立開發經驗者優選;
3、熟悉Hadoop,MR/MapRece,Hdfs,Hbase,Redis,Storm,Python,zookeeper,kafka,flinkHadoop,hive,mahout,flume,ElasticSearch,KafkaPython等,具備實際項目設計及開發經驗;
4、熟悉數據採集、數據清洗、分析和建模工作相關技術細節及流程
5、熟悉Liunx/Unix操作系統,能熟練使用shell/perl等腳本語言,熟練掌握java/python/go/C++中一種或多種編程語言
6、具備一定的演算法能力,了解機器學習/深度學習演算法工具使用,有主流大數據計算組件開發和使用經驗者優先
7、熟悉大數據可視化工具Tableau/echarts
8、具有較強的執行力,高度的責任感、很強的學習、溝通能力,能夠在高壓下高效工作;
職責:
根據大數據業務需求,設計大數據方案及架構,實現相關功能;
搭建和維護大數據集群,保證集群規模持續、穩定、高效平穩運行;
負責大數據業務的設計和指導具體開發工作;
負責公司產品研發過程中的數據及存儲設計;
針對數據分析工作,能夠完成和指導負責業務數據建模。
職位要求:
計算機、自動化或相關專業(如統計學、數學)本科以上學歷,3年以上大數據處理相關工作經驗;
精通大數據主流框架(如Hadoop、hive、Spark等);
熟悉MySQL、NoSQL(MongoDB、Redis)等主流資料庫,以及rabbit MQ等隊列技術;
熟悉hadoop/spark生態的原理、特性且有實戰開發經驗;
熟悉常用的數據挖掘演算法優先。
職責:
1、大數據平台架構規劃與設計;
2、負責大數據平台技術框架的選型與技術難點攻關;
3、能夠獨立進行行業大數據應用的整體技術框架、業務框架和系統架構設計和調優等工作,根據系統的業務需求,能夠指導開發團隊完成實施工作;
4、負責數據基礎架構和數據處理體系的升級和優化,不斷提升系統的穩定性和效率,為相關的業務提供大數據底層平台的支持和保證;
5、培養和建立大數據團隊,對團隊進行技術指導。
任職要求:
1、計算機相關專業的背景專業一類院校畢業本科、碩士學位,8年(碩士5年)以上工作經驗(至少擁有3年以上大數據項目或產品架構經驗);
2、精通Java,J2EE相關技術,精通常見開源框架的架構,精通關系資料庫系統(Oracle MySQL等)和noSQL數據存儲系統的原理和架構;
3、精通SQL和Maprece、Spark處理方法;
4、精通大數據系統架構,熟悉業界數據倉庫建模方法及新的建模方法的發展,有DW,BI架構體系的專項建設經驗;
5、對大數據體系有深入認識,熟悉Kafka、Hadoop、Hive、HBase、Spark、Storm、greenplum、ES、Redis等大數據技術,並能設計相關數據模型;
6、很強的學習、分析和解決問題能力,可以迅速掌握業務邏輯並轉化為技術方案,能獨立撰寫項目解決方案、項目技術文檔;
7、具有較強的內外溝通能力,良好的團隊意識和協作精神;
8、機器學習技術、數據挖掘、人工智慧經驗豐富者優先考慮;
9、具有能源電力行業工作經驗者優先。
職責:
1.參與公司數據平台系統規劃和架構工作,主導系統的架構設計和項目實施,確保項目質量和關鍵性能指標達成;
2.統籌和推進製造工廠內部數據系統的構建,搭建不同來源數據之間的邏輯關系,能夠為公司運營診斷、運營效率提升提供數據支持;
3.負責數據系統需求對接、各信息化系統數據對接、軟體供應商管理工作
5.根據現狀制定總體的數據治理方案及數據體系建立,包括數據採集、接入、分類、開發標准和規范,制定全鏈路數據治理方案;深入挖掘公司數據業務,超強的數據業務感知力,挖掘數據價值,推動數據變現場景的落地,為決策及業務賦能;
6.定義不同的數據應用場景,推動公司的數據可視化工作,提升公司數據分析效率和數據價值轉化。
任職要求:
1.本科以上學歷,8年以上軟體行業從業經驗,5年以上大數據架構設計經驗,熟悉BI平台、大數據系統相關技術架構及技術標准;
2.熟悉數據倉庫、熟悉數據集市,了解數據挖掘、數據抽取、數據清洗、數據建模相關技術;
3.熟悉大數據相關技術:Hadoop、Hive、Hbase、Storm、Flink、Spark、Kafka、RabbitMQ;
4.熟悉製造企業信息化系統及相關資料庫技術;
5.具備大數據平台、計算存儲平台、可視化開發平台經驗,具有製造企業大數據系統項目開發或實施經驗優先;
6.對數據敏感,具備優秀的業務需求分析和報告展示能力,具備製造企業數據分析和數據洞察、大數據系統的架構設計能力,了解主流的報表工具或新興的前端報表工具;
7.有較強的溝通和組織協調能力,具備結果導向思維,有相關項目管理經驗優先。
職責:
1.負責產品級業務系統架構(如業務數據對象識別,數據實體、數據屬性分析,數據標准、端到端數據流等)的設計與優化。協助推動跨領域重大數據問題的分析、定位、解決方案設計,從架構設計上保障系統高性能、高可用性、高安全性、高時效性、分布式擴展性,並對系統質量負責。
2.負責雲數據平台的架構設計和數據處理體系的優化,推動雲數據平台建設和持續升級,並制定雲數據平台調用約束和規范。
3.結合行業應用的需求負責數據流各環節上的方案選型,主導雲數據平台建設,參與核心代碼編寫、審查;數據的統計邏輯回歸演算法、實時交互分析;數據可視化方案等等的選型、部署、集成融合等等。
4.對雲數據平台的關注業內技術動態,持續推動平台技術架構升級,以滿足公司不同階段的數據需求。
任職要求:
1.熟悉雲計算基礎平台,包括linux(Ubuntu/CentOS)和KVM、OpenStack/K8S等基礎環境,熟悉控制、計算、存儲和網路;
2.掌握大型分布式系統的技術棧,如:CDN、負載均衡、服務化/非同步化、分布式緩存、NoSQL、資料庫垂直及水平擴容;熟悉大數據應用端到端的相關高性能產品。
3.精通Java,Python,Shell編程語言,精通SQL、NoSQL等資料庫增刪改查的操作優化;
4.PB級別實戰數據平台和生產環境的實施、開發和管理經驗;
5.熟悉Docker等容器的編排封裝,熟悉微服務的開發和日常調度;
6.計算機、軟體、電子信息及通信等相關專業本科以上學歷,5年以上軟體工程開發經驗,2年以上大數據架構師工作經驗。
職責描述:
1、負責集團大數據資產庫的技術架構、核心設計方案,並推動落地;
2、帶領大數據技術團隊實現各項數據接入、數據挖掘分析及數據可視化;
3、新技術預研,解決團隊技術難題。
任職要求:
1、在技術領域有5年以上相關經驗,3年以上的架構設計或產品經理經驗;
2、具有2年以上大數據產品和數據分析相關項目經驗;
3、精通大數據分布式系統(hadoop、spark、hive等)的架構原理、技術設計;精通linux系統;精通一門主流編程語言,java優先。
崗位職責:
1、基於公司大數據基礎和數據資產積累,負責大數據應用整體技術架構的設計、優化,建設大數據能力開放平台;負責大數據應用產品的架構設計、技術把控工作。
2、負責制定大數據應用系統的數據安全管控體系和數據使用規范。
3、作為大數據技術方案到產品實現的技術負責人,負責關鍵技術點攻堅工作,負責內部技術推廣、培訓及知識轉移工作。
4、負責大數據系統研發項目任務規劃、整體進度、風險把控,有效協同團隊成員並組織跨團隊技術協作,保證項目質量與進度。
5、負責提升產品技術團隊的技術影響力,針對新人、普通開發人員進行有效輔導,幫助其快速成長。
任職資格:
1、計算機、數學或相關專業本科以上學歷,5—20xx年工作經驗,具有大型系統的技術架構應用架構數據架構相關的實踐工作經驗。
2、有分布式系統分析及架構設計經驗,熟悉基於計算集群的軟體系統架構和實施經驗。
3、掌握Hadoop/Spark/Storm生態圈的主流技術及產品,深入了解Hadoop/Spark/Storm生態圈產品的工作原理及應用場景。
4、掌握Mysql/Oracle等常用關系型資料庫,能夠對SQL進行優化。
5、熟悉分布式系統基礎設施中常用的技術,如緩存(Varnish、Memcache、Redis)、消息中間件(Rabbit MQ、Active MQ、Kafka、NSQ)等;有實踐經驗者優先。
6、熟悉Linux,Java基礎扎實,至少3—5年以上Java應用開發經驗,熟悉常用的設計模式和開源框架。
崗位職責:
1、負責公司大數據平台架構的技術選型和技術難點攻關工作;
2、依據行業數據現狀和客戶需求,完成行業大數據的特定技術方案設計與撰寫;
3、負責研究跟進大數據架構領域新興技術並在公司內部進行分享;
4、參與公司大數據項目的技術交流、解決方案定製以及項目的招投標工作;
5、參與公司大數據項目前期的架構設計工作;
任職要求:
1、計算機及相關專業本科以上,5年以上數據類項目(數據倉庫、商務智能)實施經驗,至少2年以上大數據架構設計和開發經驗,至少主導過一個大數據平台項目架構設計;
2、精通大數據生態圈的技術,包括但不限於MapRece、Spark、Hadoop、Kafka、Mongodb、Redis、Flume、Storm、Hbase、Hive,具備數據統計查詢性能優化能力。熟悉星環大數據產品線及有過產品項目實施經驗者優先;
3、優秀的方案撰寫能力,思路清晰,邏輯思維強,能夠根據業務需求設計合理的解決方案;
4、精通ORACLE、DB2、mySql等主流關系型資料庫,熟悉數據倉庫建設思路和數據分層架構思想;
5。熟練掌握java、R、python等1—2門數據挖掘開發語言;
6。熟悉雲服務平台及微服務相關架構思想和技術路線,熟悉阿里雲或騰訊雲產品者優先;
7、有煙草或製造行業大數據解決方案售前經驗者優先;
8、能適應售前支持和項目實施需要的短期出差;
崗位職責:
1、負責相關開源系統/組件的性能、穩定性、可靠性等方面的深度優化;
2、負責解決項目上線後生產環境的各種實際問題,保障大數據平台在生產上的安全、平穩運行;
3、推動優化跨部門的業務流程,參與業務部門的技術方案設計、評審、指導;
4、負責技術團隊人員培訓、人員成長指導。
5、應項目要求本月辦公地址在錦江區金石路316號新希望中鼎國際辦公,月底項目結束後在總部公司辦公
任職要求:
1、熟悉linux、JVM底層原理,能作為技術擔當,解決核心技術問題;
2、3年以上大數據平台項目架構或開發經驗,對大數據生態技術體系有全面了解,如Yarn、Spark、HBase、Hive、Elasticsearch、Kafka、PrestoDB、Phoenix等;
3、掌握git、maven、gradle、junit等工具和實踐,注重文檔管理、注重工程規范優先;
4、熟悉Java後台開發體系,具備微服務架構的項目實施經驗,有Dubbo/Spring cloud微服務架構設計經驗優先;
5、性格開朗、善於溝通,有極強的技術敏感性和自我驅動學習能力,注重團隊意識。
職責描述:
1、負責大數據平台框架的規劃設計、搭建、優化和運維;
2、負責架構持續優化及系統關鍵模塊的設計開發,協助團隊解決開發過程中的技術難題;
3、負責大數據相關新技術的調研,關注大數據技術發展趨勢、研究開源技術、將新技術應用到大數據平台,推動數據平台發展;
4、負責數據平台開發規范制定,數據建模及核心框架開發。
任職要求:
1、計算機、數學等專業本科及以上學歷;
2、具有5年及以上大數據相關工作經驗;
3、具有扎實的大數據和數據倉庫的理論功底,負責過大數據平台或數據倉庫設計;
4、基於hadoop的大數據體系有深入認識,具備相關產品(hadoop、hive、hbase、spark、storm、 flume、kafka、es等)項目應用研發經驗,有hadoop集群搭建和管理經驗;
5、熟悉傳統數據倉庫數據建模,etl架構和開發流程,使用過kettle、talend、informatic等至少一種工具;
6、自驅力強、優秀的團隊意識和溝通能力,對新技術有好奇心,學習能力和主動性強,有鑽研精神,充滿激情,樂於接受挑戰;
㈢ 什麼是大數據架構師
圍繞大數據系平台系統級的研發人員, 熟練Hadoop、Spark、Storm等主流大數據平台的核心框架。深入掌握如何編寫MapRece的作業及作業流的管理完成對數據的計算,並能夠使用Hadoop提供的通用演算法, 熟練掌握Hadoop整個生態系統的組件如: Yarn,HBase、Hive、Pig等重要組件,能夠實現對平台監控、輔助運維系統的開發。
通過學習一系列面向開發者的Hadoop、Spark等大數據平台開發技術,掌握設計開發大數據系統或平台的工具和技能,能夠從事分布式計算框架如Hadoop、Spark群集環境的部署、開發和管理工作,如性能改進、功能擴展、故障分析等。
㈣ 大數據架構師工作職能有哪些
職責一:全復局的技術規劃
全局制技術規劃是專職架構師必須要做的工作,全局技術規劃要能非常明確的指引整個團隊在同一時間向同一個方向前進,這對架構師的心力和體力都是有很大的考驗,全局規劃不僅要與業務緊密溝通,還必須有對應的技術深度和廣度,應採取正確的方法論,勇敢做出判斷和決策!
職責二:統一的方法&規范&機制
專職架構師不僅要能夠做出全局技術規劃,還要能提供統一的方法、規范和機制以保障全局技術規劃的順利有序進行,這是一項相對復雜且繁瑣的過程,需進行全方位的拆解,直到權責清晰對等。
職責三:完備的基礎構建
基礎構建的完備程度對全局技術規劃來說是十分重要的,為全局技術規劃得以順利實施提供了強大的武器庫,因此,專職架構師要制定完備的基礎構建。
職責四:落地的規劃才是架構
這是對專職架構師最大的挑戰,專職架構師應實時關注全局技術規劃實施的進度,把控發展的方向,以確保與規劃預期結果保持一致!
㈤ 大數據架構師的基本職責
大數據架構師需要參與規劃從數據源到數據應用的整體流程,並參與相關產品的決策。下面是我為您精心整理的大數據架構師的基本職責。
大數據架構師的基本職責1
職責:
1.負責整個大數據平台架構的設計和構建;
2.負責構建大數據平台的數據交換、任務調度等通用平台;
3.制定開發、測試、實施、維護的標准和規范,指導和培訓工程師,不斷提升團隊能力。
4.參與系統需求分析、架構設計、技術選型、應用設計與開發以及測試與部署,負責編寫核心部分代碼。
5.持續挑戰新的技術方向,攻克大數據量、高並發、高可用、可擴展等技術難點。
任職要求:
1.3年以上大數據架構經驗,豐富的數據倉庫、數據挖掘、機器學習項目經驗
2.大規模數據處理的架構和設計實戰經驗
3.精通Spark、MR,熟練HDFS、Yarn、Hbase、Hive、MongoDB,熟悉Kafka、Redis、Storm、Mahout、Flume、ElasticSearch、GraphDB(NEO4J或其他)等,並具有豐富的大型數據平台工程經驗
4.深刻理解大數據處理(流計算,分布式計算,分布式文件系統,分布式存儲等)相關技術和實現方法
5.熟悉主數據、元數據、數據質量等企業數據管理相關的體系和方法,熟練Linux/Unix平台上的開發環境
6.本科或以上學歷,計算機軟體或相關專業,豐富的java開發經驗和互聯網背景優先。
7.具有比較強的問題分析和處理能力,有比較優秀的動手能力,熱衷技術,精益求精
大數據架構師的基本職責2
職責:
1. 深刻理解政府行業業務模式,構建政府行業的數據模型,制定公司大數據技術發展路線;
2. 對接業務研究和技術部門,主動搜集和轉化需求,組織數據中心業務開發,進行數據相關產品需求分析和設計;
3. 搭建數據倉庫,研發資料庫管理系統,搜集、提取、處理業務積累的海量數據,開展數據分析和挖掘;
4. 根據公司戰略和發展需要,規劃數據中心重點工作和任務;落實部門人員、事務管理,開展跨部門、跨地區協作,協助對外交流與合作。
職位要求:
1. 5年以上相關工作經驗,有團隊管理和項目管理經驗者優先;
2.了解政府運作機制,掌握財政行業知識,有電子政務行業經驗者優先;
3. 熟練掌握使用Java或Python,精通資料庫查詢語言如SQL,Oracle等,在機器學習模型和演算法方向有應用經驗者優先;
4. 具備數據中心產品策劃整體思維,有大數據處理、分析、挖掘經驗者優先;
5. 邏輯思維嚴密,具備業務抽象、分解和標准化的能力,口頭和書面表達優秀;
6. 有較強的大局意識和良好的團隊合作意識,富有領導力,具備優秀的人際交往和溝通能力。
大數據架構師的基本職責3
職責:
1、從事電信行業大數據項目相關業務調研、產品標准建設、核心模型設計和優化、系統測試等相關工作
2、與數據專業委員會一起研究數據建模方案和建模工具,負責產品線產品的數據架構、數據模型設計
3、參與研究資料庫之間的數據轉換方式,參與項目中的數據移植工作,收集在項目中的數據移植經驗,優化產品的數據模型
4、負責培訓本部門隊伍的數據模型基礎理論工作,建立數據模型團隊
崗位要求:
1、統招本科學歷,3年以上主流數據上(DB2、Oracle、SQLServer、Mysql等)ETL設計、開發經驗,具備大型數據倉庫邏輯模型和物理模型設計經驗,精通SQL,有較好的SQL性能調優經驗;
2、擁有Python,R等數學建模工具的使用經驗,並具備一定的數據處理和建模經驗,可以輸出相應的模型分析結果、模型比較、模型效率以及對模型的理論和判斷依據方法並對其進行完整的解釋和說明;
3、熟悉統計學基本原理,做過實戰的數據建模項目;
4、有分布式數據倉庫建設相關經驗者優先,具備電信行業數據倉庫建設相關經驗者優先;
大數據架構師的基本職責4
職責:
1、負責大數據平台的架構設計、核心代碼開發等任務;根據項目要求編寫相關技術文檔;
2、負責大數據平台的架構評審,代碼評審,上線評審;參與數據應用需求、設計、審核和評審;
3、負責核心模塊研發,負責大數據平台的搭建,完成系統調試、集成與實施;
4、負責建立和維護大數據平台技術標准規范,指導開發人員編寫代碼;
任職要求:
1、本科及以上計算機相關專業畢業;
2、精通離線和實時數據處理流程,掌握離線數據處理框架hive、impala、spark-sql等,掌握實時數據處理常用技術工具,包括Storm、SparkStreaming等;
3、熟悉大數據技術生態圈,精通大數據技術架構,有大數據平台構建經驗;
4、掌握常見數據流接入工具,包括Flume、kafka等;
5、熟練掌握基本的Linux操作系統和某種腳本語言編程(如Shell等);
6、掌握一種或以上實時處理語言,如JAVA、SCALA、PYTHON等,有SCALA經驗者優先;
7、有實際大規模數據(TB級以上)處理經驗優先;
大數據架構師的基本職責5
職責:
1、負責公司的大數據處理框架的研發設計工作,梳理可實現方案和技術規范;
2、開發、完善公司大數據平台;參與公司離線、實時大數據處理系統的設計、開發、測試及多個業務模塊的自動化集成;
3、負責業務平台數據統計分析模塊的設計與規劃;
4、負責公司產品研發過程中的數據及存儲設計;
5、帶領和培養團隊完成組織分解的目標;
任職要求:
1、統招本科及以上學歷,計算機、軟體工程相關專業,至少8年以上工作經驗,5年以上大數據開發經驗;
2、熟悉Java、Hadoop、HDFS、Hive、HBase、Spark、Storm、Flume等相關技術的基礎架構
3、熟悉數據倉庫,數據演算法,分布式計算技術理論,具有大數據整體系統架構設計經驗;
4、熟悉Linux系統,熟練使用shell/perl/python腳本處理問題;
5、對深度學習框架(Tensorflow)和機器學習(svm 隨機深林貝葉斯等)有一定了解的優先;
6、能夠組織項目開發組協同工作,包括團隊溝通、計劃、開發環境管理等
㈥ 大數據這個行業裡面的全部崗位都有什麼_要全部的
細分的有20多個
大數據在全球范圍內的IT就業市場佔有越來越重要的影響。根據Gartner公司提供的數據,截至到2015年將有440萬的IT工作來支持大數據,僅美國就會有190萬的IT工作產生。看看我們列出的排名前20位的大數據職位及其職責列表。
首席數據官Chief DataOfficer
職責:
a. 與行政人員,數據所有者和數據管理員共同為內部和外部的客戶創建數據管理策略並且實現數據的准確性和制定工作流程的需求目標。
b. 引導EIM程序,業務數據管理員和數據服務供應商提供數據管理活動。
c. 建立數據政策,標准,組織並且督促EIM概念的組織成立。
b. 監督組織內的數據質量工作的監管,並且為不能被數據治理委員會解決的數據管理問題提供幾種治理。
e. 建立數據供應商管理策略,並通過CIO/CTO和IT組織的協調來監督完善EIM項目。
f. 領導創建程序的業務定義,數據管理目標和EIM計劃執行的原則。
g. 負責企業的信息/數據管理預算和數據相關的系統活動。
數據分析師Data analyst
職責:
a. 協調客戶和員工之間的關系,提供所有的數據分析和支持。
b. 對所有結果進行數據分析,並為客戶准備演講。
c. 對數據進行審核並且為客戶解決業務相關的問題。
d. 與工程和產品管理團隊進行協調,並確定所有交接的准確性,並准備好總結。
e. 進行數據分析並且傳遞給終端客戶。
f. 監督所有的客戶問題,並為經理和主管的協調和交接提供幫助。
g. 監督和管理所有和客戶發票並且對所有的支付問題進行及時的評價。
h. 管理客戶發票的所有數據,並提供公司的指標。
i. 監督並解決所有客戶的發票數據問題,並和各供應商協調和管理所有以前的平衡合作關系。
j. 管理所有的數據消耗異常狀態,確定數據的漏洞後准備相應的決議。
k. 監督流程管理工具,並確保遵守所有周期的指導方針。
l. 維護和管理發票文檔庫,並解決所有問題。
m. 執行內部設計和准備所有的發票,並確定更進流程的質量。
大數據觀察員Big DataVisualizer
職責:
a. 通過可視化軟體給商務提供價值增值分析來指導分析和借鑒分析帶來的影響,綜合成清晰的溝通。
b. 理解數據如何在不同的系統中運作來提供有關要求來確定正確的數據輸入組織報告/分析。
c. 與數據質量團隊之間緊密合作,以確保數據的完整性。
d. 發展業務需求為報告流程去推動功能規范化。
e. 在業務和跨職能團隊的合作下,完整地記錄報告流程和系統。
f. 收購,管理和文檔的數據(包括地理空間數據)。
g. 與客戶/客戶服務團一起進行工作計劃,並進行數據分析。
h. 參與提案撰寫,客戶交付成果和研究論文。
i. 對數據、GIS數據分析創建可視化從而列入建議書,報告,論文和多媒體項目數據。
大數據解決方案架構師Big DataSolutions Architect
職責:
a. 對Hadoop解決方案的整個生命周期進行引導,包括需求分析,平台選擇,技術架構設計,應用設計和開發,測試和部署。
b. 在一個團隊中,設計並卡發開創性大規模集群的數據處理系統提供了技術和管理的領導。
c. 幫助Xtremeinsights客戶指定戰略,最大限度地發揮數據的價值。
d. 幫助Xtremeinsights在大數據空間通過促進白皮書,技術評論對社區建立思想領導。
大數據工程師Big DataEngineer
職責:
a. 收集和處理大規模的原始數據(包括腳本編寫,網頁獲取,調用APIs,編寫SQL查詢等)。
b. 和我們的工程團隊密切合作,並以驚人的創新和演算法與我們的生產系統相結合。
c. 將非結構化數據處理成適合分析的一種形式,然後進行分析。
d. 根據所需要的和專案分析商業決策。
大數據研究員Big DataResearcher
職責:
a. 從多種關系資料庫中提取數據,操作,使用定量,統計和可視化工具研究數據。
b. 告知適當的建模技術的選擇,以確保使用嚴格的統計過程的測試模型進行開發。
c. 建立和維持有效的流程來驗證並更新預測模型。
d. 分析,建模,預測衛生服務的利用模式/趨勢和創造能力來為醫療保健服務模式模擬假設的情景。
e. 與內部業務,分析和數據戰略合作夥伴共同合作,從而提高效率,為核心的軟體產品增加預測模型的適用性
f. 幫助管理分析的創新性,形成的見解,主張整合新概念到現有的客戶端工具中,幫助翻譯即席分析到可擴展的軟體解決方案。
數據倉庫管理員Data warehousemanager
職責:
a. 指定並實施信息管理策略。
b. 協調和管理的信息管理解決方案
c. 多個項目的范圍,計劃和優先順序安排
d. 管理倉庫的各個方面,比如數據外包,移動,質量,設計和實施。
數據架構師Data architect
職責:
a. 通過採用最佳實踐和工具,包括SOL,SSIS,SSRS和OLAP來設計資料庫,數據模型,ETL過程,數據倉庫應用和商業智能(BI)報告。
b. 根據現有的標准和准則來提供高品質(DA)的相關結果,包括ETL過程,數據倉庫設計和數據系統的改進。
c. 通過提供對數據倉庫的方法和途徑的建議解決程序(DA)的相關問題與業務分析師和技術團隊。
d. 分析(DA),相關業務需要,可與項目工作人員對(DA)的發展未來做出決定和建議。
資料庫管理員Database manager
職責:
a. 提高資料庫工具和服務的有效性。
b. 確保所有的數據符合法律規定。
c. 確保信息得到保護和備份。
d. 與工作團隊做定期報告。
e. 監控資料庫性能。
f. 改善使用的技術。
g. 建立新的資料庫。
h. 檢測數據錄入程序。
i. 故障排除。
商業智能分析員Businessintelligence analyst
職責:
a. 就工具,報告或者元數據增強來進行傳播信息。
b. 進行或協調測試,以確保情報的定義與需求相一致。
c. 使用商業智能工具來識別或監測現有和潛在的客戶。
d. 綜合目前的商業只能和趨勢數據,來支持採取行動的建議。
e. 維護或更新的商業智能工具,資料庫,儀錶板,系統或方法。
f. 及時的管理用戶流量的商業情報。
數據倉庫分析員Data warehouseanalyst
職責:
a. 了解企業用戶的需求信息,並將其傳送到數據倉庫團隊的其他成員。
b. 指導並實施面試任務。
c. 指導並收集采訪資料。
d. 協助DW數據分析師分析現有的報告並確定整合指標。
e. 指導資料庫需求文件的准備。
f. 協助數據分析師測繪任務。
g. 分析現有的報告。
h. 引導業務指標的鑒定和文獻。
i. 在合適的資源系統專家的指導下確定系統的記錄。
j. 幫助識別潛在的數據來源,資料庫。
k. 負責數據採集過程的試驗和實施。
l. 擔任ETL和前端程序員的顧問。
數據建模師Data modeler
職責:
a. 為標准命名約定和編碼實踐指定最佳的訓練方案,以確保數據模型的一致性。
b. 推薦在新環境中的數據模型的重復使用機會。
c. 對資料庫和SQL腳本執行的物理數據模型進行逆向工程。
d. 評估數據模型和物理資料庫的差異和矛盾。
e. 驗證業務數據對象的准確性和完整性。
f. 分析數據相關的系統的挑戰,並提出相應的解決方案。
g. 根據公司標准制定標準的數據模型。
h. 對系統分析員,工程師,程序員和其他人在項目的限制和能力,性能要求和介面進行指導。
i. 審查修改現有軟體,以提高效率和性能。
資料庫開發員Databasedeveloper
職責:
a. 設計,開發和實施基於客戶需求的資料庫系統。
b. 優化資料庫系統的性能效率。
c. 准備設計規范和功能單證的分配資料庫的項目。
d. 對資料庫系統進行空間管理和容量規劃。
e. 建立資料庫表和字典。
f. 參與資料庫設計和架構,以支持應用程序開發項目。
g. 執行數據備份和檔案上定期。
h. 測試資料庫,並進行錯誤修正。
i. 及時解決資料庫相關的問題。
j. 制定安全程序,以保護資料庫免受未經授權的使用。
k. 評估現有的資料庫,並提出改進建議的執行效率。
l. 開發用於資料庫設計和開發活動的最佳實踐。
門戶網站管理員Portaladministrator
職責:
a. 制定所有門戶網站的布局和維護網站的所有功能。
b. 監督所有頁面內容,並提供給所有工作人員和外部組織的幫助。
c. 整合新的技術體系為門戶和網路管理員的協調工作。
d. 維持對所有門戶項目的現狀,並協助解決新的和現有渠道的所有問題和自動化的所有進程。
e. 在所有配置進行測試和升級過程中,實現所有的目標,並保持對所有門戶環境的新技術維護。
f. 確定網站的所有長期目標,並根據指引,建議改進所有內容。
g. 保持高效的門戶網站的文檔系統,並協助安裝所有Web中心互動系統。
h. 分析所有系統的升級和應用程序,並確保遵守所有計劃要求,設計了新的門戶網站所有的解決方案,並協助解決所有的生產問題。
i. 監測和分析所有門戶網站的系統指標,並保持最佳性能。
j. 與管理人員和社區成員協調落實各項業務活動,並確定所有的web伺服器配置。
k. 管理和配置所有的門戶應用程序。
l. 保留所有門戶網站的市場和不斷變化的行業知識。
m. 對全業務運營提供支持,並確保所有的利潤優化。
資料庫管理員Databaseadministrator
職責:
a. 選擇合適的軟體和硬體
b. 管理數據安全和隱私
c. 管理數據完整性
d. 數據備份
e. 資料庫恢復
f. 優化資料庫性能
g. 提高查詢處理性能
首席數據分析師Chief DataAnalyst
職責:
a. 為一部分的基礎整體研究程序員開發新的分析項目
b. 團隊的其他成員來提供技術投入研究項目的發展。
c. 為分析員提供大型調查的收集,編制和分析。
d. 在適當的時候使用Excel,SPSS或者STATA和先進的技術進行統計分析。
e. 對政策專家,相關的投資方和學者進行基礎的增長。
業務系統分析員Business SystemAnalyst
職責:
a. 確定通過研究業務職能業務目;收集信息;評估輸出要求和格式。
b. 設計通過分析要求的新的計算機程序;構建工作流程圖和示意圖;研究系統的能力;書寫規范。
c. 提高通過研究當下實踐系統進行設計修改。
d. 通過識別問題來對控制提出建議,提高寫作流程。
e. 通過定義項目里程碑,階段和要素來形成項目團隊,建立項目預算。
數據挖掘分析師Data mininganalyst
職責:
a. 對優先考慮的賬戶進行統計分析,從而最大限度的成功化。
b. 與主管或客戶端溝通行動計劃,並找出需要改進的地方。
c. 執行戰略數據分析和研究,以支持業務需求。
d. 找准機會從而通過復雜的統計建模提高生產率。
e. 瀏覽數據來認准機會並提高業務成效。
f. 指定業務流程,目標和戰略的理解,以提供分析和解釋。
g. 通過內部討論的理解,在適當情況下獲得業務需求和必要的分析。
數據策略師Data strategist
職責:
a. 定義大數據戰略,包括設計多階段實施路線圖。
b. 獨立工作,或作為一個團隊的一部分,設計和開發的大數據解決方案。
c. 異構數據的數據錯誤,探索和發現新的見解。
d. 知道分析,架構,設計以及數據倉庫和商業只能解決方案的發展。
c. 指導年輕的團隊成員。
f. 協助業務開發團隊提供售前活動和招標書。
g. 幫助評估和計劃項目。
業務數據分析師Business DataAnalyst
職責:
a. 與關鍵投資者的業務分析師和高級管理人員緊密合作,了解他們的經營策略和問題,確定研究需求,幫助設計實驗,並根據結果提出建議。
b. 通過客戶細分,從多個來源的定量和定性派生的發展和應用進行影響的決定。
c. 調整利益相關者和分析師對如何使用研究和分析的想法,以支持業務計劃和戰略的優先試圖(分析路線圖)。
d. 傳動復雜的分析項目,需要分析或利益相關者從開始到結束之間的多團隊協作。
e. 有效地管理多個在建設的項目,確保目標和時間獲得滿足。確定在短期和長期間的權衡和平衡所有投資者的需求。
f. 領導和參與業務討論,提供意見,需要的時候進行一些變革。
g. 關鍵指標與解釋器的討論,推測並提出行動。
h. 與業務夥伴的投資者在制定和優先的業務問題上考慮短期和長期的潛在影響,解釋結果,量化的機遇,並提出了一個觀點合作數據的專家來執行分析操作。
i. 在企業領導的重視下積極主動地帶來新的商機。
j. 知道分析師和股東對事物的知識和流程上,確保它們是可重復的,可持續的和可擴展的。
k. 在所有階段上與多個項目組合作。
㈦ 大數據相關證書有哪些
大數據需要考專業人員分析認證;數據科學專業成就認證;工程方面分析和優化(CPEE)證書;挖掘大規模數據集研究生證書;優化大數據分析證書;EMC數據科學家助理(EMCDSA);Cloudera認證專家。
7、Cloudera認證專家:數據科學家(CCP:DS)-Cloudera
CCP:DS證書展示了精英層面使用大數據的技能。它需要通過一個評估基礎數據科學主題知識的書面考試。他們還必須在數據科學挑戰中,通過設計和開發同行評估的生產就緒的數據科學解決方案,並在真實條件下證明他們的能力。這個挑戰必須在完成筆試後24個月內通過,並且每年中的每隔一個季度提供兩次機會。
8、Cloudera Apache Hadoop認證開發人員(CCDH)-Cloudera
CCDH認證演示了開發人員寫入,維護和優化Apache Hadoop開發項目的技術知識,技能和能力。獲得這個認證需要通過90分鍾時限的50到55個活動問題的筆試。每個測試包括至少五個未評分的實驗問題。
9、Cloudera Apache Hadoop認證管理員(CCAH)-Cloudera
CCAH認證演示管理員的技術知識,技能和能力配置,部署,維護和保護Apache Hadoop集群和構成Cloudera企業數據中心的生態系統項目。獲得認證需要通過90分鍾時限的60個問題的書面考試。
10、Cloudera Apache HBase(CCSHB)認證專家-Cloudera
CCSHB認證演示了使用Apache HBase的技術知識,技能和能力,包括核心HBase概念,數據模型,架構,模式設計,API和管理。獲得認證需要通過90分鍾時間限制的45個問題的書面考試。
11、Revolution REnterprise Professional–Revolution Analytics
主要內容:此認證證明了對高級分析項目使用R統計語言的能力,包括分析大數據,數據分析生命周期,高級分析的理論和方法以及統計建模的戰略和實踐方面。該認證要求通過包含60個選擇題和90分鍾時間限制的tt筆考試。
12、Vertica大數據解決方案V1-HP
此認證驗證可以讓學習者部署和管理Vertica Analytics Platform,幫助組織優化和利用大數據分析獲利。其驗證學習者可以:識別和描述Vertica架構的關鍵功能,安裝平台,識別字元和確定Vertica中使用的投影的特徵,描述如何將數據載入到Vertica,闡述Vertica集群管理概念,描述備份/恢復和資源管理,並確定如何監視和故障排除。此認證需要在90分鍾內通過包含50個選擇題的考試。
13、Vertica大數據解決方案管理員V1-HP
此認證證實學習者可以管理Vertica Analytics Platform,並驗證其是否可以執行高級管理任務,包括:手動投影設計,診斷,高級故障排除和資料庫調優。該認證要求在100分鍾內通過包含60個選擇題的考試。
14、IBM認證的數據架構師-大數據
IBM認證數據架構師-大數據IBM專業認證計劃。
15、IBM認證的數據工程師-大數據
IBM認證的數據工程師-大數據IBM專業認證計劃。
16、大數據專業人員的SAS認證
SAS認證的大數據專業數據科學。