A. 大數據時代讀後感
《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托·邁爾·舍恩伯格被譽為“大數據商業應用第一人”,擁有在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多個互聯網研究重鎮任教的經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。以下是這本書的讀後感範文,歡迎閱讀!
大數據時代讀後感(一)
我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--”並非原子而是信息才是一切的本源“,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字
當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。
在附上一些事例的時候,用作者提供的”本質“去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,
大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。
第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)
第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度
第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們”是什麼“而不是”為什麼“。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。
正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與”過去的經驗或積累的部分知識“相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。
所以作者稱之為revolution。
講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是---預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡
公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。
扯到這里,順便扯一下,書中另一段關於自由意志的描述
在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。
書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,”哎喲,我居然看過這部電影,想想心裡還是有點小激動“,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。
最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。
大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。
大數據時代讀後感(二)
去年的“雲計算”炒得熱火朝天的,今年的“大數據”又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起“大數據”來了。於是乎,各企業的CIO也將熱度紛紛轉向關注“大數據”來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。
不過話又還得說回來,《大數據時代》是本好書。
當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI最大的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。看完此書,我心中的一些問題:
1.什麼是大數據?
查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的'的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity--這個好像是IBM的定義吧。
以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。
2.大數據適合什麼樣的企業?
誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過
專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,5,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?
3.大數據帶來的影響
當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?
1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。
2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響最大的,當然是IT公司
3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。
大數據時代讀後感(三)
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾——舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家“的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,如果能做足功課又具備相應的理論功底,就能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分”大數據時代的思維變革“中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。”大數據的簡單演算法比小數據的復雜演算法更有效。“更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。”不是因果關系,而是相關關系。“不需要知道”為什麼“,只需要知道”是什麼“。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出”不是因果關系,而是相關關系。“這一論斷時,他在書中還說道:”在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道‘是什麼’時,我們就會繼續向更深層次研究的因果關系,找出背後的‘為什麼’。“[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可”量化“,大數據的定量分析有力地回答”是什麼“這一問題,但仍然無法完全回答”為什麼“。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節”掌控“中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:”大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。“謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
B. 【《大數據時代》讀書筆記2】大數據視角下,一切皆可「量化」
「大數據」視角,並非近年來的新事物,回顧歷史,早已有之。只是當時,「大數據」這個詞,尚未產生。
19世紀,「量化」之於航海。 19世紀還是航海經驗靠口口相傳、有些甚至被證明是錯誤的年代,航海家莫里通過量化分析製作的導航圖,是大數據的最早實踐之一。在因為馬車事故造成腿部殘疾後,年輕的海軍軍官莫里離開了海上工作,來到了圖表和儀器廠。在這個後來被證明是他福地的地方,在翻閱、整理庫房裡存放的航海書籍、地圖、圖表、航海日誌後,莫里將這些記錄進行數據整合,把整個大西洋按經緯度分成五塊,並按月份標出溫度、風速和風向,為找到更有效的航海路線提供參考。之後,為了提高精確度,莫里創建了一個標準的表格來記錄航海數據,並在所有海軍艦艇及部分商船上使用,通過分析這些數據,一些利於航行的天然航線被找到,為海軍及商船減少了三分之一的航海路程。遠在信息數字化之前,人工的數據運用已經充分展示了其實效。隨著數據存儲和處理能力的不斷提高,「大數據」技術的運用領域也不斷擴展。
20世紀,「量化」之於投資。 在金融領域,「量化」這個詞經常以「量化投資」等片語形式出現,指的是通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式,其實質在於替代傳統的定性分析,以數據為支撐作出投資決策。「量化投資」在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大,得到了越來越多投資者認可。金融領域是數據相對集中和易感知的領域,但量化的舞台,遠不止於此。
21世紀,「量化」之於坐姿研究。 日本先進工業技術研究所的越水重臣教授將量化用於坐姿研究,通過對人坐著時的身形、姿勢和重量分布等的數據化,產生獨屬於每個乘坐者的精確數據資料,並根據人體對座位的壓力差異識別出乘坐者身份,准確率達到98%。這項技術可作為汽車防盜系統,通過這個系統,汽車可以識別駕駛者是否為車主並設置相應安全措施。數據的提取,只有你想不到,沒有提取不到,關鍵在於如何提取、如何利用。
數據化,不是數字化。 前者,是指把現象轉變為可製表分析的量化形式的過程;後者,指的是把模擬數據轉換成用0和1表示的二進制碼。在數字化時代來臨之時,在腦海中對這兩個概念有清晰概念十分重要。數據化的關注重點是在「I(信息)」上,而數字化則關注「T(技術)」。數字化的發展,提高了數據化的可行性。
「數據化」文字。 谷歌的數字圖書館,是文字數據化的典範。通過文字的數據化,人可以用之閱讀,機器也可以用之分析。谷歌運用這些數據化了的文本來改進它的機器翻譯服務,從幾年前相當於高中水平的翻譯水準,到如今的令人驚嘆,著實超越了英語水平不斷退化的某筆者(容某筆者先找個地兒蹲著哭一會兒)。
「數據化」方位。 手機的廣泛運用,讓人的實時位置信息也可以被數據化,位置信息的數據化,催生了許多新價值。比如無線數據科技公司Jana的創始人伊格爾,他使用了來100多個國家的超過200個無線運營商的手機數據,既關注家庭主婦平均每周去幾次洗衣店,也試圖回答關於疾病如何傳播等問題。新的用途不斷產生,既可以用於商業,也可以用於社會研究。
「數據化」溝通。 個人化是數據化的前沿,facebook將關系數據化,twitter將情緒數據化,linkedin將個人經歷數據化,這些社交網路平台,以各種方式將個人及其溝通數據化,並存儲了海量的用戶數據。初步的運用,例如Derwent Capital對沖基金對微博數據文本的分析,獲得了股市投資的信號,雖然由於隱私問題,數據的使用還遠未成熟,但我們不難想像,當數據被充分運用,世間萬物是否已不再是世間萬物,而是海量的數據呢?
當看到一切皆可量化這句話,還是持一定的保留態度。因為,太過絕對。但似乎,這只是一種理念的傳遞,為了表達數據化的重要性而已。大數據視角,提供了看世界的另外一個角度,但絕不是唯一視角。
C. 《大數據時代》讀後感怎麼寫
寫作思路:首先解釋大數據時代的意思,然後討論如何利用大數據時代,最後總結大數據時代的利弊。《大數據時代》讀後感正文如下:
首先,想談一談何為大數據,何為大數據時代。大數據是一種資源,也是一種工具。它提供一種新的思維方式去理解當今這個信息化世界。為何說是一種新的思維方式:在信息缺乏的時代或模擬時代,我們更傾向於精確性的思維方式,就像是「釘是釘,鉚是鉚」,而在這種傳統的思維方式下,我們得到問題的答案只有一個。
而在大數據時代下,我們打破了這種思維方式,換句話說,我們接受結果的不確定性。簡言概括之,我認為大數據是一種預測模型。在大數據時代下,我們關注的不是因果,即為什麼是這樣,而更關心「是什麼」這種相關關系。換句話說,在這種新思維的思考方式下,我們探究問題背後的原因也是不可行的。我們所做的是利用大數據這種工具,讓數據自己說話!
其次,我想談下如何利用大數據提升我軍戰鬥力。當然,大數據分析並不是精準的預測,精準的預測也是不存在的。大數據只能有利於我們理解現在和預測未來的可能性。
作為軍人,我所關注的是如何利用好大數據的工具提升我軍戰鬥力,打贏這場信息化戰爭。毫無疑問,現在我們打的不是刀對刀,槍對槍的戰爭,更不是模擬時代,當代乃是數字時代,打的是信息化戰爭!
四次戰爭的大勝,美軍的戰爭形態從機械化轉向信息化,而且相應的在戰場取勝的時間也越來越短,這正是大數據時代下的必然結果。而我軍正在轉向信息化的過程中。在此戰爭形態的過程中,我們需要更多的計算分析師,大數據分析師,數學家等高等技術型人才來打贏這場信息化戰爭。這正是大數據時代下我們不得不有的基礎。我軍戰鬥力的提升迫在眉睫!
當然大數據是一把雙刃劍,利用好了取勝也是得心應手,相反,利用不好會導致不可估量的損失。
畢竟,這只是一種預測模型,得不到精準的預測結果。我們更要讓數據為我們所用,不要被龐大的資料庫框住我們的思維。為適應時代的發展,在這個適者生存,弱肉強食的世界,大數據時代下的殘酷競爭已經給我們敲響警鍾,一場悄無聲息的信息化戰爭已經打響!
D. 《大數據》讀書筆記
《大數據》(徐子沛)
核心觀點: 一個真正的信息社會,首先是一個公民社會。
徐子沛和吳軍是國內科技界文筆最好的兩位大拿,能把復雜的技術發展講得像故事一樣引人入勝。書中講述了美國信息開放、數據技術創新、數據逐步開放的歷史,例舉了美國政府如何通過大數據來治國:降低犯罪率、糾正福利濫用、增加財務透明度,並展望了大數據發展的未來,他覺得中國和美國最大的區別就在中國習慣於說「差不多」,不善於用數字管理國家。書中也介紹了大數據中數據倉庫、數據挖掘、數據分析、數據可視化等技術的發展,他認為: 數據就是企業的財富和金礦,數據分析和挖掘的能力就是企業的核心競爭力。 阿里網羅了徐子沛和王堅兩個大數據和雲計算專家,估計在大數據和雲計算領域鮮有敵手了。
核心觀點: 推崇知識和理性,用數據創新
本書講述互聯網對傳統工業 生活的推進,大量數據沒有數字化,數據基本都困在一家醫院內,電子病歷推進也很緩慢,通過數據的流通讓患者享受更便捷、更安全的服務基本只限制在思考層,這裡面有方方面面的各種利益、法規的原因,這就像書中說的「也許是由於其本身的根深蒂固。作者認為 iPhone、雲計算、3D列印、基因測序、無線感測器、超級計算機,這些改變了我們生活的事物,將再一次地融合在一起,對醫學進行一次「創造性破壞」 ,我覺得新技術的應用比新規則的創立在國內還是相對簡單,而也能解決醫療資源不足的痛點,把像IBM沃森這樣的智能作為醫療的輔助判斷,提升醫療的效率和准確率還是前景明朗的。但要說像書中說的「舊的體系完全不復存在,新的體系隨之取代...在這超級融合之下,權力再次交回到我們自己手中,而只有我們自己,。我想這還有很遠的路要走,與生命有關的事物,一定是慎之又慎的;與體系有關的事情,改變一定是難上加難的。
所以 崇正說他們阿里都是看數據做事情,不是臆想做事情。因為在這個高速發展的時代,數據都是流動。他們都是落實到行動,分析數據,應用數據,依靠數據。
E. 讀書筆記:大數據時代
隨著網路的普及、計算機運算和存儲能力的提高,我們獲取信息越來越容易,越來越多。絕大多數信息對我們來說可能都是噪音,或者用過一次後就被丟棄;而對有大數據思維的公司或個人來說,這些則是零散的金粉,他們可以從中挖掘出許多小數據無法得到的意想不到的結果。比如人們所用的搜索詞在搜索完成之時就失去用處,Google偏偏將它們重新利用,用以改善結果的排序,用來預測流感感染情況。word語法檢查,小數據下表現最好的演算法在大數據下准確率卻最差。誰曾想坐姿可以轉化成數據,並開發成汽車防盜系統?進而擴展到盜賊識別?
大數據時代真的只有想不到,沒有做不到。它深刻的變革著我們的工作、生活、甚至思維方式。
1.不是樣本而是全部:得到全部數據並不那麼難,而且結果更全面可靠,我們不再依賴小數據時代的隨機取樣、假設-實驗-結論模式,取而代之的是直接對全部數據進行分析挖掘;
2.不是精確性而是混雜性:大數據時代我們不再執著於精確,而是允許一點瑕疵。我們要做的不是以高昂的代價消除所有的不確定性,而是接受這些紛繁的數據並從中獲益。以谷歌翻譯為例,它搜羅了所有可以利用的數據,雖然搜集的有錯誤翻譯,但巨大的語料庫優勢完全壓倒了缺點,使其好於布朗、微軟的班科和布里爾、IBM的Candide。又如word語法檢查,小數據下表現最好的演算法在大數據下准確率卻最差。混雜的大數據能創造比精確的小數據更好的結果!
小數據模式下,小的錯誤會導致極大的偏差,因此要求精確。值得注意的是,大數據的混雜性只是現實,而不是其固有特性,隨著技術的發展將會被改善。
3.不是因果關系而是相互關系:千百年來,我們一直在尋找事件背後的原因。事實上,如果凡事皆有因果的話,我們就沒有決定任何事的自由了。
基於大數據分析事物間的相互關系,使我們從因果串聯思維變為相互並聯思維。相互關系能提醒我們某些事正在發生,這些提醒非常有用。基於相關關系的預測是大數據的核心。通過找出一個關聯物並監控它,我們就能預測未來。如塔吉特懷孕預測,美國折扣零售商塔吉特通過對女性消費記錄分析,可以發現她是否懷孕,從而在相應階段寄送相應的折扣券。
戲中主角分別是大數據擁有者、大數據技術公司、大數據思維的公司或個人。第一個吃螃蟹的人早已斬獲良多,更多的人也開始去嘗試;隨著技術的發展,擁有大數據技術的公司的領先優勢也越來越弱;而數據本身的價值則與日俱增。試想,一個擁有思維和技術的新公司,如何去跟一個擁有海量數據且知道什麼更好的公司去競爭?
隨著行業發展,數據中間商也將粉墨登場。因為有些數據的價值只能通過中間人來挖掘。航空公司不到最後一刻不會發布航班晚點,也不會告訴你何時買票最便宜,但只要有數據,你就能知道這些。還有一些公司願意把數據給非營利機構。
大數據確實給我們帶來諸多便利,使我們的生活更便利、更美好。但我們也變得越來越透明,通過你的檢索詞、購物、評論等就能輕易定位到精確的個人!想想就讓人不寒而慄!
亞馬遜監視著我們的購物習慣
谷歌監視著我們的網頁瀏覽習慣
微博竊聽到了我們心中的TA
而facebook似乎什麼都知道,包括我們的社交關系網
我們時刻暴露在第三隻眼下(政府除外)。
鑒於此,維克托也建議完善相關司法,制定更完整的隱私保護政策、反壟斷。
值得注意的是,大數據給我們提供的不是最終答案,而是參考答案,我們不要過分信任、依賴數據給出的結果。假如一切都可以被預測,而且很精確,而我們想當然的去相信,放棄選擇的權利,也會不為結果承擔責任,那我們離變成機器人就不遠了,人工智慧控制人類也並非臆想!
而樂觀的人們則會認為一個更美好的未來在像我們招手:
以下為收集內容 。
http://www.ximalaya.com/1000577/sound/412418?from_platform=weixin
【構建一個機器的你】模擬你的知識體系、行為習慣:通過擬合你在社交網路的發言、及其它信息。模擬聲音:整合微信里的語音。模擬外貌:通過你發的照片等。將這些東西「導入」到一個機器,你在另一個地方被重生。它知道你所有的所有,宛如鏡像孿生。
可以看電影黑鏡2。
汽車若能交流 車禍或可避免
http://v.youku.com/v_show/id_XNTcyODU4NjQw.html
實現汽車對話以避免車禍,實際也是大數據的利用:通過數據化位置速度(通過攝像頭感測器電腦系統)等信息,然後分析並做出預測。信息與機器結合會使人分為自然人、半自然人、機器人吧。現在的美瞳等改變人的外形,以及研究火熱的腦機介面以實現通過意念控制機械,人正在與機器越來越多的整合在一起。
谷歌無人駕駛汽車
http://mp.weixin.qq.com/s?__biz=MjM5NzM5ODU2MA==&mid=200295774&idx=4&sn=&scene=1#rd
什麼時候無人駕駛汽車成片的出現在杭州就好了[偷笑][偷笑]或者不用成片,就是有些地方會放著(比如某個山洞某個工廠),嗯,某些方式(某個app,某個電話或者直接與微信集合,或者快的打車,打的車都變成無人駕駛車)可以把他叫過來,然後用完之後他自己回到原來的地方。[傲慢][傲慢]這樣社會多美好呀!還可以叫個車,讓他把東西/人送到某個地方,就不是為自己叫車而是為他人叫……
如果視野更開闊點, 數據或許是實現人與機器交流的語言 ,,數據能挖掘我們不知道的一面,但也不要全迷信數據,將活生生的、復雜的人等同於毫無生命的一堆數據或機器就不好玩了。。
量化自我,一場二十年前無法想像的運動
http://www.36kr.com/p/204479.html#wechat_redirect
F. 大數據時代讀後感1000字(2)
大數據時代讀後感1000字(精選7篇)
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--」並非原子而是信息才是一切的本源「,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字
當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。
在附上一些事例的時候,用作者提供的」本質「去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,
大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。
第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)
第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度
第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們」是什麼「而不是」為什麼「。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。,出處:短美文,否則追究其責任,謝謝你的支持,我們會給做得更好!
正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與」過去的經驗或積累的部分知識「相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。
所以作者稱之為revolution。
講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是,預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡
公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。
扯到這里,順便扯一下,書中另一段關於自由意志的描述
在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。
書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,」哎喲,我居然看過這部電影,想想心裡還是有點小激動「,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。
最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。
大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。
「大數據」一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。
作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。
書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。
為什麼是清新的呢?因為書中的內容彷彿向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處於網路時代 ,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到「猜你喜歡」的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自於那些曾被忽略的大數據同時也在證明「預測,大數據的核心」這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像「猜你喜歡」欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網路時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。「本質上世界是由信息構成的」,面對這句話時,大數據時代彷彿就在眼前。
在感受驚嘆著大數據能為我們做到以往無法想像的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言「我們時刻暴露在『第三隻眼』下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什麼都知道」,而且利用大數據我們可以預測許多事情並且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年後就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什麼?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。
於是我繼續去探索作者對這問題的思考。「更大的數據在於人本身」,作者還說「我們是在創造更好的未來」,也說「在一個預測的時代里,人類的自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本」。人類學家克利福德吉爾茲曾說:「努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。」這些話語彷彿是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背後對人溫暖的光芒。
面對時代的變革,我會為堅守內心深處的自由意志而努力並「擁抱大數據」。
世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺於搖籃之中—這遠勝於"防患於未然"。
《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了 "大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落於世界進程之後,所以我們必須轉變我們的思想。
"我們不再熱衷於尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯繫到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷於"精確",而是"混亂",若不接受"混亂",那麼有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之後,我們就可以從這些數據之中發掘它們的相關關系,即以"是什麼"而不是"為什麼"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。
這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年h1n1流行之時,通過檢測檢索詞條,處理34。5億個不同的數據模型,通過預測並與2007、2008年的美國疾控中心記錄的實際流感病例進行對比後,確定了45條檢索詞條組合,並將其用於一個特定的數學模型後,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。
同時,雖然大數據可為人類造福、對抗病症,但這僅限於掌握這門技術而言,若不重視這種技術,當我們的對手早於我們一步構建這種數據網路之時,便是我們的災難,想想,大數據雖核心的在於預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的.導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控於敵手,敵方甚至可以藉此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。
對於我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網路共享化的時代,通過這些數據,建立數據模型,可以准確分析並給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好准備,去應對大數據時代的一切!
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。
我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。
如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。
與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。
舍恩伯格的《大數據時代》,讓我重新審視了"大數據"這個在信息時代異軍突起的熱點詞彙,作為信息安全專業的我,對大數據這個詞本身有著更多的熱忱。
在網路上搜索到的解釋是:"大數據",或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。
而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。
本書中,主要從三個方面論述,即思維變革、商業變革和管理變革。而舍恩伯格更是著重闡明三大觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。
對於觀點一,我不敢苟同,畢竟大數據的實現需要一定的技術支持,而顯然,現在這種技術還不夠成熟,同時一些簡單的事情運用大數據反倒是問題更加復雜化,因此這種大叔據的繁雜處理方式更適用於一些特定的情況,比如商業預測,人類dna的研究等。
而對第二種觀點,我是十分贊同舍恩伯格所說的"大數據的簡單演算法比小數據的簡單演算法有效"。在計算機行業迅速發展中,一種新的簡單可行的演算法的出現,遠沒有計算機在運算速度和存儲容量的發展快,而大數據演算法似乎更能迎合這種大趨勢。
觀點三中提到的相關關系在大數據中可是重量級的,它能較快找到事物規律和對應的解決措施,當然,也不能完全忽視因果關系,畢竟人們在思維上更能夠接受因果關系分析出的結果,而大數據預測的需要人們慢慢的適應才能接受。當我們完成相關關系的分析而又不滿足於只知道"是什麼"的時候,我們就可以轉而研究"為什麼"了,畢竟問題的根本在於因果。而舍恩伯格的全體數據和相關關系是大數據時代下的一種捷徑。
但是在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。
在這樣的大環境下,常引起我更多的思考和擔憂。
大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。
工業化、信息化,我們都向世界交出了一份讓世界不能小覷的答案;
大數據時代的數據化我們又將怎樣在新的風暴中所向披靡,如果大數據時代是一種必然趨勢,那這就是我們這一代人的責任,是我們新的戰場!
;G. 【《大數據時代》讀書筆記3】數據是可再生的可再生資源
本科畢業論文寫的是風力發電,作為一種安全清潔的可再生能源,雖然並網會給電網帶來較大壓力,但隨著智能電網的普及,風力發電前景喜人。與風力資源類似,數據也是可再生的,而且與對風力資源的利用暫時只局限在發電領域不同,數據可以被稱作是可再生的可再生資源。兩個可再生並非筆誤,而是源自其價值的多樣化,對數據利用方式的創新,帶來的,是源源不斷的數據價值。
數據冰山,更需要仔細勘探,太遠,會看不清,太近,會迷失方向,如果不小心撞上,那恐怕只能在數據之海里沉沒了。所幸,在大數據思維的指引下,在數據的首要價值被挖掘後,潛在價值也持續不斷被釋放。
三種創新讓我們得以初探冰山全貌。
數據創新1:數據的再利用
數據再利用的前提是收集或控制數據集尤其是大型數據集。有些機構如谷歌、如亞馬遜,早早地開啟了他們的數據再利用之旅,谷歌基於關鍵詞搜索整理了一個版本的搜索詞分析,並公開供人們查詢,如實時經濟指標以及旅遊部門的業務預報服務;而亞馬遜則一直致力於讓數據的價值再大一點,通過早期為AOL電子商務網站提供後台技術服務的合作,讓亞馬遜掌握了用戶的數據,包括他們在看什麼、買什麼,進一步幫助亞馬遜提高推薦引擎性能。
與這些線上企業對數據利用的敏感度不同,一些線下運作的傳統企業,也許還在信息噴泉上安睡。有些數據被收集、被保存,但也把數據帶入了墳墓,暫不能見天日。但當他們嗅到了數據所帶來的機會後,如一家知名的物流企業,針對其掌握的全球出貨信息,成立專門部門,以商業和經濟預測的形式出售匯總數據,創造了谷歌搜索查詢業務的一個線下版本。
數據創新2:重組數據
還記得那個將某個地區的交通事故發生情況與犯罪發生情況映射到一張地圖上的例子么,這就是數據重組,很多時候,1+1>2的效果一次又一次地在證明其強大魔力。其實,兩個或者更多個大數據的相加,是更大的大數據,關鍵在於怎麼相加。丹麥癌症協會曾就手機是否增加致癌率這個命題進行研究,通過將1990年至2007年間擁有手機用戶的信息和該國所有癌症患者的信息這兩個數據集結合後,得出了沒有發現使用行動電話和癌症風險增加之間存在任何關系的結論。這就是一個數據與數據相加的實例,雖然未能形成轟動的效果,但至少也能讓人們更加放心的使用行動電話了,也為我們提示了大數據運用的更多可能性。
數據創新3:可擴展數據
一個數據集並不會只有一種用途,就如美的發現需要一雙發現美的眼睛一樣,數據的用途也需要一雙發現數據用途的眼睛。零售商店內的監控攝像頭,不僅可以用來認出商店扒手,還能跟蹤在商店裡購物的客戶流和他們停留的位置,利用這些信息,零售商可以設計店面的最佳布局並判斷營銷活動的有效性,正如那句話所說,無心插柳柳成蔭。
數據利用的其他可能,還有數據的折舊值、數據廢氣、開放數據等。其中,開放數據最吸引人眼球,這也是各國政府現在正在努力推進的,其主旨是通過多元主體的參與,喚醒沉睡的數據,雖然真正實施起來,並不是那麼容易,但這,必然是大勢所趨,方向已經確定,路途的曲折蜿蜒,不過是為了更好地前進。
H. 《大數據時代》讀後感
導語:讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。以下是我為大家精心整理的《大數據時代》讀後感,歡迎大家參考!
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的;話題,鍾情於務虛的觀點;新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據;二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例——奧巴ma建設「前所未有的開放政府」的雄心、公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,以及雲計算、Facebook和推特等社交媒體、Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。
我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。
如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。
與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的`到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。
3月11日下午兩節課後,我校全體教師和受邀而來的金南學區各友好學校的領導及教師匯聚於多媒體教室,共同分享、交流《大數據》讀後感。
老師們從:何謂大數據;立足國情對大數據進行探討;大數據在教育教學中的主要應用等幾個方面暢談了自己的感悟。
張萌老師說:大數據體量龐大、結構復雜、是產生巨大價值的數據集合。大數據這種方法在中國的國情下需要以更加科學、合適的方式進行實踐,不可生搬硬套。
董譯雯老師說:在你我感嘆《大數據》里深植於美國民眾血液中的自由、民主、嚴謹的價值觀的同時,可否想過中國教育體制下的孩子們身上還殘留多少獨立與自我意識?作為典型的八零後,我們這一代人身上最缺失的便是獨立思考能力。但願,我的學生哪怕是因為我所做的一點點努力而開始思考「我」這個字的含義,足矣!
張紅傑老師說:很感謝校長給我們推薦了《大數據》這本書。在教學工作中,應該有大數據意識,創新意識。學習一些專業的教學統計法、數據分析法,從中發現一些教育現象,並採取相應的策略。讓我們的教育教學工作少一些隨意和盲目,多一份嚴謹與科學。
白媛媛老師通過文中的三個事例,結合教學實際,談了自己教學中對數據使用的價值;結合自己的工作,談了如何實現工作的最高境界。
交流活動尾聲,身為閱讀《大數據》的倡議者、發起者、以及忠實的讀者韓校長幽默風趣的同大家分享了他讀後的感悟:我們心中要裝著學校,因為我們個人的命運依賴群體的命運;工作要追求精細化,不能做胡適書中的「差不多」先生;尊重數據,擁有數據意識,建立數據團隊!
此次活動從寒假期間倡導讀《大數據》一書,到開學伊始的分組沙龍,再到今日的閱讀共享,現已圓滿告一段落。相信此次活動定會增強我校全體教師的數據意識,掌握大數據,運用大智慧助推我校的教育教學上一個新的台階!
I. 塗子沛大數據讀後感1800字
進入2012年大數據一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新,人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者消費浪潮的到來。「大數據」的運用在各個領域發揮著前所未有的重要作用,滲透到了當今每一個行業和業務職能領域,成為重要的生產因素,並對人類的數據駕馭能力提出了更新的挑戰。
一、傳統的信息格局被打破
不是我不明白,這世界變化快。2000年還是一張軟盤打天下的時代,短短十多年光景,硬碟的存儲容量已從4GB、16GB、32GB迅速攀升到1TB(相當於1024GB的容量)。原來僅有1.44MB的軟盤在當時感覺存儲容量還是蠻大的,到現在硬碟容量躥升至1TB了,反而感覺存儲空間捉襟見肘,到底是哪裡出現了問題呢?1965年英特爾的創始人之一戈登摩爾考察了計算機硬體的發展規律,提出了著名的摩爾定律。該定律認為,同一個面積集成電路上可容納的晶體管數目,一到兩年將增加一倍,換句話說,計算機硬體的處理速度和存儲能力,一到兩年將提升一倍。這一定律,得到驗證。
大數據!一語驚醒夢中人,大數據時代已經悄然來臨。隨著社交網路的逐漸成熟,移動寬頻迅速提升,雲計算、互聯網應用更加豐富。更多的感測設備、移動終端接入到網路,由此產生的數據及增長速度迅速攀升。那麼什麼是大數據呢,正如IBM總結的那樣:「大量化(Volume)、多樣化(Variety)和快速化(Velocity)」就是「大數據」的顯著特徵。
二、管理法則:質量是數據時代的根本
數據能滿足其既定的用途,它才有質量。如果不能滿足既定的目標和用途,就談不上質量。換句話說,數據的質量不僅取決於它本身,還取決於它的用途(引致資料庫專家傑克.奧爾森)。
隨著網路的出現,政府開始在網上發布信息和數據,對政府而言,是一個很大的挑戰,因為數據一經政府發布,往往被視為權威,對社會的各個領域都可能產生重大的影響。任何一份通過網路發布的信息,面對的都不是一定特定群體,而是全體國民,如果政府發布數據的質量不可靠,將受到頻繁的、大范圍的質疑,特別是一些可以會影響到公共政策和行業管制標準的數據,將引起巨大的爭議。
例如:單位奶製品中蛋白質含量、菌落總數應該是多少 ?飲用水裡能混雜多少含量的微量元素?新鮮蔬菜能帶有多少指標的殺蟲劑殘留?工廠排放的廢氣、汽車的尾氣以及車間的通風條件都要符合怎樣的標准等等,這些標准,都是數據。隨著社會的發民、科學的進步,這些標准越來越多越來越細,每一個都和國民生活和經濟發展息息相關。所以政府在網上發布數據,必須慎之又慎,保證質量。
三、大數據在各領域中的價值表現
1、數據競爭:企業贏利之道
企業以「低成本、高效率」的方式來開展公司的業務,而要做到「低成本、高效率」的運營以及決策正確,企業必須廣泛推選以事實為基礎的決策方法、大量使用數據分析來優化企業的各個運營環節,通過基於數據的優化和對接,把業務流程和決策過程當中存在的每一分潛在的價值都「擠」出來,從而節約成本,戰勝對手,在市場上倖存。這種競爭,就是一種基於數據的競爭。
已經有越來越多令人信服的證據表明:只要實施正確的政策和激勵,大數據將成為競爭的關鍵性基礎,並成為下一波生產率提高、創新和為消費者創造價值的支柱。信息時代的競爭,不是勞動生產率的競爭,而是知識生產率的競爭。數據,是信息的載體、是知識的源泉,當然也就可以創造價值和利潤,可以預見,基於知識的競爭,將集中表現為基於數據的競爭,這種數據競爭,將成為經濟發展的必然。
2、通訊、電信、商務智能、互聯網的逐步演變
近年來,隨著大數據的迅猛增加,各個行業、政府部門都在嘗試「用數據來決策」、「用數據來管理」、「用數據來創新」,在這個過程中,涌現了一大批既務實管用,又令人耳目一新的做法和應用。
回顧歷史,我們從廣播的年代到電視的年代再到本世紀初互聯網的年代,從音頻對話到可視電話,數據技術一直在我們的生活中扮演重要的角色,互聯網出現之後,就交流和互動而言,廣播和電視無疑相形見絀。
「大數據」可能帶來的巨大價值正漸漸被人們認可,它通過技術的創新與發展,以及數據的全面感知、收集、分析、共享,為人們提供了一種全新的看待世界的方法。
四、總結
塗先生從數據本身的革命、社會科學的革命、企業管理的革命、社會管理的革命四個方面深刻闡述了大數據的重要意義,以最前沿的視野、直接的解讀和剖析為我們理清了《大數據》一書的脈絡和精髓,為我們如何能更好地閱讀、理解、領會《大數據》一書的精神實質提供了很好的幫助,讓我們意識到:大數據的時代,是不可逃避的。
塗子沛大數據讀後感二:讀塗子沛的《大數據》有感
首先說下《大數據》這本書好的地方就是將大數據變化為一本科普讀物,不是講大數據的關鍵技術和具體實現,而更多的是圍繞美國政府基於數據的管理歷史線條展開,讓大家更加容易理解大數據在政府執政和公共事務管理中發揮的作用,所以我看完後最大的感覺就是關注智慧城市的相關人員完全有必要閱讀該書,會對以後在智慧城市的管理和建設中如何更好的理解大數據,應用大數據,發揮大數據本身的業務價值有更好的理解。
為何近幾年出現大數據,最重要的還是隨著信息技術和互聯網,管理的精細化,全球化和社交圈擴大,數據呈現了指數級的增長。2009年美國的數據,離散製造業966PB,政府848PB,傳媒行業715PB,這是麥肯錫2011年出版的一份報告《大數據:下一代創新,競爭和生產率的前沿》裡面的一個估算。正是由於數據指數級的增長,對數據的開放,信息自由,數據的採集,數據的分析和處理,預測和決策提出了更高的要求。
信息自由,一為信息公開,二為信息發布。公開是政府和某一社會特定主體的關系,是點對點的;而信息發布是政府和社會的關系,是點對面的。信息自由法已經成為美國不可缺少的一個基本法案,只有信息自由才談得上進一步的數據開放和數據共享。
我們信奉上帝,除了上帝任何人都要以數據說話。信息技術發展,數據指數級增長,已經徹底改變了政府,社會,商業群體的決策方法。需要的是形成一種數據驅動的決策方法,數據治國,需要基於實證的事實而非簡單的`意識形態。而真正要讓數據能夠上升到決策層面,首先需要的就是數據大范圍採集,數據抽樣,數據測量和數據質量管理。另外數據驅動和事件驅動是兩種模式,數據驅動強調的是歷史和預測,而事件驅動強調的是實時和響應。大數據有一個維度專門是指速度和快速響應,更需要考慮事件驅動和數據驅動融合。
帝國法則,詳細講述了數據的收集法則,使用法則,發布法則和管理法則。數據能夠滿足既定的用途,它才有質量。如果不能滿足既定的目標和用途,就談不上質量。換句話說,數據的質量不僅取決於它本身,還取決於它的用途。數據質量的問題涉及到數據收集,使用,發布等所有過程的問題。數據質量管理要有標准,有流程,有救助機制。
從軟體的開源到數據的開放,我們過渡到一個新的世界,可以講數據開放式本身的另外一個重點。在這個新的世界裡面,數據遠遠比軟體更加重要。從2004年以來,美國一直在進行數據開放運動,聯邦政府也專門家裡了數據開放站DataGov,其主要目標就是通過數據開放,通過鼓勵新的創意,讓數據走出政府,得到更多的創新型應用。從而進一步鞏固政府透明化,民主化和政府效能。
數據之爭涉及到原始數據採集,數據質量,數據安全,數據粒度,數據價值,數據虛實多個維度。而DataGov不僅僅開放了原始數據,地理數據,還包含了數據分析工具的開放。數據開放為創新提供了無窮的燃料,因為創新型應用,數據的能量將逐層放大。
預測未來最好的方法,就是創造未來。而數據最大的價值仍然在預測上面,在解決了數據開放,數據採集,數據質量管理,數據處理後,最重要的作用就是基於數據進行科學的預測和決策。數據競爭將是企業贏之道,一些企業已經將他們商業活動的每個環節放在了數據收集,分析和行動的能力上。
塗子沛大數據讀後感三:讀塗子沛《大數據》有感
7月的一天,我有幸拿到了塗子沛的《大數據》一書,幾個月來認真翻閱了好幾遍,並查閱了許多相關的文章,也讓我產生了寫下這篇讀後感的沖動。
。
我們處於大數據時代
當今的時代是一個信息的時代,是一個數據爆炸的時代。信息是數據的內容,數據是信息的載體。隨著電腦、網路的普及,搜索引擎技術的進步以及雲時代的來臨,上至國家下至個人,無不為數據所包圍,信息無處不在、數據無處不在。難以想像離開數據、離開數據管理,我們這個社會將會是什麼樣子。
那麼大數據時代到底有多大呢?我們知道計算機用二進制存儲和處理數據,一位是指一個二進制數位——0或1,這是存儲信息的邏輯單元。一個位元組有8位,再往上是KB(1KB是210位元組)、MB(1MB是220位元組)、GB(1GB是230位元組)、TB(1TB是240位元組)、PB(1PB是250位元組)、EB(1EB是260位元組)、ZB(1ZB是270位元組)、YB(1YB是280位元組)。但這究竟是多大的數據呢,我們還是難以想像。有人統計過將1TB的數據全部列印出來,需要用5000萬個四開門的書櫃去儲藏。這是多麼龐大的一個數啊,而這只是1TB——240個位元組。而僅全世界消費者一年產生的數據就有6000PB,全世界企業一年產生的數據有7000PB。截至2010年,人類產生的數據為1。2ZB,且數據每年以指數級增長,每兩年我們擁有的數據將翻一番。
在大數據時代,數字電視、手機、移動互聯網統治了我們。截至2012年,中國手機網民數突破4。2億;2013年中國超過美國成為最大的智能手機市場;2013年2月微信用戶數突破4億,到9月,微信用戶達到5億,微信用戶正在以每6個月增長1億用戶的速度增長;95%的智能手機用戶睡前玩手機。
「棱鏡門」事件主角愛德華斯諾登一時間成為全球關注的目標,網路時代何處安放我們的隱私?美國間諜衛星精度達到了5至10厘米,當今社會我們每個人近乎「透明」!
大數據時代給我們帶來什麼。
1965年,英特爾創始人之一戈登摩爾考察了計算機硬體的發展規律,提出了著名的摩爾定律。該定律認為,同一個面積集成電路上可容納的晶體管數目,一到兩年將增加1倍,也就是說,其性能將提升1倍。換句話說,計算機硬體的處理速度和存儲能力,一到兩年將提升1倍。這一定律揭示了信息技術進步的速度。
數據的爆炸是「三維」的,是立體的,這三個維度,主要表現在:同一類型的數據量在快速增長;數據增長速度在加快;數據的多樣性,即新的數據來源和新的數據種類在不斷增長。
任何一件事物,都有一個從量變到質變的過程。在當前這個數據爆炸的時代,數據帶給我們什麼呢?我想最重要的是帶來了思維模式的轉變。轉變了我們一直以來以因果邏輯思維的模式,變成了相互關系的邏輯思維。舉一個例子,在不久的將來我們完全可以通過數據分析,預判出一次地震的時間、地點、強度,但我們不是通過分析地殼運動而來的,而是通過相互關系的龐大的數據分析而來的。
2008年的冰災,當時的廣州火車站滯留了25萬人,這個數據是通過當時在這個區域的手機使用數統計出來的,與後期的最終統計基本吻合。大數據使我們開始了一次全新的探索,而探索的意義不在於發現新大陸,而在於發現新視角。
大數據時代給企業帶來了什麼。
數據挖掘是一種知識產生的過程,從中產生創新、產生管理、產生推動社會變革的理論與實踐。
沃爾瑪公司是美國的一家世界性連鎖企業,以營業額計算,為全球最大的公司。沃爾瑪一年產生的數據有2500TB。沃爾瑪公司通過對大量歷史數據的分析發現,年輕爸爸去超市購買嬰兒尿布會順便買點啤酒犒勞自己。因此,沃爾瑪推出了尿布與啤酒搭售的營銷策略,使銷售量增長。
紐約,美國最大的城市及第一大港,擁有810多萬人口,其36%為外國移民,人口使用約170種語言。1990年,紐約市共發生了兇殺案2245宗,1995年下降到1171宗,2009年下降到466宗,創下50年最低。紐約是如何實現這個成績的呢?原來紐約通過把20年的犯罪數據和交通數據整合,開發出了「數據驅動的警務管理」,發現交通事故高發地帶,也是犯罪活動的高發地帶,而且兩者的高發時間段也同樣吻合。這就將警察以往「亡羊補牢」的工作模式轉變為「守株待兔」的工作模式,取得了巨大的成績。
大數據及其分析,將會在未來10年改變幾乎每一個行業的業務功能。任何一個組織,如果早一點著手大數據工作,都可以獲得明顯的競爭優勢。用另一本類似著作《大數據時代》的作者維克托的一句話:「大數據是未來,是新的油田、金礦。」
當前我們的企業每天獲得大量的生產、營銷、辦公數據,如何將數據分析應用其中是時代賦予我們的挑戰。如何實現粗放型向精細化轉變,大數據為我們的企業提升管理效率、提高服務水平提供了有利平台。
世界每天都在變,唯一不變的是變化。大數據將是傳統行業的掘墓者,盛極一時的柯達倒閉了,微軟收購了諾基亞……我們的企業處在這樣一個變革的社會,應該何去何從,值得我們每一個人深思。