酷屏是億信華辰的數據可視化產品,內置上百種可視化元素和六十餘內種風格各異的表格、導航容、統計圖等組件及SVG特效可供用戶選擇,通過設計與搭配,可衍生出成千上萬種可視化效果。在提供傳統的柱狀圖、餅圖、儀表盤等基礎圖表組件的基礎上,還提供了光暈圖、泡泡圖、流向地圖等十餘種新穎奪目的個性化圖表,更有獨特的3D全景視角,自由快捷製作各類互動式常規屏和大屏報表。
② 我們可以用哪些工具做大數據可視化分析
通過互聯網行技術的不斷突破,數據可視化分析不僅僅是通過編碼才能實現的簡單的靜態分析展現,而涌現了大批的數據可視化工具。
今天就來講講數據可視化吧,我來推薦一些實用的數據可視化工具,這些工具包含:
專業的大數據分析工具
各種Python數據可視化第三方庫
其它語言的數據可視化框架
一、專業的大數據分析工具
1、FineReport
FineReport是一款純Java編寫的、集數據展示(報表)和數據錄入(表單)功能於一身的企業級web報表工具,它「專業、簡捷、靈活」的特點和無碼理念,僅需簡單的拖拽操作便可以設計復雜的中國式報表,搭建數據決策分析系統。
來看看它做的dashboard吧:
③ 大數據可視化應用於哪些場景
1.大數據可視化提高了效率
用於數據統計分析的大數據可視化一般用於政府部門和公司的經濟活動分析,包括財務報表分析、供應鏈管理分析、營銷製造分析、客戶關系管理分析等。它將企業運營產生的所有有用數據信息集中在一個系統軟體中,可用於商業智能、政府部門管理決策、公共服務、網路營銷等行業。
2.大數據可視化支持科學研究
航天是大數據可視化應用最早、最完善、成果最多的行業。航天要探索的是比地球極限大幾千倍,總輸出大,規定更高的寬闊的室內空間。因此,航天互聯網大數據不僅具有一般互聯網大數據的特點,還規定了銷售價格和高使用價值。能維持航天測量研製、測控機械設備的運行;航天指揮員作戰管理系統的模擬演習和作戰評估:航天作戰指揮官顯示信息來操作太空梭數據統計分析和情況監測。
3.大數據可視化產生競爭優勢
工業園區按照大數據可視化進行管理,可以從工業園區總體規劃、管網運行、能耗監控、工業園區交通出行、智能安全管理方式、工業園區資源優化配置等幾個方面保持平時的運行檢測和和諧管理方式;進而全面提升工業園區自主創新、服務項目和管理水平,提升工業園區產業結構和企業競爭力。
關於大數據可視化應用於哪些場景,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
④ 大數據可視化的應用場景都有哪些
1、大數據可視化提高效率
數據統計分析大數據可視化普遍用以政府部門、公司經濟活動分析,包含公司的財務報表分析、供應鏈管理剖析、市場銷售生產製造剖析、客戶關系管理剖析等,將企業運營所造成的全部有使用價值數據信息集中化在一個系統軟體里充分體現,可用以商務智能、政府部門管理決策、公眾服務、網路營銷等行業。
2、大數據可視化支撐科學研究
航空航天是大數據可視化應用最先也最完善,獲得成效數最多的行業,航空航天要對限度遠比地球上大成千上萬倍的寬闊室內空間開展探尋,其總產量大量,規定高些。因而,航空航天互聯網大數據不但具備一般互聯網大數據的特性,更規定銷售電價和高使用價值。
3、大數據可視化產生競爭優勢
產業園區是根據大數據可視化進行管理,這樣能夠保持從產業園區整體規劃、管道網運作、能耗監測、產業園區交通出行、智能安防管理方法、產業園區資源優化配置等好幾個層面開展平時運作檢測與融洽管理方法;進而全方位提升產業園區自主創新、服務項目和管理水平,推動產業園區產業結構升級、提高產業園區企業競爭力。
關於大數據可視化的應用場景都有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑤ 數據可視化的優缺點有哪些
下面我們就給大家介紹一下數據可視化的優點。
1:動作更快,這是因為人腦對視覺信息的處理要比書面信息容易得多。使用圖表來總結復雜的數據,可以確保對關系的理解要比那些混亂的報告或電子表格更快。所以說,數據可視化是一種非常清晰的溝通方式,使業務領導者能夠更快地理解和處理他們的信息。大數據可視化工具可以提供實時信息,使利益相關者更容易對整個企業進行評估。對市場變化更快的調整和對新機會的快速識別是每個行業的競爭優勢。正是由於這個優點,數據可視化越來越受到了大家的關注。
2:用建設性方式討論結果。一般來說,當我們向高級管理人員提交的許多業務報告的時候,都是規范化的文檔,這些文檔經常被靜態表格和各種圖表類型所誇大。也正是因為它製作的太過於詳細了,以致於那些高管人員也沒辦法記住這些內容,因此對於他們來說是不需要看到太詳細的信息。而使用大數據可視化的工具報告就可以使我們能夠用一些簡短的圖形就能體現那些復雜信息,甚至單個圖形也能做到。決策者可以通過交互元素以及類似於熱圖、fever charts等新的可視化工具,輕松地解釋各種不同的數據源。豐富但有意義的圖形有助於讓忙碌的主管和業務夥伴了解問題和未決的計劃。
3:能夠理解運營和結果之間的連接,具體就是數據可視化允許用戶去跟蹤運營和整體業務性能之間的連接。在競爭環境中,找到業務功能和市場性能之間的相關性是至關重要的。我們可以用一個案例來說明,比如說一家軟體公司的執行銷售總監可能會立即在條形圖中看到,他們的旗艦產品在西南地區的銷售額下降百分比。然後,相關主管可以深入了解這些差異發生在哪裡,並開始制定計劃。通過這種方式,數據可視化可以讓管理人員立即發現問題並採取行動從而及時止損。
缺點:就目前而言,數據可視化缺點在我眼裡還不存在,數據可視化就是為了幫助我們更直觀的看到數據。可能唯一的缺點就是有些人還不能熟練使用吧
談論起 數據可視化設計 ,許多人會產生一個疑問:什麼是數據可視化?我們由此問題著手,來談論下數據可視化設計。
經研究表明,人類大腦對視覺信息的處理優於對文本的處理。因此,數據可視化是使用圖表、圖形和設計元素把數據進行可視化,把相對復雜、抽象的數據通過可視的方式以人們更易理解的形式展示出來的一系列手段。數據可視化可以使人們更有效率的完成某些任務,我們可以理解為三點 優勢 :
> 美觀展示: 用數據展示企業特色,大會展台,媒體現場展示等
> 數據驅動: 實時查看業務概況、監控預警、驅動內部快速響應
> 發掘價值: 可視化數據呈現後,帶來的視覺感受會幫助人發現新的因素
在 HT 技術支持下,數據可視化除了「可視」,還有可交流、可互動的特點。設計帶來的不僅是瞬息處理海量數據搭配酷炫的可視化樣式所引起的視覺震撼,更應注重為業務需求服務,設計出符合不同行業需求的個性定製可視化,利於企業做出正確的商業決策,以有根據的數據呈現而幫助企業進行更科學的判斷而避免決策的失誤。
缺點: 數據可視化的應該有更多豐富的表現形式,以滿足簡單易懂的需求。
當然在缺點上,我們也有了更多的創新,比如2.3D可視化的結合打造更加豐富多彩的數據可視化形式:
⑥ 如何實現大數據可視化
1.考慮用戶
管理咨詢公司Aspirent視覺分析實踐主管Dan Gastineau表示,企業應使用顏色、形狀、大小和布局來顯示可視化的設計和使用。
Aspirent使用顏色來突出希望用戶關注的分析方面。而大小可有效說明數量,但過多使用不同大小來傳遞信息可能會導致混亂。這里應該有選擇地使用大小,即在咨詢團隊成員想要強調的地方。
2.講述連貫的故事
與你的受眾溝通,保持設計的簡單和專注性。顏色到圖表數量等細節可幫助確保儀錶板講述連貫的故事。MicroStrategy產品管理高級副總裁Saurabh
Abhyankar說:「儀錶板就像一本書,它需要考慮讀者的設計元素,而不僅僅是強制列出所有可訪問的數據。」儀錶板的設計將成為推動部署的因素。
3.迭代設計
應不斷從視覺分析用戶獲得反饋意見。隨著時間的推移,數據探索會引發新的想法和問題,而隨時間和部署推移提高數據相關性會使用戶更智能。
從你的受眾徵求並獲取反饋意見可改善體驗。谷歌雲端數據工作室首席產品經理Nick
Mihailovski表示,快速構建概念、快速獲取反饋意見並進行迭代可更快獲得更好的結果。另外,還可將調查和表格整合到精美的報告中,也可以幫助確保大數據的可視化結果確實有助於目標受眾。
4.個性化一切
應確保儀錶板向最終用戶顯示個性化信息,並確保其相關性。並且,還應確保可視化在設計上反映其所在的設備,並為最終用戶提供離線訪問,這將讓可視化走得更長遠。Mihailovski說,通過精心設計的互動式可視化來吸引觀眾以及傳播數據文化,這會使分析具有吸引力和富有樂趣。
5.從分析目標開始
應確保數據類型和分析目標可反映所選的可視化類型。Mihailovski稱:「人們通常會採用相反的方法,他們先看到整潔或模糊的可視化類型,然後試圖使其數據相匹配。」對於大數據項目的可視化,簡單的表格或條形圖有時可能是最有效的。
⑦ 大數據可視化的應用前景有哪些
大數據涉及的行業過於廣泛,在政治、教育、傳媒、醫學、商業、工業、農業、互聯網等多個方面都有應用。在大數據應用綜合價值潛力方面,信息技術、金融保險、政府及批發貿易四大行業潛力最高高。具體到行業內每家公司的數據量來看,信息、金融保險、計算機及電子設備、公用事業四類的數據量最大。可以看出,無論是投資規模和應用潛力,信息行業和金融行業都是大數據應用的重點行業。
大數據的應用首先需要將紛繁復雜的大數據集、晦澀難懂的數據報告變輕松易讀、親切、易於理解,可視化無疑是最佳的選擇。就大數據可視化的應用來看,應用范圍極其廣泛,如政府應用、商業決策、公共服務等等。
大數據的應用需要對客戶進行精準畫像,企業客戶畫像包括企業的生產、流通、運營、財務、銷售和客戶數據、相關產業鏈上下游等數據。在客戶畫像的基礎上才可以有效地開展精準營銷。通過大數據分析和挖掘用戶群的文化觀念、消費收入、消費習慣、生活方式等數據,將用戶群體劃分為更加精細的類別,根據用戶群的不同制定不同品牌推廣戰略和營銷策略,提高用戶的忠誠度、培養能為企業帶來高價值的潛在客戶,提升市場佔有率。
關於大數據可視化的應用前景有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑧ 大數據可視化設計到底是啥,該怎麼用
大數據可視化是個熱門話題,在信息安全領域,也由於很多企業希望將大數據轉化為信息可視化呈現的各種形式,以便獲得更深的洞察力、更好的決策力以及更強的自動化處理能力,數據可視化已經成為網路安全技術的一個重要趨勢。
文章目錄
一、什麼是網路安全可視化
1.1 故事+數據+設計 =可視化
1.2 可視化設計流程
二、案例一:大規模漏洞感知可視化設計
2.1整體項目分析
2.2分析數據
2.3匹配圖形
2.4確定風格
2.5優化圖形
2.6檢查測試
三、案例二:白環境蟲圖可視化設計
3.1整體項目分析
3.2分析數據
3.3 匹配圖形
3.4優化圖形
3.5檢查測試
一、什麼是網路安全可視化
攻擊從哪裡開始?目的是哪裡?哪些地方遭受的攻擊最頻繁……通過大數據網路安全可視化圖,我們可以在幾秒鍾內回答這些問題,這就是可視化帶給我們的效率 。 大數據網路安全的可視化不僅能讓我們更容易地感知網路數據信息,快速識別風險,還能對事件進行分類,甚至對攻擊趨勢做出預測。可是,該怎麼做呢?
1.1 故事+數據+設計 =可視化
做可視化之前,最好從一個問題開始,你為什麼要做可視化,希望從中了解什麼?是否在找周期性的模式?或者多個變數之間的聯系?異常值?空間關系?比如政府機構,想了解全國各個行業漏洞的分布概況,以及哪個行業、哪個地區的漏洞數量最多;又如企業,想了解內部的訪問情況,是否存在惡意行為,或者企業的資產情況怎麼樣。總之,要弄清楚你進行可視化設計的目的是什麼,你想講什麼樣的故事,以及你打算跟誰講。
有了故事,還需要找到數據,並且具有對數據進行處理的能力,圖1是一個可視化參考模型,它反映的是一系列的數據的轉換過程:
我們有原始數據,通過對原始數據進行標准化、結構化的處理,把它們整理成數據表。
將這些數值轉換成視覺結構(包括形狀、位置、尺寸、值、方向、色彩、紋理等),通過視覺的方式把它表現出來。例如將高中低的風險轉換成紅黃藍等色彩,數值轉換成大小。
將視覺結構進行組合,把它轉換成圖形傳遞給用戶,用戶通過人機交互的方式進行反向轉換,去更好地了解數據背後有什麼問題和規律。
最後,我們還得選擇一些好的可視化的方法。比如要了解關系,建議選擇網狀的圖,或者通過距離,關系近的距離近,關系遠的距離也遠。
總之,有個好的故事,並且有大量的數據進行處理,加上一些設計的方法,就構成了可視化。
1.2 可視化設計流程
一個好的流程可以讓我們事半功倍,可視化的設計流程主要有分析數據、匹配圖形、優化圖形、檢查測試。首先,在了解需求的基礎上分析我們要展示哪些數據,包含元數據、數據維度、查看的視角等;其次,我們利用可視化工具,根據一些已固化的圖表類型快速做出各種圖表;然後優化細節;最後檢查測試。
具體我們通過兩個案例來進行分析。
二、案例一:大規模漏洞感知可視化設計
圖2是全國范圍內,各個行業漏洞的分布和趨勢,橙黃藍分別代表了漏洞數量的高中低。
2.1整體項目分析
我們在拿到項目策劃時,既不要被大量的信息資料所迷惑而感到茫然失措,也不要急於完成項目,不經思考就盲目進行設計。首先,讓我們認真了解客戶需求,並對整體內容進行關鍵詞的提煉。可視化的核心在於對內容的提煉,內容提煉得越精確,設計出來的圖形結構就越緊湊,傳達的效率就越高。反之,會導致圖形結構臃腫散亂,關鍵信息無法高效地傳達給讀者。
對於大規模漏洞感知的可視化項目,客戶的主要需求是查看全國范圍內,各個行業的漏洞分布和趨勢。我們可以概括為三個關鍵詞:漏洞量、漏洞變化、漏洞級別,這三個關鍵詞就是我們進行數據可視化設計的核心點,整體的圖形結構將圍繞這三個核心點來展開布局。
2.2分析數據
想要清楚地展現數據,就要先了解所要繪制的數據,如元數據、維度、元數據間關系、數據規模等。根據需求,我們需要展現的元數據是漏洞事件,維度有地理位置、漏洞數量、時間、漏洞類別和級別,查看的視角主要是宏觀和關聯。涉及到的視覺元素有形狀、色彩、尺寸、位置、方向,如圖4。
2.3匹配圖形
2.4確定風格
匹配圖形的同時,還要考慮展示的平台。由於客戶是投放在大屏幕上查看,我們對大屏幕的特點進行了分析,比如面積巨大、深色背景、不可操作等。依據大屏幕的特點,我們對設計風格進行了頭腦風暴:它是實時的,有緊張感;需要新穎的圖標和動效,有科技感;信息層次是豐富的;展示的數據是權威的。
最後根據設計風格進一步確定了深藍為標准色,代表科技與創新;橙紅藍分別代表漏洞數量的高中低,為輔助色;整體的視覺風格與目前主流的扁平化一致。
2.5優化圖形
有了圖形後,嘗試把數據按屬性繪制到各維度上,不斷調整直到合理。雖然這里說的很簡單,但這是最耗時耗力的階段。維度過多時,在信息架構上廣而淺或窄而深都是需要琢磨的,而後再加上交互導航,使圖形更「可視」。
在這個任務中,圖形經過很多次修改,圖7是我們設計的過程稿,深底,高亮的地圖,多顏色的攻擊動畫特效,營造緊張感;地圖中用紅、黃、藍來呈現高、中、低危的漏洞數量分布情況;心理學認為上方和左方易重視,「從上到下」「從左至右」的「Z」字型的視覺呈現,簡潔清晰,重點突出。
完成初稿後,我們進一步優化了維度、動效和數量。維度:每個維度,只用一種表現,清晰易懂;動效:考慮時間和情感的把控,從原來的1.5ms改為3.5ms;數量:考慮了太密或太疏時用戶的感受,對圓的半徑做了統一大小的處理。
2.6檢查測試
最後還需要檢查測試,從頭到尾過一遍是否滿足需求;實地投放大屏幕後,用戶是否方便閱讀;動效能否達到預期,色差是否能接受;最後我們用一句話描述大屏,用戶能否理解。
三、案例二:白環境蟲圖可視化設計
如果手上只有單純的電子表格(左),要想找到其中IP、應用和埠的訪問模式就會很花時間,而用蟲圖(右)呈現之後,雖然增加了很多數據,但讀者的理解程度反而提高了。
3.1整體項目分析
當前,企業內部IT系統復雜多變,存在一些無法精細化控制的、非法惡意的行為,如何精準地處理安全管理問題呢?我們的主要目標是幫助用戶監測訪問內網核心伺服器的異常流量,概括為2個關鍵詞:內網資產和訪問關系,整體的圖形結構將圍繞這兩個核心點來展開布局。
3.2分析數據
接下來分析數據,案例中的元數據是事件,維度有時間、源IP、目的IP和應用,查看的視角主要是關聯和微觀。
3.3 匹配圖形
根據以往的經驗,帶有關系的數據一般使用和弦圖和力導向布局圖。最初我們採用的是和弦圖,圓點內部是主機,用戶要通過3個維度去尋找事件的關聯。通過測試發現,用戶很難理解,因此選擇了力導向布局圖(蟲圖)。第一層級展示全局關系,第二層級通過對IP或埠的鑽取進一步展現相關性。
3.4優化圖形
優化圖形時,我們對很多細節進行了調整: – 考慮太密或太疏時用戶的感受,只展示了TOP N。 – 弧度、配色的優化,與我們UI界面風格相一致。 – IP名稱超長時省略處理。 – 微觀視角中,源和目的分別以藍色和紫色區分,同時在線上增加箭頭,箭頭向內為源,向外是目的,方便用戶理解。 – 交互上,通過單擊鑽取到單個埠和IP的信息;滑鼠滑過時相關信息高亮展示,這樣既能讓畫面更加炫酷,又能讓人方便地識別。
3.5檢查測試
通過調研,用戶對企業內部的流向非常清楚,視覺導向清晰,鑽取信息方便,色彩、動效等細節的優化幫助用戶快速定位問題,提升了安全運維效率。
四、總結
總之,藉助大數據網路安全的可視化設計,人們能夠更加智能地洞悉信息與網路安全的態勢,更加主動、彈性地去應對新型復雜的威脅和未知多變的風險。
可視化設計的過程中,我們還需要注意:1、整體考慮、顧全大局;2、細節的匹配、一致性;3、充滿美感,對稱和諧。