導航:首頁 > 網路數據 > 醫療大數據科學研究

醫療大數據科學研究

發布時間:2023-02-23 16:27:29

大數據醫療具體是指什麼

醫療大數據是個很寬泛的概念,他有很多詳細的分類,包括:電子病歷數據,這是患者就醫過程中所產生的數據,包括患者基本信息、疾病主訴、檢驗數據、影像數據、診斷數據、治療數據等,這類數據一般產生及存儲在醫療機構的電子病歷中,這也是醫療數據最主要的產生地。電子化的醫療病歷方便了病歷的存儲和傳輸,但是並未達到進行數據分析的要求。大約80%的醫療數據是自由文本構成的非結構化數據,其中不僅包括大段的文字描述,也包括包含非統一文字的表格欄位。通過醫學自然語言理解技術,將非結構化醫療數據轉化為適合計算機分析的結構化形式是醫療大數據分析的基礎。電子病歷中所採集的數據是數據量最多、最有價值的醫療數據。通過和臨床信息系統的整合,內容涵蓋了醫院內的方方面面的臨床數據集。在電子病歷的互通互聯上,出於各自的利益性(限制病人轉診),各大電子病歷企業也不願意使數據互通互聯。根據美國政府相關報告顯示,其電子病歷共享比例也僅為30%左右。
檢驗數據
醫院檢驗機構產生了大量患者的診斷、檢測數據,也有大量存在的第三方醫學檢驗中心也在產生數據。檢驗數據是醫療臨床子系統中的一個細分小類,但是可以通過檢驗數據直接患者的疾病發展和變化。目前臨床檢驗設備得到迅速發展,通過LIS 系統對檢驗數據進行收集,可以對疾病的早發現早診斷和正確診斷做出貢獻。
影像數據
隨著資料庫技術和計算機通訊技術的發展,數字化影像傳輸和電子膠片應運而生。醫療影像數據是通過影像成像設備和影像信息化系統產生的,醫院影像科和第三方獨立影像中心存儲了大量的數字化影像數據。醫學影像大數據,是由DR、CT、MR 等醫學影像設備產生所產生並存儲在PACS 系統內的大規模、高增速、多結構、高價值和真實准確的影像數據集合。與檢驗信息系統(LIS)大數據和電子病歷(EMR)等同屬於醫療大數據的核心范疇。醫學影像數據量非常龐大,影像數據增速快,標准化程度高。影像數據和臨床其他數據比較起來,它的標准化、格式化、統一性是最好的,價值開發也最早。
費用數據
醫院門診費用、住院費用、單病種費用、醫保費用、檢查和化驗收入、衛生材料收入、診療費用、管理費用率、資產負債率等和經濟相關的數據。除了醫療服務的收入費用之外,還包含醫院所提供醫療服務的成本數據,包含葯品、器械、衛生人員工資等成本數據。在DRGs 按疾病診斷相關組付費模式中,需要詳細的成本數據核算。通過大樣本量的測算,建立病種標准成本,加強病種成本核算和精細化成本管理。
基因測序數據
基因檢測技術通過基因組信息以及相關數據系統,預測罹患多種疾病的可能性。基因測序會產大量的個人遺傳基因數據,一次全面的基因測序,產生的個人數據則達到300GB。一家基因測序企業每月產生的數據量可以達到數百TB 甚至1PB。
智能穿戴數據
各種智能可穿戴設備的出現,使得血壓、心率、體重、體脂、血糖、心電圖等健康體征數據的監測都變成可能,患者的單一體征健康數據以及運動數據快速上傳到雲端,而且數據的採集頻率和分析速度大大提升。除了生命體征之外,還有其他智能設備收集的健康行為數據,比如每天的卡路里攝入量、喝水量、步行數、運動時間、睡眠時間等等。智能穿戴設備雖然在這兩年遇冷,用戶很難形成粘性,但是並不意味著智能穿戴設備所產生的數據沒有意義。提供健康數據和服務,可能是智能穿戴廠商未來的轉型之路。健康大數據的收集必須依靠硬體載體,智能穿戴設備還將會遇到自己的第二春。
體檢數據
體檢數據是體檢機構所產生的健康人群的身高、體重、檢驗和影像等數據。這部分數據來自醫院或者第三體檢機構,大部分是健康人群的體征數據。隨著亞健康人群、慢病患者的增加,越來越多的體檢者除了想從體檢報告中了解自己的健康狀況,還想從體檢結果中獲得精準的健康風險評估,以及如何進行健康、慢病管理。
移動問診數據
通過移動設備端或者PC 端連接到互聯網醫療機構,產生的輕問診數據和行為數據。曾經通過互聯網問診企業春雨醫生的數據,分析各地醫生互聯網問診的活躍度、細分疾病種的問診行為。通過這些數據的分析,對行業發展、互聯網問診企業的決策有非常重要的幫助。

㈡ 醫療大數據有什麼作用

醫療大數據,就是通過醫療的大數據進行數據分析,可以進行醫療方面的比較和研究。
通全面析病特徵數據療效數據比較種干預措施效性找針特定病佳治療途徑。

㈢ 健康醫療大數據的安全與應用

健康醫療大數據的安全與應用
醫療健康大數據是覆蓋自然人的全生命周期,既包括個人健康,又涉及醫葯服務、疾病防控、健康保障和食品安全、養生保健等多方面數據的匯聚和聚合。
簡單講就是涉及到健康的、醫療的跟個人相關的數據的合集,不僅在醫院,在互聯網,在企業、醫院都存在。
同時會議上也提到要利用健康醫療大數據,創新業態,創新應用,促進醫療行業發展。
利用健康醫療大數據,不僅對改進健康醫療服務模式,而且對經濟社會發展都有著重要的促進作用,是國家重要的基礎性戰略資源。
健康醫療數據從哪來?
我們可以大致分為五方面。
第一來自診療數據:
患者在醫療機構、體檢機構等就醫過程中產生並由信息系統記錄的數據;
包括電子病歷、檢驗檢查、基因測序、用葯、醫學影像等;
第二來自研究數據:葯品或器械研究機構,由研究機構錄入或採集的個人健康數據,比如臨床試驗、生物樣本庫等;
第三是個人數據:個人在醫療機構外自行記錄的健康數據,比如可穿戴設備採集的心率、脈搏、睡眠等數據;互聯網行為記錄的檢索、問診、查詢、病患交流數據等;
第四是結算數據: 由商業保險公司、醫保機構、物價管理機關存儲的報銷和流通數據;最後是公共醫學:由臨床指南、醫療健康期刊、醫學文獻,循證醫學數據資源庫等組成。這就是醫療大數據的來源。
健康醫療數據核心在醫療機構
因為醫院的數據是真實的疾病數據,其他的社會葯品采買數據等等跟真正核心醫療健康的核心還有些距離。
而在醫院包括護理記錄、電子病歷、用葯信息、疾病診斷等等,這些數據綜合一個特點就是敏感度非常高。
第二就是真實,為什麼真實?看病有醫囑、處方、病案等,這些醫療文書是可以作為法律證據的。
同時質量比較高,在醫療信息化20年時間的不斷積累和持續改進,數據的完整度和質量也在不斷地提高。
行業要求
醫療健康大數據據作為新生事物,在行業標准和行業規范上尚有欠缺。直至近一年,國家衛計委陸續出台的全國醫院信息化"功能指引"和"建設標准和規范",其中提到大數據平台,就是希望醫院須要建設大數據平台,執行國家十三五規劃中大數據戰略落地的內容和時間計劃,要求三甲醫院最終要建設面向大數據和人工智慧技術的服務架構,高效高質組織數據資源,形成數據生產力。
行業現狀
健康大醫療數據共享及應用不易。
針對於醫院來說:客觀存在"不敢、不願、不會"三種形態。
不敢,因為數據共享、數據安全這些問題沒有解決,所以不敢去做。
沒有規定,或者不太明確,不敢做。不願,因為醫院權益、政府權益、社會權益,不清楚。還有醫院內部科室的數據擔心被拿走,不願意。
不會,因為大數據必須要有大數據的技術支撐,沒有技術支撐就沒法兒對數據進行挖掘和利用,同樣在數據共享開放過程中,技術、標准、機制、體制突破仍存在較大的障礙,造成各部門在推動過程當中不會做,這些現狀造成了「不會」現象。
這些都是現狀,但核心是數據安全和無法做到安全可控,讓醫院放心。
安全和隱私保護
數據安全挑戰
數據安全沒有解決,能不能用?怎麼建立安全體系?
首先醫院安全受到不斷的挑戰。
我在昨天看到一個新聞,我不知道大家看到沒看到,就是新加坡的某醫院集團,其醫院數據被黑,包括他們總理在內的就診數據都在裡面,非常敏感。
黑客拿走了。
為什麼大家盯到了醫院?說明黑客對醫療數據還是感興趣的。
比如勒索數據,過去病毒很少到醫院,但去年勒索病毒剛爆發時就是針對醫院,英國到中國都有中招,但是中國醫院被曝光的很少。所以說安全形勢比較嚴峻。
醫院安全管理
第一是物理安全
醫院的網路物理網是分內部網:掛號、結算、收費。一個是外網辦公網,再往外才是英特網。
整個物理是隔離的,而且網路也是隔離的。
第二數據安全,主要是指醫療內部數據,數據保護採用了加密、資料庫審計、防篡改等技術。
第三是網路安全,從網路角度講,國家衛計委提出2015年全部三甲醫院要建立信息安全三級等級保護,逐步實現了基本的安全。
第四隱私安全,這是新的命題,因為我們數據在內部用的話是不去隱私的明文。
那些是隱私數據?
國內還沒明確法律規定細則。
我們可借鑒美國HIPPA法案,其明確規定了個人姓名、社保號、車牌號等18項隱私數據,或者說只要能指向患者個體的都算隱私。
那麼數據如何去隱私?
現在通用的還是基本加密技術。
醫院內部不需要加密,所謂外部就是科研研究、葯物研究時需要大量統計分析時需要加密,我們現在用的是MD5加密等機密技術,有可逆的和不可逆的。
健康大數據應用
在安全前提下要放開應用。
借用國家衛計委規劃信息司領導所言"一分部署、九分落地"。健康醫療大數據也需要一分建設,九分要應用。從產業應用現狀看,公司多,投資多,期望大,產出還未確定。
從應用方向上,我們可以分為:臨床決策支持(AI),醫保控費和險種開發,醫院管理,醫療器械和新葯研發,慢病和健康管理等多個方向。

㈣ 大數據在醫學領域有什麼應用

1、健康監測


大數據技術可以提供居民的健康檔案,包括全部診療信息、體檢信息,這些信息可以為患病居民提供更有針對性的治療方案。並且通過智能手錶等可穿戴設備,隨時帶著,可以實時匯報病人的健康情況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。


2、數據電子化管理


患者的影像數據,病歷數據、檢驗檢查結果、診療費用等各種數據錄入大數據系統,統一管理起來,每位醫生都能夠在系統中查到病人的詳細資料以及變更記錄。而無需再通過耗時的紙質工作來完成,這對於大夫更好地把握疾病的診斷和治療十分重要。


3、醫療科研


在醫療科研領域,運用大數據技術對各種數據進行篩選、分析,可以為科研工作提供強有力的數據分析支持。例如健康危險因素分析的科研中,利用大數據技術可以在系統全面地收集健康危險因素數據,包括環境因素,生物因素,經濟社會因素,個人行為和心理因素,醫療衛生服務因素,以及人類生物遺傳因素等的基礎上,進行比對關聯分析,針對不同區域、家族進行評估和遴選,研究某些疾病發病的家族性、地區區域分布性等特性。

㈤ 醫療大數據爆發,千億級市場怎麼玩

未來資本對大數據的爭奪戰已經開始。據媒體報道,2013年至2014年以來, 大數據是互聯網醫療健康主要並購投資領域之一。
前身為中國首家專業從事醫院信息系統軟體開發與應用工程企業的北大醫療信息技術有限公司(下稱「北大醫信」)已經瞄準了醫療大數據的戰略方向。
今年3月,北大基金會向北大醫信投資3000萬,這是北大史上投資最大的「真金白銀」。在3月14日的北大醫信成立大會上,方正集團高級副總裁、方正信產集團CEO方中華直接給其賦予了重任:「北大和方正集團的大力支持、大數據時代帶來的無限機遇,都應該讓我們感到,我們的事業之無上光榮;光榮的背後是任重道遠,必須要共同努力將北大、方正賦予北大醫信的使命完成好、做好大數據事業,不僅要做北大大數據中心,未來還要做國家級、世界級的大數據中心。」
12月11日,弘毅投資、高盛、東軟控股及協同創新等投資者共同對東軟熙康進行1.7億美元的增資。東軟熙康是東軟集團旗下專門從事互聯網醫療和健康管理的公司,致力於通過大數據,雲計算、物聯網、移動互聯網提供基於O2O模式的健康管理與醫療服務平台,這筆投資刷新了國內互聯網醫療與健康管理領域最大單筆融資的紀錄,也是全球互聯網醫療與健康管理領域最大單筆融資之一。
上海醫聯工程已經建立了國內目前醫療機構聯網范圍最大的臨床信息共享系統。該工程的承建商萬達信息股份有限公司(下稱「萬達信息」),2014年7月收購上海復高計算機科技有限公司,8月收購寧波金唐軟體股份有限公司。這兩個公司都是在醫療信息化領域做了十多年的企業。
萬達信息股份有限公司總裁助理馮東雷告訴網易科技,萬達信息加上新收購的兩個子公司,現在一共有員工3500人左右,其中從事與醫療健康相關的有事業部和子公司,員工共有1500人左右,是萬達信息業務中最大的一塊。
上海金仕達衛寧軟體股份有限公司是一家專業從事醫療衛生領域信息化、數字化、軟體研究與開發的高科技企業。徐春華告訴網易科技,金仕達衛寧做數據處理是原有業務的一種延伸,但是在過去一年當中,他發現,涉足醫療大數據領域的不光傳統的做醫療IT軟硬體服務的企業,甚至還有許多跨界的、之前和醫療沒關系的上市公司,例如以地產起家的運盛實業、濃縮果汁生產企業國投中魯等。
而在日前的「2014年中國移動醫療產業年會」上,中國移動、中國電信、中國聯通、IBM、保險公司招商信諾等,還有各種健康管理公司都參與了主題為「健康大數據 全民大健康」的論壇。
企業之外,醫院和各路研究機構也在嘗試開展醫療大數據的研究。11月29日,中國科學院深圳先進技術研究院健康大數據研究中心成立。北京大學正在籌備成立北大醫療健康大數據中心。最近兩個月,馮東雷拜訪了北京大學、浙江大學、中山大學、中南大學等幾所高校,「這些高校都希望在大數據方面和我們進行合作。」他透露。
2014年10月18日,首都醫科大學附屬北京安貞醫院和輝瑞投資有限公司合作的國內首個心血管醫療大數據中心項目啟動。
臨床應用:還不成熟
目前對醫療大數據的需求集中在在三個層面:運營管理、輔助治療和輔助科研。在業界看來,目前在中國,醫療大數據已經取得良好效果的是行政管理。
北京市公共衛生信息中心統計室主任郭默寧告訴網易科技,目前在數據的挖掘和利用方面,北京市公共衛生信息中心做的比較有成效的是對醫療機構進行績效分析。
以前,對醫療機構進行績效評價並不容易,因為每個病人病情各異,醫療機構的工作難度和工作效果很難衡量,醫療機構之間進行對比也非常困難。郭默寧告訴網易科技,以往對醫療機構進行績效評估的通常模式是找專家給醫院評分,依據經驗和主觀判斷比較多。
2008年開始,北京市公共衛生信息中心嘗試根據通過數據挖掘得來的指標對轄區內醫療機構進行績效評價。她告訴網易科技:「利用統計學方法,可以把醫療機構收治的病症相似的病人進行分組,這樣在同組病人當中,就可以比較各個機構的服務優劣了。這樣可以促進醫療機構精細化管理,提高醫療服務的質量。」
郭默寧告訴網易科技,未來在公共衛生領域,醫療數據的挖掘和利用的前景是非常廣闊的。比如,在醫療衛生資源規劃、配置,疾病預警等方面都會得到充分的應用。
在臨床輔助治療和輔助科研方面,已經有機構在進行探索和嘗試,但是目前尚不成熟。
萬達信息之前研發的「臨床輔助決策系統」在業界比較知名,其目前可以在上海市38家市級醫院向醫生提供近期重復用葯、檢驗、檢查的提醒、治療安全警示以及臨床路徑(是指針對某一疾病建立一套標准化治療模式與治療程序,是一個有關臨床治療的綜合模式,以循證醫學證據和指南為指導來促進治療組織和疾病管理的方法,最終起到規范醫療行為,減少變異,降低成本,提高質量的作用)服務。
但是,馮東雷告訴網易科技,這些功能的提供,實際上需要做知識庫的建設,但是現在的知識庫都是基於現有的教科書、葯品使用說明以及一些臨床手冊,都比較簡單,今後要把醫生的真實的看病的經驗也輸入進來,才能在臨床上發揮更大的意義,這才是真正的大數據挖掘。他透露,在即將開展的「心血管疾病和腫瘤疾病大數據處理分析與應用研究」的項目中,就有心血管、腫瘤專家參與進來。
2012年,萬達信息、國家衛生工程中心就申請了上海市科委醫療健康大數據的課題。在這個項目中,萬達信息嘗試了對高血壓進行大數據分析,試圖找到病症、用葯和療效之間的關聯。但是馮東雷告訴網易科技,這樣的分析目前遇到一些困難。以往的臨床研究(隨機對照試驗RCT)是用實驗組和對照組進行的,對照組是一些排除了並發症等相對理想的對照人群。樣本量小,但每個樣本的數據顆粒很細。但是用醫療大數據做分析的話,樣本量很大,但是每個樣本數據顆粒比較粗。因此不能套用傳統RCT的研究方法。因此需要新的研究思路。目前用大數據已經發現了一些治療手段和效果的關聯性,但是這種結論在臨床使用上有多大的意義還有待檢驗。
這樣的研究還在繼續。國家「863」計劃2015年度項目申報指南中,在生物和醫葯技術領域已經部署「生物大數據開發與利用關鍵技術研究」,涉及的內容包括生物大數據標准化和集成、融合技術,生物大數據表述索引、搜索與存儲訪問技術,心血管疾病和腫瘤疾病大數據處理分析與應用研究,基於區域醫療與健康大數據處理分析與應用研究,組學大數據中心和知識庫構建與服務技術等。
萬達信息參與了其中的兩項,分別為「基於區域醫療與健康大數據處理分析與應用研究」,以及「心血管疾病和腫瘤疾病大數據處理分析與應用研究」。其中後者開展面向中醫的心血管疾病和腫瘤疾病大數據分析與應用的研究。
北大醫信也在與北京大學合作,研究臨床醫療大數據的分析和利用。北大醫信服務過的醫院超過500家,其中三甲醫院200多家,佔全國三甲醫院總數的1/4左右,北京大學下屬有9家附屬醫院、13家教學醫院,這些醫院信息系統中積累的大量數據,為進行大數據分析和利用打下了堅實的基礎。
北大醫信資深副總裁兼CTO鄒悅告訴網易科技,目前北大醫信的臨床決策支持體系正在北京大學人民醫院、北京大學國際醫院、江蘇省人民醫院進行試點。
北大醫信已經開發了臨床預警和建議類的應用。預警類的應用可以根據患者的一些生命體征,判斷患病風險並進行提示。建議類的應用,目前北大醫信做了糖尿病這個病種,系統可以根據糖尿病人的症狀、檢驗檢查結果和病歷,給出相應的治療方案建議。
在臨床科研方面,北大醫信也做了一些數據分析,並且得到了一些結果。比如,以往子宮內膜異位和子宮肌瘤的誤診率高達65.1%,因為兩種疾病的症狀非常相似。通過大數據分析發現,卵巢囊腫、腹痛、貧血這三種症狀在這兩種病中的權重是不同的,子宮內膜異位與卵巢囊腫的關聯最強,子宮肌瘤和貧血的關聯最強。
「我們分析出了這個結果,但是在臨床上怎麼用,還要再進一步探討。」鄒悅介紹。
好醫生集團董事長高瞻認為,要讓大數據產生價值,需要有一條完整的價值鏈,目前中國的這個價值鏈還有缺失。大數據的價值鏈有數據的收集、儲存、分析、應用四個環節,但是目前這個產業投入比較多的是收集和儲存,分析和應用還比較弱。即使在投入較多的數據收集環節,由於缺乏相應的機制,數據的質量也不是很高。
業內者說:怎麼做
在目前的情況下,如何做好大數據?高瞻認為,應當先抓住一些關鍵業務需求,同時數據基礎比較好,先做起來,然後再逐步擴展。他舉了兩個例子。
好醫生集團曾參與過安徽省肥西縣衛生局的一個項目。據高瞻介紹,肥西縣衛生局將新農合醫療報銷系統的數據和衛生局為居民建立的電子健康檔案做了一個關聯性分析。結果發現,居民的肥胖、抽煙與高血壓、糖尿病的發病關聯性很強。高瞻告訴網易科技,這不是什麼新的發現,但是應用大數據分析的意義在於,之前大家只是從概念上知道肥胖和抽煙會對高血壓和糖尿病產生影響,用大數據分析之後,能夠真實地看到具體的一個個人的肥胖和抽煙對病症產生了影響。之後,社區醫院應用了這個分析結果,給高血壓病人、糖尿病病人看病時不光降血壓、降血糖,還要干涉患者的肥胖和吸煙。現在整個肥西、還有安徽的很多縣都在推廣這樣的做法,這一個小小的改變,使得很多地方的居民電子健康檔案的使用率從20%左右變成了60%—70%,醫生們本沒有使用積極性的資料庫被激活了。
肥西還做了個試驗。原來農村治病,不管大人小孩,一般都是開抗生素、輸液,好醫生集團多年來做鄉村醫生的培訓,呼籲不要濫用抗生素,但是在實際中效果不大。今年年初,安徽省啟動了基層醫療衛生機構處方集系統,這個系統可以根據疾病診斷,提示建議處方,旨在規范診療行為和用葯行為。同時,從今年2月開始,肥西縣衛生局每月把醫生處方當中使用兩種以上抗生素的處方的比例發給醫生。結果到了10月份,原來高達20%-60%的數據降到了個位數。
高瞻總結,大數據應用應當先從「Low hanging fruits」,即掛得低的果子、容易達成的目標開始,先把手頭有限的「小數據」用好。
這個觀點與北京301醫院計算機室原主任任連仲不謀而合。
任連仲告訴網易科技,目前中等規模以上的醫院起碼都積累了數百GB的數據,每100GB的數據就相當於30萬份病歷。雖然這個數量級還沒達到PB級,但是其中一定蘊含著許多有價值的信息。
他拿自己的觀察舉例說:「我觀察了我身邊20個左右患惡性腫瘤的人,我發現其中六七成的人在生活中有過非常苦惱郁悶的一段時期。20個樣本,就可以總結出一點規律了,何況這個樣本量大到GB級呢?那會得到更多、更有價值、更准確的結論。」
他主張先把目前的數據利用起來,現在301醫院那些成摞的申請單就是真實的需求。他說:「目前在醫院里,這樣的服務還是被動的,是醫生找上門來我們才提供服務,如果這種服務再進一步走上主動,廣而告之,告訴廣大醫護人員和管理人員我們這里可以提供你們所需的『信息服務』,醫生在和技術人員在不斷交流的過程中,一定能挖掘出大數據更大的價值。」
任連仲今年80歲,但是老爺子嘴裡蹦出的詞是「快速迭代」,按照他的說法:「好工具是用出來的。這是一個巨大的市場,這個事我們不能等。」

㈥ AI賦能醫療的背後,臨床大數據該如何「跑起來」

19世紀,英國流行病學家、麻醉學家約翰·斯諾運用近代早期的數據科學,記錄每天的死亡人數和傷患 人數,並將死亡者的地址標注在地圖上,繪制了倫敦霍亂爆發的「群聚」地圖,霍亂在過去被普遍認為是由有害空氣導致,斯諾通過調查數據的匯總,確定了霍亂的元兇是被污 染的公共水井,並同時奠定了疾病細菌理論的基礎,這算是大數據運用的早期雛形之一。

斯諾大概不會想到,在近兩百年後,大數據的應用早已不再是偶然,隨著醫療衛生信息化的迅速發展,其通過與AI的結合在生物醫葯研發、疾病管理、公共衛生和 健康 管理等方面的滲透已逐漸常態化,但問題也相應地隨之凸顯。

信息孤島仍存

近兩年,關於醫療大 健康 數據的政策頻出,從頂層設計、具體規劃指導、數 據隱私和安全、數據管理等多個方面提出了相關的指導意見。

2016年6月,國務院辦公廳下發《關於促進和規范 健康 醫療大數據應用發展的指導意見》指出,鼓勵各類醫療衛生機構推進 健康 醫療大數據採集、存儲,加強應用支撐和運維技術保障,打通數據資源共享通道,加快建設和完善以居民電子 健康 檔案、電子病歷、電子處方等為核心的基礎資料庫。

2018年9月, 國家衛生 健康 委印發《國家 健康 醫療大數據標准、安全和服務管理辦法(試行)》,對醫療 健康 大數據行業從規范管理和開發利用的角度出發進行規范。《辦法》從醫療大數據標准、醫 療大數據安全、醫療大數據服務、醫療大數據監督四個方面提出指導意見,直擊目前醫療大數 據領域的痛點,未來對數據的統籌標准管理、落實安全責任、規范數據服務和管理具有重要意義。

然而,即使有專項政策的支持,但都限於宏觀層面,相較於其他成熟領域而言, 健康 醫療大數據領域的法律法規依然存在明顯的滯後性,缺乏比較全面、細致、明確的指引和規則,使其的發展受到嚴重製約。雖然現階段,已有很多企業在醫療大數據領域進行深耕布局,但受制於市場准入和產業政策的不確定性,目前尚在摸著石頭過河,市場熱情和活力並未得到充分、有效地釋放。

復旦大學上海醫學院生物醫學研究院教授劉雷認為,正是醫療大數據政策的不明朗,標準的不統一,也直接導致了各個系統之間難以進行數據交換和信息共享,產生了大量的「信息孤島」。舉個簡單的例子,患者在A醫院拍的片子到了B醫院卻不認,B醫院的醫生想要了解患者的信息則需要從零開始,患者曾在A醫院做的檢查需要在B醫院重新再來一輪,「想要打通醫療機構間臨床大數據資源的共享通道,至少在現階段是一件挺困難的事情。」劉雷表示。

相似的困擾也發生在相距超過一萬公里之外的美國,華盛頓大學醫學院信息研究所所長Philip Paynes在接受醫谷采訪時表示:臨床大數據間的彼此「孤立」給國家醫保機構、患者和醫院都帶來了負擔,實現大數據間的互通互用,是全世界范圍內都在著力解決的問題。

作為兩所頂尖大學的知名研究學者,劉雷和Paynes想在臨床大數據領域做一些努力和嘗試。

兩人共有的想法迅速得到了學校層面的大力支持,2019年7月26-29日,由復旦大學醫學院和聖路易斯華盛頓大學醫學院聯合授課的「應用臨床信息學和數據分析研修班」進行了第一次開班。

復旦大學生物醫學研究院教授、復旦大學大數據研究院醫學信息與醫學影像智能診斷研究所所長劉雷授課

據劉雷介紹,此次研修班得到了業界人士的積極響應,在第一屆學員中,來自醫院、醫療企業、高校各佔了三分之一,「就是純粹地想把對臨床大數據分析和感興趣的業界人士聚集在一起,通過共有的努力,能把臨床大數據的有效運用更推進一步。」

聖路易斯華盛頓大學醫學院信息學研究所主任Philip Paynes授課

「希望通過這種國際化的合作,能讓臨床大數據在醫療機構間甚至跨國間真正地』跑』起來多一種可能性。」 Paynes說道。

各自所做的 探索

而在這種可能性之前,劉雷和Paynes各自所在的研究機構均已做了大量的工作。

據悉,劉雷所在的復旦大學上海醫學院生物醫學研究作為一家致力於創建「中國第一、世界一流的生物醫學交叉學術研究機構」,已經在生物醫學交叉學科領域形成「代謝與腫瘤的分子細胞生物學」、「醫學表觀遺傳學」、「系統生物醫學」三個優勢方向,並正在努力拓展轉化醫學研究和精準醫學研究,包括老年醫學、腫瘤和心血管疾病、出生缺陷、靶點結構與活性小分子、組學和大數據、生物治療與干預,形成新的交叉學科生長點和下游技術。

另悉,目前,復旦大學上海醫學院生物醫學研究還在申請一個超算中心的建設項目,以該項目來支撐生物學大數據的研究,「復旦大學有包括中山醫院、華山醫院、仁濟醫院等17所附屬教學醫院,這其中有一些醫院也在做自身的臨床大數據中心,從研究所層面,希望能夠給他們提供一些人才培養和技術研究的有力支持。」劉雷表示。

Paynes所在的華盛頓大學醫學院信息研究所則是華盛頓大學所有大數據計劃的中心, 「我們擁有世界上最好的基因組研究所和最具生產力和影響力的基礎科學研究企業」,在醫學信息技術方面的能力非常強,但在大數據的整合方面還有待加強。」而這也成了Paynes擔任華盛頓大學醫學院信息研究所第一屆所長之後重點開展的工作。

自Paynes上任後,首先將研究所與旗下15所附屬教學醫院進行了打通聯動,從臨床大數據的收集到整合再到挖掘,最後到應用,鋪設了一條全鏈式的臨床大數據之路。

在Paynes看來:研究所下屬的15所教學醫院簡直就是大數據來源的寶藏,這15家在全美醫療機構中排名比較靠前的醫院每天產生大量的臨床數據,依託這些已有的臨床數據的回顧性研究,是分析研究疾病最基本、最重要的研究方法之一,通過將這些海量的臨床數據進行統計分析,分析的結果又將反過來為醫生臨床診療全過程提供疾病共享的發病及治療總體情況信息,幫助醫生科學決策,實現精準醫療。

「我們的夢想是不僅僅是利用臨床大數據幫助患者,而是希望這些臨床大數能滲透到他們的生活和工作,甚至休閑 娛樂 ,通過大數據的分析能夠把他們患病的概率降到最低,讓人們能一直保持 健康 的狀態。」 Paynes對醫谷展望道。

未來發展構想

在劉雷、Paynes和其團隊所做的大量臨床數據整合的工作中,由於各自旗下擁有多所強大的教學醫院,數據的來源已不是問題,然而,擺在他們面前更為現實的問題有兩個,一是要解決多模態臨床大數據的選擇問題。臨床大數據來源多樣,是一種多模態數據,其包括有結構化很好的數據,比如化驗單、處方;還有一些半結構化的數據,比如住院小結、出院小結;還有完全無結構化的數據,比如醫療影像;還有像基因測序這樣的組學數據;以及時間序列數據,比如ICU里會看到患者插著各種各樣的儀器測量血壓心率脈搏等各種流數據。

怎樣從這些不同模態的數據裡面選出需要的數據,劉雷表示他們,他們需要的更多的是結構化很好的臨床數據,為了得到這部分數據,會通過一定的技術平台會對數據進行一定的清洗,從中選取高質量的有效數據。

這個問題解決後,還有一個臨床大數據一直以來繞不開的一個爭議--安全和隱私問題。

對此,劉雷表示,依託現有的技術,目前收集的臨床大數據基本都能做到「不出院」,這在一定程度程度上很好地保證了數據的安全性。Paynes也指出,美國對於醫療大數據有很嚴密的保護法規,患者的關鍵隱私數據,如姓名、住址、電話、身份證號等進入數據管理的時候必須要打馬賽克,同時對數據進行強加密,數據即使被泄露也是不可解密的,對所有的數據訪問(誰什麼時間能訪問什麼)都要有一套嚴格的訪問控制,通過這樣的方式來保證數據安全性。

當技術的問題已不再是問題, 這意味著臨床大數據和AI的結合會變得更為完美,因此,劉雷和Paynes更多希望監管層能在未來對基於大數據訓練的AI能進行更多關於有效性和安全性方面的評估,也就是審批准入要做到嚴,同時,還要加強公眾對醫療AI的認知,不管AI發展到多麼先進的程度,總歸存在一定的局限性,它永遠不可能替代醫生,只能是醫生的一種輔助診斷工具。

盡管還有一段路要走,但對於臨床大數據和AI的搭配,劉雷和Paynes都充滿信心,至少在他們現有開展工作的規劃里,「應用臨床信息學和數據分析研修班」能最終逐步發展為一個碩士人才培養項目,為臨床大數據和人工智慧培養更多專業人才。同時,基於兩個研究機構現階段開展的工作,有天能實現跨國界的匯聚統一,可以把所有的臨床大數據統一在同一個模型上,建立一個類似於聯盟數據一樣的聯合體,這對於數據的整合和應用就會變得游刃有餘。

【凡本網註明來源非大 健康 Pai的作品,均轉載自其它媒體,目的在於傳遞更多信息,並不代表本網贊同其觀點和對其真實性負責。】

㈦ 大數據技術應用在醫療行業的哪些方面

【導讀】大數據技術可以說目前已經應用到了各行各業中,對於各行各業都是有很大的幫助和促進作用的,在醫療行業,能夠促進醫學研究,幫助改善我們的生活質量,有效促進相關疾病的治療等等,那麼大數據技術應用在醫療行業的哪些方面呢?下面我們就來一起了解一下。

1、新型冠狀病毒大數據搜索報告

該數據有可能更好地預測各種情況和當前公共衛生問題引起的區域性暴發疫情的情況。反過來,醫療服務提供者能夠採取適當的預防措施,並分配必要的資源,以應對與健康有關的特定疾病的區域性升級

2、區域醫療保健監控

可以將數據用於預測醫學研究,從而有助於預防可能的疾病傳播。例如,通過跟蹤他們搜索的醫療問題來了解患者人群及其醫療保健需求以及跟蹤他們在醫療站點上提供的信息,這些都是促進預防保健和研究的方法。

3、打擊性傳播疾病

如果及時報告,則可以治療性傳播疾病(STD)和性傳播感染(STI)。但是,諸如缺乏性教育等問題通常會導致症狀不受控制。大數據可以利用本地經驗,並幫助科技公司和醫療保健提供商填補信息空白並傳播對性健康的認識。

4、機器人護士

如今,在醫學研究和發展中使用大數據至關重要。人工智慧和機器學習正在引領醫學數據的收集,新葯療法的發現以及患者預後的改善。通過實時分析公共衛生問題,大數據可以促進多個領域的醫學研究,改善患者護理並防止致命疾病的傳播。

5、改善醫療保健支持系統

醫療技術的主要進步之一是醫療保健機器人技術,預計到2021年其收入將增長到28億美元。醫療保健機器人技術包括外科機器人培訓,機器人護士,智能假肢和仿生學等專業,以及治療,葯丸,遠程呈現和後勤方面的幫助。使用大數據驅動的機器人技術有可能極大地改善醫療保健支持的質量,這已經通過少數著名的機器人護士(如Robot
Dinsow)看到,它可以監控患者並提醒他們用葯;Paro機器人可以提醒護理人員。

關於大數據技術在醫療行業應用,就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於大數據工程師相關內容,可以點擊本站的其他文章進行學習。

㈧ 大數據的產生與發展現狀研究

摘 要:大數據的產生給未來信息技術帶來新的機遇與挑戰。大數據對數據處理的有效性、實時性提出了更高要求,需要根據大數據的特點對當前數據處理技術實施變革,從而形成更有益於大數據採集、存儲、處理、管理、分析、共享的新興技術。本文從大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。

關鍵詞 :大數據 物聯網 信息處理 海量計算

一、大數據的產生與發展現狀

隨著物聯網、雲計算等信息技術的飛速發展,大數據技術(Big Data)也越發進入人們的視線。大數據是用傳統方法或工具很難處理或分析的數據信息。目前,人們對大數據的理解還不夠全面和深入,關於大數據的含義也沒有一個統一的定義。亞馬遜大數據科學家John Rauser認為:大數據是超過任何一台計算機處理能力的龐大數據量。Informatica 的中國區首席顧問但彬指出:大數據是海量數據與復雜類型的數據的結合。而維基網路則把大數據定義成諸多大而復雜的、難以用當前資料庫處理的數據集合。

大數據研究受到國內外學術界和工業界的廣泛關注,已成為當今信息時代全世界討論的熱點。2008年,Nature雜志就推出大數據專刊,計算社區聯盟也在同一年發表了報告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,報告闡述了解決大數據問題所需的關鍵技術以及所面臨的挑戰。美國奧x政府於2012年3月在白宮網站發布了《大數據研究和發展倡議》,提出了通過收集、處理海量、復雜的數據信息,從而提升能力,加快科學和工程領域的創新步伐,轉變學習教育模式,強化美國本土的安全」。2011年1月,微軟公司同惠普公司合作開發了一系列能夠提升生產力,同時提高決策速度的設備。此外,歐盟委員會也提出駕駁大數據浪潮的戰略思路,日本發布的《面向 2020 的 ICT綜合戰略》也提出需要構造大量豐富的數據基礎。

近年來,我國也積極開展對大數據的研究。2011年10月,工信部確認京滬深杭等 5 城市為「雲計算中心」試點城市。2012年6月,中國計算機學會青年計算機科技論壇也舉辦了「大數據時代,智謀未來」學術報告研討會。大數據及其科學研究方法涉及應用領域很廣,並將與國計民生密切相關的科學決策、金融工程以及知識經濟領域緊緊接合。

二、大數據的特點

目前,企業界和學術界都一致認為,大數據具有4個「V」特徵,即:容量(Volume)、種類(Variety)、速度(Velocity)和至關重要的`價值(Value)。

(1) 容量(Volume)巨大。海量的數據集從TB 級別提升到PB 級別。

(2) 種類(Variety)繁多。大數據數據源有多種,數據格式和種類不同於以前所規定的結構化數據范疇。

(3)價值(Value)密度低。如視頻的例子,在不間斷連續監控的過程中,可能有意義的數據僅有一兩秒。

(4)速度(Velocity)快。包含大量實時、在線數據處理分析的需求1秒鍾定律。

三、大數據應用的領域

大數據產業的發展將推動全球經濟由粗放型向集約型轉變,這將對提升企業整體競爭力和政府監管能力具有意義深遠的影響。

商業作為大數據的重要應用領域。沃爾瑪公司通過對消費者購物行為等一系列非結構化數據的分析,了解不同顧客的購物習慣,公司從所銷售的數據進行分析,從而選出適合在一起搭配出售的商品;淘寶也針對買家開設了大數據平台,為客戶量身打造了一整套完善的網購體驗產品。

大數據在金融業也起到了至關重要的作用。美國Equifax公司利用大數據技術,通過對其的資料庫中與財務有關的記錄海量信息進行索引處理和交叉分享,從而得到客戶的個人信用等級,以推斷出客戶的支付需求與能力。

隨著大數據在醫療與生命科學研究過程中的廣泛應用和不斷擴展。2010年,中國公布的《十二五規劃》指出:要重點建設國家級、省級和地市級三級醫療衛生信息平台,建設電子病歷和電子檔案兩個最為基礎的資料庫。各級醫院也將在醫療信息倉庫、數據中心等領域加大投入,醫療數據信息的存儲將愈加被關注,醫療信息中心的關注焦點也將由傳統的計算領域轉為存儲領域。

除此之外,大數據在製造業領域也有著廣闊的應用。製造業企業積累了廣泛的數據信息,在開展對業務數據進行技術管理的同時,企業需要通過大數據處理技術來幫助決策者從資料庫儲存的海量信息中找到有價值的信息,並且對其進行分析處理,從而增強決策的正確性、規避風險。

四、大數據所面臨的挑戰

大數據技術使人們能夠更好地利用之前不能使用的各個數據類型,找出被忽略的信息,促進企業組織更加高效、智能。但隨著對大數據研究的不斷深入,人們也更加意識到當大數據技術向人們敞開「方便之門」的同時,也帶來了眾多的挑戰:

(1)大數據需要更為專業化的管理技術人才。

(2) 大數據的合理利用需要解決容量大、類別多和時效性高的數據處理問題。

(3)大數據的利用對信息安全提出了更高要求。

(4)大數據的集成與管理問題。

這些挑戰已成為關繫到未來大數據發展的重要因素,同時也成為未來引領大數據發展的推動力。

五、結束語

大數據已經逐步滲透到人們工作生活的諸多領域中,對於大數據的研究也在不斷的深化。本文針對大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。大數據的發展還處於初級階段,還有更為廣闊的空間需要人們不斷開拓,如何合理地利用大數據、更加高效地處理大數據來為人們服務仍需要廣大研究者不斷地研究和探索。

參考文獻:

[1]劉智慧,張泉靈.大數據技術研究綜述[J].浙江大學學報,2014,46(6):957- 972.

[2]嚴霄鳳,張德馨.大數據研究[J].計算機技術與發展,2013,23(4):168-172.

[3]劉俊.基於大數據流的Multi-Agent系統模型研究[J].計算機技術與發展, 2007,17(5):166-169.

㈨ 中南大學大數據研究院好考嗎

不好考,中南大學大數據研究院成立於2015年3月,是中南大學從國家重大戰略需要出發,主動應對大數據時代要求的重要戰略部署。研究院依託中南大學信息化前沿學科群,以大數據應用為牽引,搭建多學科交叉融合的大數據前沿科學研究平台,以醫學大數據、教育大數據為先行示範,積極探索與軌道交通、材料冶金、智能製造等特色學科領域交叉融合的中南大學大數據科學研究路徑。

研究院以「匯集高端人才、聚焦科學前沿、產出重大成果、鑄就中南名片」為宗旨,集中攻關大數據領域前沿科學問題,形成具有中南大學特色的大數據研究成果。研究院以平台系統為支撐,創新協同合作機制,深度實施各學科團隊之間、學校與產業界之間,跨學科、跨領域的交叉融合,積極推進政產學研用的無縫銜接。

研究院現擁有醫療大數據應用技術國家工程研究中心、醫療大數據分析理論與應用學科創新引智基地、醫學大數據省部共建協同創新中心、湖南省高等學校醫學大數據2011協同創新中心、網路資源管理與可信評估湖南省重點實驗室、生物信息學湖南省重點實驗室、機器視覺與智慧醫療湖南省工程技術研究中心、湖南省智能課堂與教育大數據研究發展中心、湖南省教育信息化研究基地等眾多科研創新平台,以大數據資源管理、大數據安全可信、大數據智能應用、軟體定義智能等為重點研究方向,基於區塊鏈技術和眾創模式,面向各學科各領域,建立交叉融合的、去中心化的、安全可信的大數據新生態。

研究院按照學校「四個轉型」的戰略要求,以培養具有大數據思維、創新能力強、具有國際視野的高水平復合型人才為目標,力爭建設成為國內一流、國際知名的大數據研究機構,將中南大學的大數據研究、開發和利用工作,做出特色做出水平。

㈩ 醫療大數據的分析和挖掘發展現狀如何未來會有什麼樣的應用前景

如今是大數據時代,前景自然好了,據前瞻產業研究院《2016-2021年中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯示,總的來說,醫療大數據應用主要體現在臨床操作、研發、新的商業模式、付款/定價、公眾健康五大領域,在這些場景中,大數據的分析和應用都將發揮巨大的作用。
醫療大數據的應用對於臨床醫學研究、科學管理和醫療服務模式轉型發展都具有重要意義,而大數據技術的運用前景是十分光明的。
醫院和醫療行業面臨的大數據主要有醫學影像、視頻(教學、監控)及文獻等非結構化數據。由於這些數據增長很快且結構復雜,給數據管理和利用帶來較大的壓力,存儲與管理成本不斷提高,數據利用困難、利用率低。除了數據數量和形態的迅速增加,醫療數據還需要越來越長的保留期。一旦存儲系統的安全性出現問題,導致醫療數據丟失,醫院會面臨嚴重不良局面。醫療大數據的應用要保證數據的全面性、准確性、實時性和使用的便捷性,要能快速運算和快速展現,要與日常工作平台緊密結合。
國人已經把健康大數據上升為國家戰略,而面對「大數據」的挑戰,醫院必須考慮三大主要問題。
(1) 數據存儲是否安全可靠?因為系統一旦出現故障,首先考驗的就是數據的存儲、災備和恢復能力。如果數據不能迅速恢復,而且恢復不能到斷點,則將對醫院的業務、患者滿意度構成直接損害。
(2) 如何提高醫院運行和服務的效率?提高效率就是節省醫生的時間,從而緩解醫療資源的緊張狀況,在一定程度上可以幫助解決「看病難」的問題。
(3) 如何控制大數據的成本?存儲架構是否合理,不僅影響醫院IT系統的成本,而且關乎醫院的運營成本,醫療數據激增,使醫院普遍存在著較大的存儲擴容壓力。如今,醫院的存儲設備大多是由不同廠商構成的完全異構的存儲系統。這些不同的存儲設備利用各自不同的軟體工具來進行控制和管理,這樣就增加了整個系統的復雜性,使管理成本非常高。
未來,大數據必將影響醫療行業,未來醫療行業的大數據將會具體應用在:臨床輔助決策,醫療質量監管,疾病預測模型,臨床實驗分析。其發展空間有:個人健康門戶,慢病管理和健康管理,電子病歷和臨床質量監控,醫學知識管理,臨床路徑和循證醫學,遠程醫療和移動醫療,醫學研究數據倉庫和共享平台,跨醫療機構協作平台。

閱讀全文

與醫療大數據科學研究相關的資料

熱點內容
靜態網站模板大氣 瀏覽:504
無線網密碼怎麼改fast 瀏覽:211
程序原始數據採集的方法有哪些 瀏覽:42
max發光材質教程 瀏覽:675
蘭州linux培訓 瀏覽:818
手機qq怎樣查看帳號和密碼 瀏覽:142
word2010無法保存文件 瀏覽:743
ppt里怎樣添加視頻文件在哪裡 瀏覽:405
如何把隱藏在電腦中的文件找出來 瀏覽:574
ios照片分類app 瀏覽:65
excel如何調用exe文件 瀏覽:8
蘋果按下主屏幕以升級 瀏覽:461
win10塵埃3雙擊沒反應 瀏覽:160
如何一個人開發app 瀏覽:864
資料庫中實體的完整性如何保持 瀏覽:831
哪個二手車網站便宜啊 瀏覽:489
濟南地鐵app買了票怎麼退 瀏覽:424
食用油行情看哪個app 瀏覽:776
怎麼移動迅雷下載到一半的文件 瀏覽:803
哪些紅頭文件的抬頭下面是雙紅線 瀏覽:638

友情鏈接