導航:首頁 > 網路數據 > 讓大數據為

讓大數據為

發布時間:2023-02-19 21:36:37

① 將大數據轉化為大價值的10種途徑

將大數據轉化為大價值的10種途徑
大數據可以產生很多價值,但前提是只有當您企業真正知道如何充分利用這些大數據的時候。
當前,大數據顯然已經登上了歷史舞台——在全球范圍內,擁有超過半數的企業組織都已經將大數據項目視為其未來發展的機遇,並計劃在未來幾年內進一步的增加對大數據項目的投資。
但是,大數據的價值並不僅僅只是來自對於相關數據信息的收集而已,這僅僅只是起點。大數據的真正價值來自於您所在的企業組織利用所存儲的信息以發現新的洞察分析見解的能力,然後從中提取出有用的價值,以推動企業做出更好的業務決策,促進企業業務的發展。
現如今,現代化的商務智能解決方案可以通過用戶友好的解決方案來降低企業進入的大數據項目的壁壘,並進一步的提升大數據的價值。這允許企業組織內的更多的相關人員(不僅僅只有數據科學家)能夠就您企業所收集的數據進行訪問、分析和協作。
您企業的團隊如何獲取大數據的驅動價值?
大數據能夠為您的公司提供更為詳細的洞察分析,來洞察企業的各個方面的關鍵要素,以推動更好、更自信、且數據驅動的商業決策。
其培養一種積極開拓探索的企業文化,鼓勵企業員工們通過數據分析來試驗和驗證他們的想法。
通過讓每名相關的工作人員都能訪問到這些大數據信息,推動您企業業務的下一此大的創意性變革的理念可以來自企業的任何一名員工——而不僅僅只是數據科學家。
究竟什麼是大數據?
大數據是數據量相當龐大或結構相當復雜,以至於一般性的企業組織機構難以使用標準的資料庫和軟體工具對其進行管理。但由於每家公司都有不同的能力和要求,故而「大數據」其實可以說是一個相對較為主觀性的術語——對某一家企業組織來說的「大」數據,對另一家企業組織而言可能僅僅只是「平均」性的數據。
想要從您企業的大數據投資項目中獲得更多價值嗎?
如下,我們將為您介紹10種有助於您所在的企業更好的從大數據分析項目中獲取價值的方法:
選擇正確的訪問大數據的方法。
獲得更好的洞察分析的能力與企業所收集到的數據信息有關。
讓整個企業組織都能夠訪問到大數據。
讓相關用戶能夠很容易的找到他們所需要的數據信息。
推動企業內各部門間的協同合作,以推動創新。
打造一個靈活敏捷的分析環境,以便滿足每位用戶的需求。
確保企業所採用的分析解決方案能夠方便的讓相關員工在任何地方採用任何設備均能夠輕松訪問。
部署可擴展的解決方案,確保其能夠隨著企業組織的業務需求的不斷變化而變化。
確保您企業的商務智能解決方案可以很容易地適應未來的技術。
選擇具有廣泛合作夥伴生態系統的BI解決方案。
一、選擇正確的訪問大數據的方法
當涉及到如何訪問和分析所有的數據信息時,沒有一套一成不變的方法——畢竟,每家不同的企業組織都會有著不同的需求、不同的用例和不同的基礎設施配置。
您企業所選擇的方法或方法的組合將取決於所需要滿足的特定用戶的實際需求,並權衡您所願意接受的各種折衷。
當企業組織在選擇大數據的訪問方法時,所需要考慮的相關問題:
您企業需要支持多少數據?數以百萬計的?抑或是數十億的?
相關非技術用戶是否需要訪問您企業的數據,或者僅僅只有IT和數據專家們訪問這些數據呢?您企業將只在整個數據集上運行數據分析嗎?或者您企業還希望能夠分析可選擇的相關數據呢?
您企業是否需要為終端用戶提供流暢、高交互性的體驗?靈活性或用戶性能對您企業的業務來說是最為重要的嗎?
二、企業獲取洞察分析的能力更多的關乎到企業對相關數據是如何收集的
以前,您企業的大數據項目所面臨的最大的挑戰可能是從廣泛的數據源中識別和收集您企業業務真正所需要的數據信息。
而到了今天,這部分比以往更容易。現在,真正重要的是您企業是否可以收集並整合所有這些數據信息——無論這些大數據具體是來自何處也不管其格式究竟如何,並最終發現所有相關數據信息中的所有可能的聯系。
為了獲得對於大數據的更為全面的掌握,企業組織亟待採用具有關聯模型的BI解決方案,以便您企業可以瀏覽所有數據中的所有關聯。這樣,您企業的用戶將始終可以訪問您企業業務的完整視圖,以便他們可以做出更好、更明智的決策。
與傳統的數據模型不同(傳統的數據模型會限制您所能夠看到的數據,這些數據如何連接以及您所能夠執行的查詢),關聯模型則可以識別您企業的所有數據之間的所有關系。這使得每位用戶 ——不僅僅是數據科學家——均可以快速輕松地探索他們所需要的合適的數據,並使用互動式的選擇和關鍵字搜索來發現意想不到的關鍵和洞察見解。
三、讓整個企業組織均可以訪問大數據
當大數據這一理念剛剛興起的時候,僅僅只有極少數的人意識到其所蘊含的巨大潛力——這些人主要是數據科學家和分析師。非專業人士根本不具備以有意義的方式探索和使用數據所需的知識、工具或經驗。
而今,這種狀況已經一去不復返了。現在,您企業必須將大數據置於業務部門的用戶手中。畢竟,只有那些與您企業的業務最接近的員工們才真正的知道要提出哪些有價值的問題;以及由數據所驅動的哪些分析見解將對企業的業務產生最大的影響。
正確的自助式商務智能解決方案可以在這方面為企業客戶提供有力的幫助,其能夠讓業務部門的用戶順利訪問到他們所需的數據,同時讓數據治理和管理的許可權掌握在您企業的IT團隊手中。藉助自助式服務商務智能解決方案,業務部門的用戶可以使用互動式的可視化儀錶板來自由的探索數據,並在不依賴IT部門的情況下找到問題的答案,改進業務流程,並推動整個企業組織內的創新。
推動企業朝著自助式分析方向轉變的因素:
在最近的一份報告中,Forbes Insights調查了449位資深的IT和商業專業人士,了解了他們為什麼決定轉向採用自助服務模式:
62%的受訪者希望對於數據獲得更多的開放式訪問。
76%的受訪者希望獲得更為及時的數據分析。
71%的受訪者希望獲得質量更高的數據和分析。
四、讓用戶可以輕松找到其所需的大數據信息
越來越多的企業業務管理者希望通過確鑿的證據來支持他們的業務決策過程。但不幸的是,這些用戶往往缺乏經驗,因為他們需要在一個龐大的,不斷增長的數據存儲庫中找到他們所需要的答案。
為了幫助業務部門的用戶們找到這些答案,並從大數據中獲得更多的投資回報,您企業需要讓他們難過輕松的探索大數據。
您企業可以通過提供BI解決方案來實現這一點:
允許業務部門的用戶直觀地訪問到所需的數據,而不需要依靠IT來運行查詢和生成報告。
並提供自然語言搜索功能,便於查找他們所需的信息。
發現不同來源的數據之間的連接和關系——甚至是以意外的方式發現不相關的數據。
用清晰簡潔的方式實現數據的可視化和形象化。
何為自然語言搜索,其如何為企業提供幫助?
藉助自然語言搜索,用戶可以使用常規口語進行查詢。這對於缺乏數據專業知識,並且可能並不知道在資料庫中如何查找精確信息所需的技術術語的用戶極其有用。包含此功能的BI解決方案使更多的用戶(而不僅僅是數據科學家)能夠從企業的大數據中獲得洞察分析能力。
五、促進企業部門間的協作,以推動創新
一項偉大的發現如果不能共享,又有什麼益處呢?如果您企業內部的相關人員不能與更廣泛的同事們分享他們的見解,那麼您企業無疑錯過了最佳的推動部門間合作的機會,也不利於這些好的最初的想法理念進一步的擴展,並使其更好。更糟糕的是,如果其他的同事沒有聽說過您的發現,他們最終可能會重復類似的數據探索,進而導致企業生產力的下降。
但僅僅分享數據是不夠的,您企業必須以正確的方式分享數據。
考慮採用一款「企業就緒」的商業智能解決方案——其既能夠提供自助分析的自由度(允許每位用戶在他們認為合適的時候探索和共享數據),同時還能夠為企業提供全面的治理能力(控制誰有許可權訪問哪些數據信息,所以每位員工都能夠基於單一的事實來源開展工作)。
通過在自助服務和大數據管理之間取得平衡,您企業可以充分利用整個企業組織的集體智慧,結合多個團隊和個人的專業知識來傳播新的想法和理念,促進討論,並推動創新。
確保企業的BI解決方案得到妥善管理:
有效的數據治理可確保在整個企業組織內正確控制和管理對分析功能和對於大數據的訪問。
如果缺乏適當的大數據治理水平,就會出現錯誤、變化和冗餘,進而導致用戶難以驗證數據中的真實情況,從而導致延遲和中斷。
正確的大數據治理可以幫助您企業避免發生上述的不一致,並確保每位員工都能夠從相同的可信數據中獲得他們所需的洞察分析。
六、打造靈活敏捷的分析環境,以切實滿足每位用戶的需求
保持與大數據所提供的大量新信息的同步是一個不小的挑戰。大數據的猛烈沖擊可能會使商業用戶難以真正深入的挖掘,探索並及時獲得他們所需的答案。
為了保持活力,您企業應該考慮創建靈活敏捷分析環境,您的IT團隊可以快速並逐步構建BI解決方案,以應對業務用戶不斷變化的需求。
例如,隨著用戶對數據更加熟悉,您企業可能需要從指導分析發展到自助服務BI。
這使他們能夠自行探索更多的大數據,並更快速地深入細節。使用靈活的框架,您企業可以輕松的滿足這些用戶的需求,而無需花費大量成本或開發時間。
七、確保用戶能夠在任何設備上隨時隨地訪問分析解決方案
隨著手機、平板電腦和筆記本電腦的計算能力的不斷增強,企業員工們越來越多地在辦公室之外進行業務的處理。
無論是在火車上,在機場候機廳還是在客戶會議上,現在的企業業務團隊都希望能夠在任何業務需要的時候訪問他們的工作資料。
為了滿足這些需求,您企業需要能夠以各種形式向客戶和用戶提供分析解決方案——確保他們無論何時何地,對於所需全部功能都能夠得到滿足的期望。
除了通過基於雲服務或在線門戶提供對分析解決方案的直接訪問之外,確保用戶能夠在任何地方均能夠實現順利訪問的另一種方式是在企業的嵌入式分析應用程序中使用開放式API。通過在用戶的日常工作環境中提供強大的分析功能,您可以確保每位業務用戶都可以在他們需要時隨時訪問所需的信息。
自助服務商業智能為大眾帶來了分析的力量,但對於一些用戶來說,獲得額外的應用程序則可能是一大真正的挑戰。 這就是為什麼有些產品和組織直接將分析嵌入到用戶每天所使用的熟悉的環境或應用程序中的原因所在了。
八、部署實施可隨企業業務需求不斷變化的可擴展的解決方案
通常情況下,企業所收集的大數據的量只會越來越大。但無論數據存儲庫怎麼擴展,您的用戶都希望獲得順暢的訪問體驗,而不必等待很長時間或經歷中斷。隨著數據集的不斷增長,大多數工具都難以跟上這一需求。
為了確保用戶能夠以他們想要的方式繼續探索數據,請採用可隨需擴展的BI平台,即使數據量增加並且應用程序變得更加復雜,也可以提供出色的性能。該平台應該採用多種工具和方法,以便您企業可以保持為最終用戶提供互動式的動態體驗,而不管您企業產生了多少數據。
此外,尋找一款使用內存處理執行即時計算的商業智能解決方案。
這些解決方案可以以「思考速度」處理和回答問題,使用戶可以不斷的保持繼續的挖掘和探索。這反過來可以在整個企業組織內推動勇於開拓創新和探索的企業文化。
何為內存中的處理,其能夠為企業組織帶來什麼樣幫助:
內存資料庫 (in-memory database) 是一種數據處理技術,其在隨機存取存儲器(RAM)中暫時存儲和計算信息,而無需在每次用戶進行新的選擇或計算時都從磁碟存儲中提取數據。數據可以在RAM中更快速地讀取和分析,從而使得較之採用更傳統的方法,報告(和決策制定)更快。
九、確保您企業的BI解決方案可以輕松適應未來的技術
管理和探索大數據的技術正在迅速改變,以便為當下的企業客戶提供更好,更快的解決方案,進而從大數據中獲取洞察分析。但是將最新技術整合到現有的分析平台中可能具有挑戰性,有時甚至是不可能的。故而企業應該確保您所採用的分析解決方案能夠快速,輕松地與新技術實現集成。
例如,開放的API可以為您企業的現有解決方案帶來新的功能,就像添加幾行代碼一樣簡單。擁有專注於定製開發的在線社區也很重要。由此,開發人員們可以通過與其他人員輕松協作來確保您的產品或解決方案能夠與最新的技術進步保持同步。
什麼是開放式API?
一款開放的API是一個公開的介面,開發人員可以使用它將第三方解決方案集成到他們自己的解決方案中。實質上,開放式API能夠控制兩款不同的應用程序如何輕松地進行通信,並相互交互。提供開放式API的BI解決方案使企業能夠輕松插入多種解決方案,執行獨立解決方案所無法實現的特定功能。
十、選擇具有廣泛合作夥伴生態系統的商務智能解決方案
當涉及到大數據項目時,有時候企業需要一點額外的幫助才能看到整體的狀況。在選擇商業智能解決方案時,企業務必需要尋找能夠與大量多種技術維持合作關系的供應商。
這將有助於簡化數據交互,確保您企業的所有BI解決方案能夠高效地工作。此外,擁有足夠的合作夥伴可以隨時為您企業的業務需求提供最合適的解決方案——無論現在還是未來。
您企業應選擇哪些類型的技術合作夥伴?
數據存儲和管理解決方案提供商可存儲和查詢您企業的數據,並提供運行分析解決方案所需的基礎架構。
數據整理(Data wrangling)解決方案提供商將原始數據精煉,並重塑為可用數據集。
機器學習解決方案提供商通過使用從數據迭代學習的演算法來自動化分析模型構建。
大數據,大潛力
大數據有可能改變您企業的業務,但為了能夠真正從貴公司的大數據項目中獲得真正的價值,您企業需要知道如何充分利用大數據。
恰當的商業智能解決方案可以幫助您企業最大化您的大數據投資回報,其方法是:
提供完整的業務視圖和影響企業業務的外部因素。
在您的業務的每個領域推動更好的以數據為導向的決策。
讓更多的業務用戶能夠隨時隨地訪問和探索大數據。
在整個企業組織中培養協作、積極開拓探索和創新的企業文化。
隨著業務的增長而實現規模化的擴展,以滿足未來的需求。

② 如何讓「大數據」有價值

如何讓「大數據」有價值

大數據並不僅僅是「大」,但它首先得「Bigger」,擁有足夠量級的數據才能被稱作大數據,所以你看到僅僅分析幾百人的數據就說自己是大數據的公司基本上都是騙子。另外,足夠的數據,不能進行價值轉化也沒用。
吃飯、睡覺、旅行、走路、購物,所有純物理性的行為都成為可被記錄數據的組成部分,這些看似與我們的生活、工作、賺錢等無關的行為,正成為新時期的價值瑰寶,谷歌、亞馬遜、Facebook、網路、阿里巴巴等均陷在其中而不能自拔。
近期,騰訊、搜房、浪潮集團、易觀等紛紛與統計局簽署了大數據戰略合作框架協議,再加上去年簽署的11家公司,越來越多的互聯網公司、傳統企業數據正被納入新構建的大數據「基地」當中。
不少人對大數據的概念有很大誤解,甚至有不少公司搭上「大數據」的概念來玩資本運作。大數據並不僅僅是「大」,但它首先得「Bigger」,擁有足夠量級的數據才能被稱作大數據,所以你看到僅僅分析幾百人的數據就說自己是大數據的公司基本上都是騙子。我不認為當前有多少公司量級的數據能夠是「Bigger」的。對於用戶級市場,至少該產品的用戶量達到億級,達到該產業用戶量的前幾名;對於企業級市場,也至少得擁有足夠量級的企業用戶,才算得上擁有大數據的基礎,再加上用戶使用各個產品的習慣大不相同,所以當前的大數據絕對是缺憾的,抽樣數據並不準確不是么?多談無益,故本文純從數據來分析。
數據的記錄
數字產品的出現,迅速讓用戶的個人信息能夠被記錄,電腦、智能手機、可穿戴設備、智能硬體、未來的智能電視等正成為數據記錄的新工具,其中較為熱門的是圍繞醫療需求來建立相關的數據記錄,睡眠、血壓、體重等產品較多,雖然這些產品的用戶量並不「多」,但是硬體廠商們依然樂此不彼的做著這一切。
要想讓數據能夠真正的發揮作用,首先這些數據肯定得被記錄,必須有了記錄才會有相關的模型分析,否則都是紙上談兵。比如用戶的睡眠時間、用戶的出行時間、用戶每天所攝入食物的卡路里、用戶吃飯的消費金額等等,所有出現的物理性數據,只有被記錄了這些數據才會有價值,沒有記錄,這些都是「廢物」,沒人會重視這些物理性動作的價值。
數據如何才能被記錄?(作者微信公眾號:郭靜的互聯網圈)首先得有工具,拿醫療為例,我們在醫院看病,醫生會使用相關儀器記錄用戶的心跳周期;我們去餐廳吃飯,餐廳會記錄每桌顧客的消費記錄以及用戶最愛點的菜品;我們在網上使用搜索引擎,搜索引擎會記錄用戶的搜索習慣。醫療器械、ERP系統、電腦等成為了數據記錄的工具。
數據被記錄是用戶被動選擇的結果,如果用戶不去醫院檢查,那麼數據就不會被記錄,用戶去了B餐廳而不是A餐廳消費,A餐廳也無法獲取到用戶的喜愛。所以,可穿戴設備、智能硬體等都試圖讓用戶能夠主動將自身的數據被記錄,應該說這也是UGC模式的一種,用戶自願將自身的數據提供到平台上去,供平台進行分析。
被動和主動的區別是非常大的,被動就意味著有用戶的數據會流失掉,當流失掉的這部分用戶足夠多以後,新的數據模型就無法完成。記錄是數據的基礎,接下來就是連接。
數據和用戶的連接
用戶不可能一直在某個餐廳消費,也不可能一直在某一個地方睡眠,至於可穿戴設備,用戶也很難做到每天都按時去佩戴,讓自身的數據可以記錄。單個用戶某一行為被不同商家記錄,而這些商家記錄的數據是分離的、獨立的,無法形成連貫性,當這些被記錄的數據到了一定時間滯後,肯定是面臨被丟棄的命運。讓數據能夠同平台的相互連接,要比單個「獨霸」有用的多。
另一方面,就是數據和用戶的連接,如何讓用戶的數據能夠被主動貢獻出來,並通過互聯網、移動互聯網相互連接,形成數字存儲而不是紙質記錄,這是當前圍繞數據進行創業者的思考。
跨界連接是最困難的,就像拼圖一樣,如何通過混亂的形體組合,形成有效的畫面。比如餐飲和超市購物、搜索和社交、電商和社交等,這些數據得形成有效的連接,單一的從搜索行為就分析出用戶的購物行為或者其他行為是有失偏頗的,搜索的需求太單一,並不能是用戶整個的行為特徵,只有綜合用戶搜索、購物、社交等多個使用行為,才能有效的分析出用戶的某個行為特徵。
有效的價值轉化
從記錄→連接→價值轉化,這肯定是一個漫長的過程,要知道先祖們用了數千年的時間也僅將少量的數據形成轉化並遺傳下來。互聯網、移動互聯網在國內的發展還不足20年,而數據從被重視到被記錄到被連接,就更是一個漫長的過程,目前市場上的智能手環、智能手錶、無線路由器、盒子等產品雖然都不盡人意,但是其無一不在讓數據變的有效的道路上奮斗著。
將用戶的搜索數據記錄並有效價值轉化最早的案例是谷歌當年預測流感病毒,當然,已有不少互聯網公司都有將用戶數據記錄、連接並實現有效的價值轉化。互聯網公司離數字存儲最近,占據著有利條件,能夠更敏銳也是正常。
不過,僅僅有互聯網的數據是不完全的,用戶在線下的數據,用戶在生活中的數據,在更多不使用互聯網的情況是使用的數據,我把它稱之為物理數據,這部分數據是現實生活當中的數據,其價值要高於互聯網路上的數據的,互聯網公司們正在吸收著這些數據。
數據的有效轉化,可以體現在幾個方面,一是預防,針對企業級的。應該說每個行業都有泡沫的存在,就算沒有泡沫,也會有倒閉的風險,通過對相關數據的分析,可以對未知的風險起到一定的預防措施,即使不能避免,至少能更大程度上的減少損失,並能夠助力公司挺過這場風暴。
一是隱性價值,針對用戶級的。比如時間成本,通過地圖工具和當地公交系統對接,讓用戶實時了解公交車的到站時間,節約用戶等待公交車的時間,海量用戶的時間成本加起來,肯定是一筆不菲的價值。再比如健康預防,越來越多的慢性病開始向用戶滲透,通過對相關數據記錄、連接,讓用戶能夠盡早預防慢性病的發生,比如肥胖的問題(健康產品的前提是有高質量的醫療體系在背後支撐)。讓所有可能有價值的數據都被記錄、連接,再將這些數據分析之後,實現有效的價值轉化,互聯網公司、傳統企業、統計機構、用戶,所有人都是這場風暴的參與者。我們應該給予正在為這場大風暴做貢獻的企業和創業團隊,可能有人被「掉隊」,也有人可能在這場風暴中崛起。

以上是小編為大家分享的關於如何讓「大數據」有價值的相關內容,更多信息可以關注環球青藤分享更多干貨

③ 讓大數據介入新農業

讓大數據介入新農業

為充分發揮大數據在農業農村發展中的重要功能和巨大潛力,有力支撐和服務農業現代化,按照國務院《促進大數據發展行動綱要》精神,農業部近日印發了《關於推進農業農村大數據發展的實施意見》,全面部署農業農村大數據發展工作。
《意見》強調,要按照「著眼長遠、突出重點、加快建設、整合共享」要求,堅持問題和需求導向,堅持創新驅動,加快數據整合共享和有序開放,充分發揮大數據的預測功能,深化大數據在農業生產、經營、管理和服務等方面的創新應用,為政府部門管理決策和各類市場主體生產經營活動提供更加完善的數據服務,為實現農業現代化取得明顯進展的目標提供有力支撐。
我國農業農村數據歷史長、數量大、類型多,隨著信息化和農業現代化同步推進,農業農村大數據與農業產業全面深度融合,正成為現代農業新型資源要素。與此同時,農業農村數據長期存在底數不清、核心數據缺失、數據質量不高、共享開放不足、開發利用不夠等問題,亟待解決。《意見》指出,要堅持「問題導向、應用驅動,創新機制、整合資源,先易後難、逐步推進,上下聯動、社會眾籌」原則,立足我國國情和現實需要,利用5-10年時間,努力實現農業數據的有序共享開放,初步完成農業數據化改造。
《意見》明確了農業農村大數據發展和應用的五大基礎性工作和十一個重點領域,即夯實國家農業數據中心建設、推進數據共享開放、發揮各類數據的功能、完善農業數據標准體系、加強數據安全管理等五大基礎;突出支撐農業生產智能化、實施農業資源環境精準監測、開展農業自然災害預測預報、強化動物疫病和植物病蟲害監測預警、實現農產品質量安全全程追溯、實現農作物種業全產業鏈信息查詢可追溯、強化農產品產銷信息監測預警數據支持、服務農業經營體制機制創新、推進農業科技創新數據資源共享、滿足農戶生產經營的個性化需求、促進農業管理高效透明等11個重點領域。
為確保農業農村大數據發展扎實推進、取得實效,《意見》對實施進度作出安排,同時要求各級農業部門切實落實責任、推進完善基礎設施、創新投入和發展機制、提升科技支撐能力、健全規章制度,形成覆蓋全面、業務協同、上下互通、眾籌共享的農業農村大數據發展格局。

④ 讓大數據分析更有效的5種技術措施有哪些

(1)優化數據收集

數據收集是最終導致業務決策的事件鏈中的第一步,確保收集的數據和業務感興趣的指標的相關性非常重要。


定義對企業有影響的數據類型,以及分析如何增加價值。基本上,考慮客戶行為,以及這將對企業的業務有何適用性,然後使用此數據進行分析。


存儲和管理數據是數據分析中的重要一步。因此,必須保持數據質量和分析效率。


(2)清除垃圾數據


垃圾數據是大數據分析的禍患。這包括不準確,冗餘或不完整的客戶信息,可能會對演算法造成嚴重破壞,並導致分析結果不佳。根據垃圾數據做出的決策可能會帶來麻煩。


清潔數據至關重要,涉及丟棄不相關的數據,只保留高品質的數據,當前,為了獲得完整和相關的數據,人工干預不是理想的模式,不可持續並且受主觀影響,因此資料庫本身需要被清理。這種類型的數據以各種方式滲透到系統中,其中包括隨時間推移而變化,如更改客戶信息或數據倉庫中存儲可能會損壞數據集。垃圾數據可能會對營銷和潛在客戶生產等行業產生明顯的影響,但通過基於故障信息的業務決策,財務和客戶關系也會受到不利影響。其後果也是廣泛的,包括挪用資源,浪費時間和精力。


解決垃圾數據難題的方法是確保數據進入系統得到干凈的控制。具體來說,重復免費,完整和准確的信息。如今,那些具有專門從事反調試技術和清理數據的應用程序和企業,可以對任何對大數據分析感興趣的公司進行調查。數據清潔是市場營銷人員的首要任務,因為數據質量差的連鎖效應可能會大大提高企業成本。


為了獲得最大的數據量,企業必須花時間確保質量足以准確地查看業務決策和營銷策略。


(3)標准化數據集


在大多數商業情況下,數據來自各種來源和各種格式。這些不一致可能轉化為錯誤的分析結果,這將會大大扭曲統計推斷結果。為了避免這種可能性,必須決定數據的標准化框架或格式,並嚴格遵守。


(4)數據整合


大多數企業如今組成不同的自治部門,因此許多企業都有隔離的數據存儲庫或數據“孤島”。這是具有挑戰性的,因為來自一個部門的客戶信息的更改將不會轉移到另一個部門,因此他們將根據不準確的源數據進行決策。


為了解決這個問題,採用中央數據管理平台是必要的,整合所有部門,從而確保數據分析的准確性更高,所有部門的任何變化都可以立即訪問。


(5)數據隔離


即使數據干凈,將其組織和集成在一起,也可能是分析問題。在這種情況下,將數據分成幾組是有幫助的,同時牢記分析正在嘗試實現什麼。這樣,可以分析子群體內的趨勢,這些趨勢可能更有意義並具有更大的價值。當查看可能與整個數據集可能無關的高度具體的趨勢和行為時尤其如此。


數據質量對大數據分析至關重要。許多公司試圖採用分析軟體,但卻沒有考慮到進入系統做什麼。這將導致不準確的推斷和解釋,可能代價昂貴,並且對企業造成損害。一個定義明確,管理良好的資料庫管理平台是使用大數據分析的企業不可或缺的工具。

⑤ 如何讓大數據落地轉化時空大數據專家們精彩分享

「如何讓新新大數據勢力落地,將成果轉化成項目,實現就地轉化?」

在日前舉行的「時空大數據2021年度大會」分論壇——時空大數據產業生態協同創新論壇上,河南大學人文與建築時空大數據融合研究中心執行主任王振凱提出了這一疑問,現場的專家們圍繞這一主題進行了深入探討與交流。

全球人文與時空大數據
讓建築工程可視化

王振凱介紹,通過時空大數據平台,衍生出時空大數據集合系統。該系統集合了建築信息、地球信息、交網信息、電網信息、水網信息、市政信息、人文信息等集合系統,最終得出全球人文、建築與地理環境時空數據基礎。

簡單來說,工程可以通過時空大數據來具象化,大到建築物本身,小到建築物內一根鋼管,都能清晰可見,甚至可以見到建築物內鋼管內部。精確的時空大數據讓工程成本管控、進度管控都有跡可循。

TOD與城市時空大數據融合
建軌道就是建設城市

軌道交通帶給人民快捷速度的同時,新的擁堵問題又出現了。地鐵「建的起,養不起」的問題如何破局?如何讓交通擁堵得到緩解,同時又能賦予交通線更多的經濟價值?TOD模式由此營運而生。

「TOD模式是以公共交通為導向的開發模式(transit-oriented development,TOD)。」中鐵上海設計院集團有限公司TOD中心主任郭琳解釋,就是在規劃居民區或者商業區時,使公共交通的使用最大化的一種非 汽車 化的規劃設計方式。該模式可以同步城鎮化進程,帶動城市經濟提升。

郭琳認為,建軌道就是建設城市,經營軌道就是經營城市。軌道交通建設中會出現技術、主體、利益、主體邊界不明確,這就要破解融合。TOD模式通過大數據為未來城市提供了無限可能。未來是TOD5.0時代,通過可視化鼓勵機制,為城市碳達峰做貢獻。

一葦數智·時空大數據平台

時空大數據構建交通底座

眾合 科技 對構建軌道交通的時空大數據底座進行了實踐,一葦數智·時空大數據平台應運而生。構建數字孿生、挖掘數據價值、實現萬物互聯、賦能業務創新,是一葦數智平台四個顯著的特點。現場,浙江眾合 科技 股份有限公司研發中心總經理王廈通過示例進行了深入淺出的講解。

數字孿生,即通過一張圖可以看到地上空間和地下空間,兩者結構關系一目瞭然。同時,數字空間里還能看到空間構架的物件、供應商信息等信息,無論產品質量監控還是施工進度都可以實時跟蹤。

一葦數智平台以數據驅動業務,在四維數據的海洋中為業務挖掘更深層次的價值。王廈介紹,平台可以接入到終端設備,數據介面對外開放給合作夥伴和應用程序開發人員。

「我們願意共享平台及其內部功能與數據,與用戶、合作夥伴建立起價值的連接,所謂的萬物互聯,一切可聯通。」王廈說。

利用智能引擎,平台可向每項業務提供AI能力和模型演算法,同時為行業應用提供便捷易用的開發模板和工具。數據快速迭代為有效創新提供了支持。「早高峰的地鐵內,你可以提前知道哪節車廂比較空,從容候車避免擁擠。」王廈用這一實例介紹了一葦數智平台在賦能業務創新上所能起到的作用。


大數據助力園區管理

天集產城集團有限公司產城項目總經理李書江分享了時空大數據在園區管理上的應用。他介紹,時空資料庫分共有與私有,私有資料庫體現了建築數據、資產管理、現場施工進度、物料管理、智能化運維。智慧運維端深入園區日常需求,進行智慧園區的運營管理,全面了解園區企業基本經營情況,為企業在銀行和金融機構貸款做增信(從抵押增信到數據增信)。

此外,通過可視化界面,時空大數據還可以幫助企業進行員工打卡、門禁管理、智能管控和設備管理。平台內還能導入政務服務和其他功能性服務,助力企業完成工商注冊、財稅服務、知識產權、社保服務、法律服務等各類事項。

高效協同的時空大數據生態鏈

「每天要從家的A點到工作地B點,有多條路可以走,早晨出發可以選擇路上有早餐店和咖啡館的路線,晚上下班可以換一條路線,看看哪裡有聚餐點、哪裡有商場。這些,大數據生態鏈都可以為你作出指引。」維正集團企知道產學研科研成果轉化有限公司總經理李志慧從城市信息、物質和 社會 空間,三者連接共生數據互補出發,生動解釋了時空大數據生態鏈。

她表示,時空大數據是具有時空屬性的數據,搭建大數據集合平台,從而產生更廣泛的應用場景,引入聯盟成員,便能為大眾生態搭建出一套高效協同、開放包容的運行規律。

科技 金融助力推動時空大數據

力合金融控股股份有限公司創新基金管理總經理申康認為, 科技 和金融的結合決定了產業未來的發展,是未來時空大數據發展的關鍵。

中小企業 科技 創新具有投入高、周期長、風險高特徵,短期難以依靠自我造血實現滾動發展。中小企業融資難的根本原因在於其天然的弱質性,但傳統金融機構很難為中小型新新大數據企業賦能。力合金融利用金融支持打通發展到創新的過程,打造時空大數據產業投資基金,通過差異化服務,滿足時空大數據產業不同階段企業的投資需求,做到差異化賦能。



來源| 科技 金融時報(記者 孫俠)

⑥ 如何讓大數據為決策可用

對已收集到的大數據進行分析

許多公司都收集了大量的數據,他們感覺這些數據存在著商業價值,但並不知道怎樣從這些弄出來的值大的數據。不同行業的數據集有所不同,比如,如果你處於網路營銷行業,你可能會有大量Web站點的日誌數據集,這可以把數據按會話進行劃分,進行分析以了解網站訪客的行為並提升網站的訪問體驗。同樣,來自製造業的質量保證數據將有助於公司生產出更可靠的產品和選擇更好的供應商,而通過rfid數據可以幫助你更深入地供應鏈中產品的運動軌跡。

重點分析對你的行業有價值的大數據

大數據的類型和內容因行業而異,每一類數據對於每個行業的價值是不一樣的。比如電信行業的呼叫詳細記錄(cdr),零售業、製造業或其他以產品為中心的行業的rfid數據,以及製造業(特別是汽車和消費電子)中機器人的感測器數據等等,這些都是各個行業中非常重要的數據。

理解非結構化的大數據

非結構化的信息主要指的是是使用文字表達的人類語言,這與大多數關系型數據有著很大的不同,你需要使用一些新的工具來進行自然語言處理、搜索和文本分析。把基於文本內容的業務流程進行可視化展示,比如,保險索賠過程,醫療病歷記錄,各個行業的呼叫中心和幫助台應用程序,以及以客戶為導向的企業情感分析等內容均可以在進行處理後以可視化的形式表現出來。

使用社交媒體數據來擴展現有的客戶分析

客戶的各種行為比如評論品牌、評價產品、參與營銷活動或表示他們的喜好等等,會在客戶中相互影響。社交大數據可以來自社交媒體網站,以及自有的客戶能夠表達意見及事實的渠道。我們可以使用預測性分析發現規律和預測產品或服務的問題。我們也可以利用這些數據來評估市場知名度、品牌美譽度、用戶情緒變動和新的客戶群。

把客戶的意見整合到大數據中

通過運用大數據(與原有的企業資源集成),我們可以對客戶或其他商業實體(產品,供應商,合作夥伴)實現360度全景分析,分析的維度屬性從幾百個擴展到幾千個。新增的粒狀細節帶來更准確的客戶群細分,直銷策略和客戶分析。

整合大數據以改善原有的分析應用

對於原有的分析應用,大數據可以擴大和擴展其數據樣本。尤其在依賴於大樣本的分析技術的情況下,比如統計或數據挖掘;而在欺詐檢測、風險管理或精確計算的情況下同樣也得用上大樣本的數據。

⑦ 如何才能讓大數據變現

討論一個問題。我們都知道數據是當下所有企業的戰略資產,而每個企業中都積累,並不斷在產生大量的數據,但為何依然很多企業並不認為數據為其帶來了價值,原因可能有很多,但都可以歸結到沒有用好數據,或者數據不是好數據。

1、 什麼樣的數據才能產生價值?

阿里巴巴曾鳴認為,所有商業都在快速智能化,而數據是智能商業時代最重要的資產,但只有活數據才能創造價值。第一,數據是活的,也就是說數據是在線的,可以隨時被使用;第二,數據必須是被活用的,也就是說數據在不斷地被處理,產生智能商業決策,同時又產生更多的數據,形成數據迴流。只有在線才能真正讓數據成為活數據,進而以數據驅動企業運營。

SCRM的定位是面向行業領導者的用戶生態數字化運營平台,行業領導者意味著其客戶群體為行業第一層級的企業,用戶生態數字化運營平台則有兩層含義,一是企業全渠道連接用戶、持續互動的連接器,二是連接數據,實現數據變現的平台。

2、SCRM是讓消費者交互變縱為橫

一是對於SCRM的理解。

一直以來,SCRM有諸多解讀,對其中「S」所代表的social同樣說法不少。車傳利認為,SCRM的重點有兩層,第一是以結合社交工具、社交手段,而更為重要的是「企業和品牌不能再遠離用戶,與用戶做朋友」。後一層含義被很多廠商、很多產品所忽略,但事實卻是當下消費者的消費習慣會不斷變化,但企業要直接與用戶產生關系的趨勢不變的。

對消費者的需求,作為工具的SCRM產品如何幫助企業觸達從企業端來看,過去很難連接消費者,了解不到客戶的需求,在層層渠道、經銷商中需求傳遞缺失。這種過去的企業與消費者的關系,可以形象的歸結為縱向傳遞,消費者-渠道商-渠道商-……-企業。即便在現在,大量的第三方線上平台出現並聚集消費者,然而用戶的真實需求也多被這些三方平台所截流,企業依然觸達不到。

SCRM的一個重點特點便是能夠打破中間環節,這也為變縱為橫提供了可能,讓企業能夠打破與消費者之間的層層架構,實現企業與渠道商、門店以及最終消費者的直接連接,從而把握真實客戶需求,真正做到客戶運營。

3、在線讓數據活起來

在數據收集方面,企業面臨兩大問題,一是線上被第三方平台所截流,線下被渠道截流,很難收集到真正的數據;二是,即便收集到,很多數據不是實時的,消費者可能已經過了相應的周期,數據就變成了廢數據。

而數據變現最基礎的便是依託互動數據識別用戶特性,並基於數據進行進一步互動,下一層次的消費挖掘,比如大量消費者留下的客服數據,這是可以深度挖掘的數據,一方面反應產品存在的問題,一方面亦能發掘新需求。

因此,企業要真正挖掘數據財富的前提,便是能真正獲取到數據、能獲取到真正數據。發源地的產品通過兩方面建立這條通路,一是全渠道連接,二是將線下多端上線,讓數據可連接,實現數據變現。

全渠道連接整合企業經營相關的所有與消費者交互的渠道。主要包括門店、線下活動等線下渠道,官網、微信微博、APP等自營媒體平台,天貓、京東等電商平台,經銷商、服務商等合作夥伴以及廣告等6類渠道,實現全渠道連接客戶接觸點。整合渠道後,依託平台與消費者持續互動,不斷匯集實時的消費者數據,進而通過數據挖掘,實現數據應用。

同時,連接數據的重點在於讓線下的鏈條在線化,包括線下渠道、線下商品、員工以及消費者的上線。

客戶在線,以消費者幾乎必備的微信作為入口,通過線上活動、支付等手段連接門店、連接消費者,將相關消費信息記錄下來,回傳到系統;

員工在線,門店的店員在線,將與消費者的互動實現線上記錄,實現精細化運營;

產品在線,讓每一個員工都知道每一個貨品的銷售情況,判斷消費者喜好及貨品市場接受度;

渠道在線,實現賣貨情況、銷售情況等實時掌握,判斷門店經營情況。

4、做定製化的SaaS

與很多SaaS服務商不同,發源地服務直接定位在一體化解決方案,而不是產品+服務。或者說SaaS多是主通用產品,結合行業方案或者定製方案,而發源地則是直接瞄準定製方案。

發源地的服務過程主要分為四步:業務流程梳理與戰略咨詢、發源地SCRM SaaS解決方案、定製化解決方案實施、運營與維護支持。這與SaaS的服務方式普遍不同。

其原因一是因為發源地主要服務集團型、連鎖品牌,如vivo、聯合利華等,這類大型企業存在太多差異化需求,取決於客戶群體的行業特性,發源地定下這種服務理念。

二是發源地認為,一套完整的方案,不是一個通用產品+簡單服務便能完成,如果不涉及咨詢層面,不與客戶一同梳理出企業的流程、脈絡,只是客戶要一個服務便加一個服務,帶給客戶的只能是遷就的方案,而不是順暢、一體化的方案。

當然,並不是說發源地提供的就是純粹的定製服務,而是依託支持靈活業務拓展的PaaS開放平台,通過功能模塊化、可插拔的方式實現。

閱讀全文

與讓大數據為相關的資料

熱點內容
aspnetmvc代碼 瀏覽:818
怎樣測試網路的穩定性 瀏覽:79
itunes怎麼查看安裝的app 瀏覽:685
驅動式編程是什麼 瀏覽:288
iphone6看片地址 瀏覽:972
網站百度快照導航怎麼變樣子了 瀏覽:792
離線傳輸文件有哪些方法 瀏覽:286
燒程序 瀏覽:9
win10登錄windows賬戶 瀏覽:917
企業收到網路廣告費如何記賬 瀏覽:313
易班app的運營思路是什麼 瀏覽:720
中國藝術微課怎麼下載app 瀏覽:134
軟體內的小說文件在哪裡 瀏覽:200
會議需要准備的文件有哪些 瀏覽:480
升級文件無法讀取或已損壞 瀏覽:889
進料檢驗文件有哪些 瀏覽:495
電腦里的文件被刪除後怎麼找回 瀏覽:295
數車編程軟體哪個好用 瀏覽:579
在qq群里看不見說話 瀏覽:416
靜態網站模板大氣 瀏覽:504

友情鏈接