導航:首頁 > 網路數據 > 大數據技術的場景

大數據技術的場景

發布時間:2023-02-14 13:22:32

『壹』 大數據可以應用在哪些方面

可以應用在雲計算方面。

大數據具體的應用:

1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。

2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。

3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。

4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。

5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。

7、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。

8、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。

9、分析所有SKU,以利潤最大化為目標來定價和清理庫存。

10、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。

(1)大數據技術的場景擴展閱讀:

大數據的用處:

1、與雲計算的深度結合。大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。

自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

2、科學理論的突破。隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。

參考資料:

網路--大數據

『貳』 工業大數據有哪些應用場景

1.加速產品立異


客戶與工業企業之間的交互和買賣行為將發生大量數據,挖掘和剖析這些客戶動態數據,可以幫助客戶參加到產品的需求剖析和產品設計等立異活動中,為產品立異作出貢獻。


2.產品毛病確診與猜測


這可以被用於產品售後服務與產品改善。無所不在的感測器、互聯網技術的引入使得產品毛病實時確診變為實際,大數據使用、建模與模擬技術則使得猜測動態性成為可能。


3.生產線的大數據使用


現代化工業製作生產線裝置有數以千計的小型感測器,來勘探溫度、壓力、熱能、振盪和雜訊。由於每隔幾秒就收集一次數據,使用這些數據可以完成許多方式的剖析,包括設備確診、用電量剖析、能耗剖析、質量事故剖析(包括違反生產規則、零部件毛病)等。


4.工業供應鏈剖析和優化


當時,大數據剖析已經是許多電子商務企業提升供應鏈競爭力的重要手法。例如,電子商務企業京東商城,經過大數據提早剖析和猜測各地產品需求量,然後提高配送和倉儲的效能,保證了次日貨到的客戶體會。


5.產品出售猜測與需求管理


經過大數據來剖析當時需求改變和組合方式。大數據是一個很好的出售剖析東西,經過歷史數據的多維度組合,可以看出區域性需求佔比和改變、產品品類的商場受歡迎程度以及最常見的組合方式、消費者的層次等,以此來調整產品策略和鋪貨策略。


6.生產計劃與排程


製作業面臨多品種小批量的生產模式,數據的精細化自動及時便利的收集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的歷史數據,關於需求快速呼應的APS來說,是一個巨大的挑戰。


關於工業大數據有哪些應用場景,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『叄』 大數據技術和應用場景

說起大數據,估計大家都覺得只聽過概念,但是具體是什麼東西,怎麼定義,沒有一個標準的東西,因為在我們的印象中好像很多公司都叫大數據公司,業務形態則有幾百種,感覺不是很好理解,所以我建議還是從字面上來理解大數據,在維克托邁爾-舍恩伯格及肯尼斯庫克耶編寫的《大數據時代》提到了大數據的4個特徵:

大數據無處不在,大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、體能和娛樂等在內的社會各行各業都已經融入了大數據的印跡。

大數據的價值,遠遠不止於此,大數據對各行各業的滲透,大大推動了社會生產和生活,未來必將產生重大而深遠的影響。

說起大數據,大數據有三個層數據採集、存儲、計算三層。

『肆』 大數據技術的應用

大數據的應用是以大數據技術為基礎,對各行各業或生產生活方面提供決策參考。

大數據應用的典型有:電商領悟、傳媒領領域、金融領域、交通領域、電信領域、安防領域、醫療領域等。

同時大數據的應用是把雙刃劍,一方面可以為我們帶來便利,另一方面也會造成個人隱私泄露的問題。

『伍』 大數據在哪些領域有應用前景

1、電商行業
電商行業是最早將大數據用於精準營銷的行業,它可以根據消費者的習慣提前生產物料和物流管理,這樣有利於美好社會的精細化生產。隨著電子商務的越來越集中,大數據在行業中的數據量變得越大,並且種類非常多。在未來的發展中,大數據在電子商務中有大多的想像,其中主要包括預測趨勢,消費趨勢,區域消費特徵,顧客消費習慣,消費者行為,消費熱點和影響消費的重要因素。
2、金融行業
大數據在金融行業的使用是非常廣泛的,主要使用在交易過程中。現在許多股權交易都是使用大數據演算法進行的。這些演算法能夠越來越多地考慮社交媒體和網站新聞,並且決定接下來的幾秒內是選擇購買還是出售。
3、生物技術
基因技術是人類未來挑戰疾病的重要武器。科學家可以利用大數據技術的應用,這樣能夠加速他們自己的基因和其他動物基因的研究過程,並且還能成為人類未來克服疾病的重要武器之一。技術不僅可以改良作物,還可以利用遺傳技術培育人體器官,消滅細菌等。

『陸』 大數據可視化應用於哪些場景

【導讀】如今,大數據可視化逐漸被廣泛運用。大數據可視化的快速發展也帶來一個思考的問題:如何將大數據可視化用於解決現實世界的問題?那麼,今天就跟隨小編一起來看看,大數據可視化應用於哪些場景呢?

1.大數據可視化提高了效率

用於數據統計分析的大數據可視化一般用於政府部門和公司的經濟活動分析,包括財務報表分析、供應鏈管理分析、營銷製造分析、客戶關系管理分析等。它將企業運營產生的所有有用數據信息集中在一個系統軟體中,可用於商業智能、政府部門管理決策、公共服務、網路營銷等行業。

2.大數據可視化支持科學研究

航天是大數據可視化應用最早、最完善、成果最多的行業。航天要探索的是比地球極限大幾千倍,總輸出大,規定更高的寬闊的室內空間。因此,航天互聯網大數據不僅具有一般互聯網大數據的特點,還規定了銷售價格和高使用價值。能維持航天測量研製、測控機械設備的運行;航天指揮員作戰管理系統的模擬演習和作戰評估:航天作戰指揮官顯示信息來操作太空梭數據統計分析和情況監測。

3.大數據可視化產生競爭優勢

工業園區按照大數據可視化進行管理,可以從工業園區總體規劃、管網運行、能耗監控、工業園區交通出行、智能安全管理方式、工業園區資源優化配置等幾個方面保持平時的運行檢測和和諧管理方式;進而全面提升工業園區自主創新、服務項目和管理水平,提升工業園區產業結構和企業競爭力。

以上就是小編今天給大家整理分享關於「大數據可視化應用於哪些場景?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。

『柒』 大數據十大商業應用場景

大數據十大商業應用場景

大數據時代,在未來的幾十年裡,大數據都將會是一個重要都話題。大數據影響著每一個人,並在可以預見的未來繼續影響著。大數據沖擊著許多主要行業,包括零售業、金融行業、醫療行業等等,大數據也在徹底地改變著我們的生活。現在我們就來看看大數據給中國帶來的十商業應用場景,未來大數據產業將會是一個萬億市場。

1、智慧城市

如今,世界超過一半的人口生活在城市裡,到2050年這一數字會增長到75%。政府需要利用一些技術手段來管理好城市,使城市裡的資源得到良好配置。既不出現由於資源配置不平衡而導致的效率低下以及騷亂,又要避免不必要的資源浪費而導致的財政支出過大。大數據作為其中的一項技術可以有效幫助政府實現資源科學配置,精細化運營城市,打造智慧城市。

城市的道路交通,完全可以利用GPS數據和攝像頭數據來進行規劃,包括道路紅綠燈時間間隔和關聯控制,包括直行和左右轉彎車道的規劃、單行道的設置。利用大數據技術實施的城市交通智能規劃,至少能夠提高30%左右的道路運輸能力,並能夠降低交通事故率。在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。機場的航班起降依靠大數據將會提高航班管理的效率,航空公司利用大數據可以提高上座率,降低運行成本。鐵路利用大數據可以有效安排客運和貨運列車,提高效率、降低成本。

城市公共交通規劃、教育資源配置、醫療資源配置、商業中心建設、房地產規劃、產業規劃、城市建設等都可以藉助於大數據技術進行良好規劃和動態調整。

大數據技術可以了解經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。大數據技術也能幫助政府進行支出管理,透明合理的財政支出將有利於提高公信力和監督財政支出。大數據及大數據技術帶給政府的不僅僅是效率提升、科學決策、精細管理,更重要的是數據治國、科學管理的意識改變,未來大數據將會從各個方面來幫助政府實施高效和精細化管理,具有極大的想像空間。

2、金融行業

大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。中國金融行業大數據應用開展得較早,但都是以解決大數據效率問題為主,很多金融行業建立了大數據平台,對金融行業的交易數據進行採集和處理。

金融行業過去的大數據應用以分析自身財務數據為主,以提供動態財務報表為主,以風險管理為主。在大數據價值變現方面,開展的不夠深入,這同金融行業每年上萬億的凈利潤相比是不匹配的。現在已經有一些銀行和證券開始和移動互聯網公司合作,一起進行大數據價值變現,其中招商銀行、平安集團、興業銀行、國信證券、海通證券和Talking Data在移動大數據精準營銷、獲客、用戶體驗等方面進行了不少的嘗試,大數據價值變現效果還不錯,大數據正在幫助金融行業進行價值變現。大數據在金融行業的應用可以總結為以下五個方面:

(1)精準營銷:依據客戶消費習慣、地理位置、消費時間進行推薦

(2)風險管控:依據客戶消費和現金流提供信用評級或融資支持,利用客戶社交行為記錄實施信用卡反欺詐

(3)決策支持:利用抉策樹技術進抵押貸款管理,利用數據分析報告實施產業信貸風險控制

(4)效率提升:利用金融行業全局數據了解業務運營薄弱點,利用大數據技術加快內部數據處理速度

(5)產品設計:利用大數據計算技術為財富客戶推薦產品,利用客戶行為數據設計滿足客戶需求的金融產品

3、醫療行業

醫療行業擁有大量病例、病理報告、醫療方案、葯物報告等。如果這些數據進行整理和分析,將會極大地幫助醫生和病人。在未來,藉助於大數據平台我們可以收集疾病的基本特徵、病例和治療方案,建立針對疾病的資料庫,幫助醫生進行疾病診斷。

如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診。在制定治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制定出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業開發出更加有效的葯物和醫療器械。

醫療行業的數據應用一直在進行,但是數據沒有打通,都是孤島數據,沒有辦法起大規模應用。未來需要將這些數據統一收集起來,納入統一的大數據平台,為人類健康造福。政府是推動這一趨勢的重要動力,未來市場將會超過幾千億元。

4、農牧業

農產品不容易保存,合理種植和養殖農產品對農民非常重要。藉助於大數據提供的消費能力和趨勢報告,政府將為農牧業生產進行合理引導,依據需求進行生產,避免產能過剩,造成不必要的資源和社會財富浪費。大數據技術可以幫助政府實現農業的精細化管理,實現科學決策。在數據驅動下,結合無人機技術,農民可以採集農產品生長信息,病蟲害信息。

農業生產面臨的危險因素很多,但這些危險因素很大程度上可以通過除草劑、殺菌劑、殺蟲劑等技術產品進行消除。天氣成了影響農業非常大的決定因素。過去的天氣預報僅僅能提供當地的降雨量,但農民更關心有多少水分可以留在他們的土地上,這些是受降雨量和土質來決定的。Climate公司利用政府開放的氣象站的數據和土地數據建立了模型,他們可以告訴農民可以在哪些土地上耕種,哪些土地今天需要噴霧並完成耕種,哪些正處於生長期的土地需要施肥,哪些土地需要5天後才可以耕種,大數據技術可以幫助農業創造巨大的商業價值。

5、零售行業

零售行業比較有名氣的大數據案例就是沃爾瑪的啤酒和尿布的故事,以及Target通過向年輕女孩寄送尿布廣告而告知其父親,女孩懷孕的故事。

零售行業可以通過客戶購買記錄,了解客戶關聯產品購買喜好,將相關的產品放到一起增加來增加產品銷售額,例如將洗衣服相關的化工產品例如洗衣粉、消毒液、衣領凈等放到一起進行銷售。根據客戶相關產品購買記錄而重新擺放的貨物將會給零售企業增加30%以上的產品銷售額。

零售行業還可以記錄客戶購買習慣,將一些日常需要的必備生活用品,在客戶即將用完之前,通過精準廣告的方式提醒客戶進行購買。或者定期通過網上商城進行送貨,既幫助客戶解決了問題,又提高了客戶體驗。

電商行業的巨頭天貓和京東,已經通過客戶的購買習慣,將客戶日常需要的商品例如尿不濕,衛生紙,衣服等商品依據客戶購買習慣事先進行准備。當客戶剛剛下單,商品就會在24小時內或者30分鍾內送到客戶門口,提高了客戶體驗,讓客戶連後悔等時間都沒有。

利用大數據的技術,零售行業將至少會提高30%左右的銷售額,並提高客戶購買體驗。

6、大數據技術產業

進入移動互聯網之後,非結構化數據和結構化數據呈指數方式增長。現在人類社會每兩年產生的數據將超過人類歷史過去所有數據之和。進入到2015年,人類社會所有的數據之和有望突破5澤B(5ZB),這些數據如何存儲和處理將會成為很大的問題。

這些大數據為大數據技術產業提供了巨大的商業機會。據估計全世界在大數據採集、存儲、處理、清晰、分析所產生的商業機會將會超過2000億美金,包括政府和企業在大數據計算和存儲,數據挖掘和處理等方面等投資。中國2014年大數據產業產值已經超過了千億人民幣,本屆貴陽大數據博覽會就吸引了400多家廠商來參展,充分說明大數據產業的未來的商業價值巨大。

未來中國的大數據產業將會呈幾何級數增長,在5年之內,中國的大數據產業將會形成萬億規模的市場。不僅僅是大數據技術產品的市場,也將是大數據商業價值變現的市場。大數據將會在企業的精準營銷、決策分析、風險管理、產品設計、運營優化等領域發揮重大的作用。

大數據技術產業將會解決大數據存儲和處理的問題,大數據服務公司將利用自身的數據將解決大數據價值變現問題,其所帶來的市場規模將會超過千億人民幣。中國目前擁有大數據,並提供大數據價值變現服務的公司除了我們眾所周知的BAT和移動運營商之外,360、小米、京東、Talking Data、九次方等都會成為大數據價值變現市場的有力參與者,市場足夠大,期望他們將市場做大,幫助所有企業實現大數據價值變現。

7、物流行業

中國的物流產業規模大概有5萬億左右,其中公里物流市場大概有3萬億左右。物流行業的整體凈利潤從過去的30%以上降低到了20%左右,並且下降的趨勢明顯。物流行業很多的運力浪費在返程空載、重復運輸、小規模運輸等方面。中國市場最大等物流公司所佔的市場份額不到1%。因此資源需要整合,運送效率需要提高。

物流行業藉助於大數據,可以建立全國物流網路,了解各個節點的運貨需求和運力,合理配置資源,降低貨車的返程空載率,降低超載率,減少重復路線運輸,降低小規模運輸比例。通過大數據技術,及時了解各個路線貨物運送需求,同時建立基於地理位置和產業鏈的物流港口,實現貨物和運力的實時配比,提高物流行業的運輸效率。藉助於大數據技術對物流行業進行的優化資源配置,至少可以增加物流行業10%左右的收入,其市場價值將在5000億左右。

8、房地產業

中國房地產業發展的高峰已經過去,其面臨的挑戰逐漸增加,房地產業正從過去的粗放發展方式轉向精細運營方式,房地產企業在拍賣土地、住房地產開發規劃、商業地產規劃方面也將會謹慎進行。

藉助於大數據,特別是移動大數據技術。房地產業可以了解開發土地所在范圍常駐人口數量、流動人口數量、消費能力、消費特點、年齡階段、人口特徵等重要信息。這些信息將會幫助房地商在商業地產開發、商戶招商、房屋類型、小區規模進行科學規劃。利用大數據技術,房地產行業將會降低房地產開發前的規劃風險,合理制定房價,合理制定開發規模,合理進行商業規劃。大數據技術可以降低土地價格過高,實際購房需求過低的風險。已經有房地產公司將大數據技術應用於用戶畫像、土地規劃、商業地產開發等領域,並取得了良好的效果。

9、製造業

製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,合理規劃產品生產,避免生產過剩。

例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥。

大數據技術還可以根據社交數據和購買數據來了解客戶需求,幫助廠商進行產品開發,設計和生產出滿足客戶需要的產品。

10、互聯網廣告業

2014年中國互聯網廣告市場迎來發展高峰,市場規模預計達到1500億元左右,較2013年增長56.5%。數字廣告越來越受到廣告主的重視,其未來市場規模越來越大。2014年美國的互聯網廣告市場規模接近500億美元,參考中國的人口消費能力,其市場規模會很快達到2000億人民幣左右。

過去到廣告投放都是以好的廣告渠道+廣播式投放為主,廣告主將廣告交給廣告公司,由廣告公司安排投放,其中SEM廣告市場最大,其他的廣告投放方式也是以頁面展示為主,大多是廣播式廣告投放。廣播式投放的弊端是投入資金大,沒有針對目標客戶,面對所有客戶進行展示,廣告的轉化率較低,並存在數字廣告營銷陷阱等問題。

大數據技術可以將客戶在互聯網上的行為記錄下來,對客戶的行為進行分析,打上標簽並進行用戶畫像。特別是進入移動互聯網時代之後,客戶主要的訪問方式轉向了智能手機和平台電腦,移動互聯網的數據包含了個人的位置信息,其360度用戶畫像更加接近真實人群。360度用戶畫像可以幫助廣告主進行精準營銷,廣告公司可以依據用戶畫像的信息,將廣告直接投放到用戶的移動設備,通過用戶經常使用的APP進行廣告投放,其廣告的轉化可以大幅度提高。利用移動互聯網大數據技術進行的精準營銷將會提高十倍以上的客戶轉化率,廣告行業的程序化購買正在逐步替代廣播式廣告投放。大數據技術將幫助廣告主和廣告公司直接將廣告投放給目標用戶,其將會降低廣告投入,提高廣告的轉化率。

目前,影響大數據產業發展主要有兩個大問題,一個是大數據應用場景,一個是大數據隱私保護問題。

大數據商業價值的應用場景,大數據公司和企業正在尋找,目前在移動互聯網的精準營銷和獲客、360度用戶畫像、房地產開發和規劃、互聯網金融的風險管理、金融行業的供應鏈金融,個人徵信等方面已經取得了進步,擁有了很多經典案例。

但在有關大數據隱私保護以及大數據應用過程中個人信息保護方面還停滯不前,大家都在摸石頭過河,不知道哪些事情可以做,哪些事情不可以做。國家在大數據隱私保護方面正在進行立法,估計不久的將來,大數據服務公司和企業將會了解大數據隱私保護方面的具體要求。在沒有明確有關大數據隱私保護法規前,我們可以參考國外的隱私法,嚴格遵守國際上通用的個人隱私保護法,在實施大數據價值變現的過程中,充分保護所有相關方的個人利益。

最後縱觀人類歷史,在任何領域,如果我們可以拿到數據進行分析,我們就會取得進步。如果我們拿不到數據,無法進行分析,我們註定要落後。我們過去因數據不足導致的錯誤遠遠好過那些根本不用數據的錯誤,因此我們需要掌握大數據這個武器,利用好它,幫助人類社會加速進化,幫助企業實現大數據的價值變現。

以上是小編為大家分享的關於大數據十大商業應用場景的相關內容,更多信息可以關注環球青藤分享更多干貨

『捌』 大數據的應用場景有哪些

可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。
車輛監控,車輛調度,通過流量分析,進行公交線路調整,通過大數據分析預測路段車輛擁堵時間,制定緩解交通擁堵方案,通過一卡通全國聯網,實施一卡走天下,記錄用戶所有行為軌跡。
大數據可以幫助我們訓練球隊,決定投拍哪種題材的影視作品,以及預測比賽結果。
通過用戶關注的歌曲、視頻等信息做精準推送,包括使用手機過程中被推送到眼前的廣告都是精準投放的結果,每個用戶看到的廣告可能都是不同的。

『玖』 大數據應用在哪些領域

大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。

1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。

5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。

6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。

9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。

10、生物醫學:大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。

11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。

12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。

大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。

(9)大數據技術的場景擴展閱讀

七個典型的大數據應用案例

1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。

3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。

4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。

5、Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。

6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。

7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。

『拾』 大數據技術的主要物流應用場景主要包括哪些

物流的供給與需求匹配方面,需要分析特定時期、特定區域的物流供給與需求情況,從而進行合理的配送管理。供需情況也需要採用大數據技術,從大量的半結構化網路數據,或企業已有的結構化數據,即二維表類型的數據中獲得。

物流資源的配置與優化方面,主要涉及到運輸資源、存儲資源等。物流市場有很強的動態性和隨機性,需要實時分析市場變化情況,從海量的數據中提取當前的物流需求信息,同時對已配置和將要配置的資源進行優化,從而實現對物流資源的合理利用。



(2)大數據在物流企業行政管理中的應用

在企業行政管理中也同樣可以應用大數據相關技術。例如,在人力資源方面,在招聘人才時,需要選擇合適的人才,對人才進行個性分析、行為分析、崗位匹配度分析;對在職人員同樣也需要進行忠誠度、工作滿意度等分析。

(3)大數據在物流客戶管理中的應用

大數據在物流客戶管理中的應用主要表現在客戶對物流服務的滿意度分析、老客戶的忠誠度分析、客戶的需求分析、潛在客戶分析、客戶的評價與反饋分析等方面。



(4)大數據在物流智能預警中的應用

物流業務具有突發性、隨機性、不均衡性等特點,通過大數據分析,可以有效了解消費者偏好,預判消費者的消費可能,提前做好貨品調配,合理規劃物流路線方案等,從而提高物流高峰期間物流的運送效率。

閱讀全文

與大數據技術的場景相關的資料

熱點內容
win10用cad哪個版本好 瀏覽:883
文件從電腦傳送到手機 瀏覽:396
安卓系統怎麼設置網路 瀏覽:707
win10下的文件類型選項 瀏覽:512
元數據修改什麼意思 瀏覽:555
掃描pdf轉word 瀏覽:914
行業協會如何查行業平均數據 瀏覽:545
什麼app能長期使用 瀏覽:617
哪個APP可以學相聲 瀏覽:347
程序使用代理 瀏覽:149
文件大小怎麼調 瀏覽:924
javadouble經度 瀏覽:354
英國頒布了哪些綱領性文件 瀏覽:929
文件隔行選擇是哪些鍵 瀏覽:395
股票的數據儲存在哪裡 瀏覽:172
微信雙機同時登陸 瀏覽:448
vbnet網頁源代碼 瀏覽:409
ibmwin10改win7 瀏覽:560
windows7搭建文件伺服器 瀏覽:358
丹麥為什麼不能用中文編程 瀏覽:872

友情鏈接