導航:首頁 > 網路數據 > 生物醫葯大數據

生物醫葯大數據

發布時間:2023-02-11 15:28:26

① AI賦能醫療的背後,臨床大數據該如何「跑起來」

19世紀,英國流行病學家、麻醉學家約翰·斯諾運用近代早期的數據科學,記錄每天的死亡人數和傷患 人數,並將死亡者的地址標注在地圖上,繪制了倫敦霍亂爆發的「群聚」地圖,霍亂在過去被普遍認為是由有害空氣導致,斯諾通過調查數據的匯總,確定了霍亂的元兇是被污 染的公共水井,並同時奠定了疾病細菌理論的基礎,這算是大數據運用的早期雛形之一。

斯諾大概不會想到,在近兩百年後,大數據的應用早已不再是偶然,隨著醫療衛生信息化的迅速發展,其通過與AI的結合在生物醫葯研發、疾病管理、公共衛生和 健康 管理等方面的滲透已逐漸常態化,但問題也相應地隨之凸顯。

信息孤島仍存

近兩年,關於醫療大 健康 數據的政策頻出,從頂層設計、具體規劃指導、數 據隱私和安全、數據管理等多個方面提出了相關的指導意見。

2016年6月,國務院辦公廳下發《關於促進和規范 健康 醫療大數據應用發展的指導意見》指出,鼓勵各類醫療衛生機構推進 健康 醫療大數據採集、存儲,加強應用支撐和運維技術保障,打通數據資源共享通道,加快建設和完善以居民電子 健康 檔案、電子病歷、電子處方等為核心的基礎資料庫

2018年9月, 國家衛生 健康 委印發《國家 健康 醫療大數據標准、安全和服務管理辦法(試行)》,對醫療 健康 大數據行業從規范管理和開發利用的角度出發進行規范。《辦法》從醫療大數據標准、醫 療大數據安全、醫療大數據服務、醫療大數據監督四個方面提出指導意見,直擊目前醫療大數 據領域的痛點,未來對數據的統籌標准管理、落實安全責任、規范數據服務和管理具有重要意義。

然而,即使有專項政策的支持,但都限於宏觀層面,相較於其他成熟領域而言, 健康 醫療大數據領域的法律法規依然存在明顯的滯後性,缺乏比較全面、細致、明確的指引和規則,使其的發展受到嚴重製約。雖然現階段,已有很多企業在醫療大數據領域進行深耕布局,但受制於市場准入和產業政策的不確定性,目前尚在摸著石頭過河,市場熱情和活力並未得到充分、有效地釋放。

復旦大學上海醫學院生物醫學研究院教授劉雷認為,正是醫療大數據政策的不明朗,標準的不統一,也直接導致了各個系統之間難以進行數據交換和信息共享,產生了大量的「信息孤島」。舉個簡單的例子,患者在A醫院拍的片子到了B醫院卻不認,B醫院的醫生想要了解患者的信息則需要從零開始,患者曾在A醫院做的檢查需要在B醫院重新再來一輪,「想要打通醫療機構間臨床大數據資源的共享通道,至少在現階段是一件挺困難的事情。」劉雷表示。

相似的困擾也發生在相距超過一萬公里之外的美國,華盛頓大學醫學院信息研究所所長Philip Paynes在接受醫谷采訪時表示:臨床大數據間的彼此「孤立」給國家醫保機構、患者和醫院都帶來了負擔,實現大數據間的互通互用,是全世界范圍內都在著力解決的問題。

作為兩所頂尖大學的知名研究學者,劉雷和Paynes想在臨床大數據領域做一些努力和嘗試。

兩人共有的想法迅速得到了學校層面的大力支持,2019年7月26-29日,由復旦大學醫學院和聖路易斯華盛頓大學醫學院聯合授課的「應用臨床信息學和數據分析研修班」進行了第一次開班。

復旦大學生物醫學研究院教授、復旦大學大數據研究院醫學信息與醫學影像智能診斷研究所所長劉雷授課

據劉雷介紹,此次研修班得到了業界人士的積極響應,在第一屆學員中,來自醫院、醫療企業、高校各佔了三分之一,「就是純粹地想把對臨床大數據分析和感興趣的業界人士聚集在一起,通過共有的努力,能把臨床大數據的有效運用更推進一步。」

聖路易斯華盛頓大學醫學院信息學研究所主任Philip Paynes授課

「希望通過這種國際化的合作,能讓臨床大數據在醫療機構間甚至跨國間真正地』跑』起來多一種可能性。」 Paynes說道。

各自所做的 探索

而在這種可能性之前,劉雷和Paynes各自所在的研究機構均已做了大量的工作。

據悉,劉雷所在的復旦大學上海醫學院生物醫學研究作為一家致力於創建「中國第一、世界一流的生物醫學交叉學術研究機構」,已經在生物醫學交叉學科領域形成「代謝與腫瘤的分子細胞生物學」、「醫學表觀遺傳學」、「系統生物醫學」三個優勢方向,並正在努力拓展轉化醫學研究和精準醫學研究,包括老年醫學、腫瘤和心血管疾病、出生缺陷、靶點結構與活性小分子、組學和大數據、生物治療與干預,形成新的交叉學科生長點和下游技術。

另悉,目前,復旦大學上海醫學院生物醫學研究還在申請一個超算中心的建設項目,以該項目來支撐生物學大數據的研究,「復旦大學有包括中山醫院、華山醫院、仁濟醫院等17所附屬教學醫院,這其中有一些醫院也在做自身的臨床大數據中心,從研究所層面,希望能夠給他們提供一些人才培養和技術研究的有力支持。」劉雷表示。

Paynes所在的華盛頓大學醫學院信息研究所則是華盛頓大學所有大數據計劃的中心, 「我們擁有世界上最好的基因組研究所和最具生產力和影響力的基礎科學研究企業」,在醫學信息技術方面的能力非常強,但在大數據的整合方面還有待加強。」而這也成了Paynes擔任華盛頓大學醫學院信息研究所第一屆所長之後重點開展的工作。

自Paynes上任後,首先將研究所與旗下15所附屬教學醫院進行了打通聯動,從臨床大數據的收集到整合再到挖掘,最後到應用,鋪設了一條全鏈式的臨床大數據之路。

在Paynes看來:研究所下屬的15所教學醫院簡直就是大數據來源的寶藏,這15家在全美醫療機構中排名比較靠前的醫院每天產生大量的臨床數據,依託這些已有的臨床數據的回顧性研究,是分析研究疾病最基本、最重要的研究方法之一,通過將這些海量的臨床數據進行統計分析,分析的結果又將反過來為醫生臨床診療全過程提供疾病共享的發病及治療總體情況信息,幫助醫生科學決策,實現精準醫療。

「我們的夢想是不僅僅是利用臨床大數據幫助患者,而是希望這些臨床大數能滲透到他們的生活和工作,甚至休閑 娛樂 ,通過大數據的分析能夠把他們患病的概率降到最低,讓人們能一直保持 健康 的狀態。」 Paynes對醫谷展望道。

未來發展構想

在劉雷、Paynes和其團隊所做的大量臨床數據整合的工作中,由於各自旗下擁有多所強大的教學醫院,數據的來源已不是問題,然而,擺在他們面前更為現實的問題有兩個,一是要解決多模態臨床大數據的選擇問題。臨床大數據來源多樣,是一種多模態數據,其包括有結構化很好的數據,比如化驗單、處方;還有一些半結構化的數據,比如住院小結、出院小結;還有完全無結構化的數據,比如醫療影像;還有像基因測序這樣的組學數據;以及時間序列數據,比如ICU里會看到患者插著各種各樣的儀器測量血壓心率脈搏等各種流數據。

怎樣從這些不同模態的數據裡面選出需要的數據,劉雷表示他們,他們需要的更多的是結構化很好的臨床數據,為了得到這部分數據,會通過一定的技術平台會對數據進行一定的清洗,從中選取高質量的有效數據。

這個問題解決後,還有一個臨床大數據一直以來繞不開的一個爭議--安全和隱私問題。

對此,劉雷表示,依託現有的技術,目前收集的臨床大數據基本都能做到「不出院」,這在一定程度程度上很好地保證了數據的安全性。Paynes也指出,美國對於醫療大數據有很嚴密的保護法規,患者的關鍵隱私數據,如姓名、住址、電話、身份證號等進入數據管理的時候必須要打馬賽克,同時對數據進行強加密,數據即使被泄露也是不可解密的,對所有的數據訪問(誰什麼時間能訪問什麼)都要有一套嚴格的訪問控制,通過這樣的方式來保證數據安全性。

當技術的問題已不再是問題, 這意味著臨床大數據和AI的結合會變得更為完美,因此,劉雷和Paynes更多希望監管層能在未來對基於大數據訓練的AI能進行更多關於有效性和安全性方面的評估,也就是審批准入要做到嚴,同時,還要加強公眾對醫療AI的認知,不管AI發展到多麼先進的程度,總歸存在一定的局限性,它永遠不可能替代醫生,只能是醫生的一種輔助診斷工具

盡管還有一段路要走,但對於臨床大數據和AI的搭配,劉雷和Paynes都充滿信心,至少在他們現有開展工作的規劃里,「應用臨床信息學和數據分析研修班」能最終逐步發展為一個碩士人才培養項目,為臨床大數據和人工智慧培養更多專業人才。同時,基於兩個研究機構現階段開展的工作,有天能實現跨國界的匯聚統一,可以把所有的臨床大數據統一在同一個模型上,建立一個類似於聯盟數據一樣的聯合體,這對於數據的整合和應用就會變得游刃有餘。

【凡本網註明來源非大 健康 Pai的作品,均轉載自其它媒體,目的在於傳遞更多信息,並不代表本網贊同其觀點和對其真實性負責。】

② 生物醫學工程專業與大數據演算法專業相通嗎

我以為經過媒體的普及,對生物醫學工程這個專業沒有誤解,結果卻大大出乎意料,大家還是把它看成生化環材中的生物系列,和生物工程混為一談,像中山大學的生物醫學工程居然幾乎是全校分數最低的專業,比投檔線只高一分,還不如生物、生態等專業,這就鬧大烏龍了,生物醫學工程分數應該和電子信息工程、電子科學與技術、微電子等專業分數差不多才合理。

生物醫學工程屬於電子信息類專業

或者准確來講,是屬於電子、醫學、計算機交叉專業。從課程安排就可以看出來,主要課程有:模擬電子技術、數字電子技術、人體解剖學、生理學、基礎生物學、生物化學、信號與系統、演算法與數據結構、資料庫原理、數字信號處理、EDA技術、數字圖像處理、自動控制原理、醫學成像原理、生物信息學、高等數學、線性代數、概率論與數理統計、計算機基礎、C語言程序設計、微型計算機原理及介面技術、操作系統,80%的課程和電子、計算機相關,快接近通信工程和電子信息工程了。

往大了說,生物醫學工程專業綜合工程學、生物學和醫學的理論和方法,用電子技術、計算機技術及信息科學有關的基礎理論知識以及醫學與工程技術相結合,主要針對醫療儀器、醫學儀器以及其它電子技術、計算機技術、信息產業等部門從事研究、開發。

所以,它和醫學、生物有關系,但和電子信息關系最大,不是醫學類專業、生物類專業,是典型的工科專業,屬於計算機和電子類專業大方向,畢業後授予的不是醫學學士,而是工學學士。

如果是自動化是製造業和IT產業的橋梁,生物醫學工程則是醫學和IT的橋梁,二者都是有交叉復合特點的弱電信息類專業,屬於不錯的專業系列,比大部分傳統工科要好。

就業

舉個平易近人的例子,像醫學臨床中的人工器官、超聲波成像技術、CT、核磁共振等醫療技術和器械,就來自於生物醫學工程技術,學生就業的主要去向為醫療器械領域的企業,比如邁瑞、聯影、強生、GE、飛利浦、西門子等知名企業,也可以在醫院工作的設備、影像科、臨床工程、信息中心等相關科室工作。

除了這些最相關的就業去向,生物醫學工程也可以從數學演算法,醫學電子、生物醫學信息學,生物醫學光子等等。

各高校的方向

以下是生物醫學工程比較強的學校。

生物醫學工程方向很多,不同的學校方向有差別,有的還和智能醫療大數據結合,比如復旦大學的醫學影像方向。北航偏人體力學,骨骼相關,北大醫偏人體力學、醫用材料、生物結構等,華科和上交方向比較多,人體力學、神經工學、醫學影像、醫用材料、醫用精儀、智能醫療、生物結構、生物信號,華科更偏電子。東南大學生物醫學工程號稱第一,有三個方向,生物納米材料,人體力學和神經工學復合,重慶大學材料方向名氣大,浙大的醫用精儀基本上屬於電子了。納米、材料方向比較坑,其它都不錯,生物醫學工程強校本科都差不太多,研究生選好方向。

生源質量排名和高校投檔線排名,哪個更有利於志願填報參考?

發布於 2019-03-11
高考志願填報
高考分數線

③ 醫療大數據爆發,千億級市場怎麼玩

未來資本對大數據的爭奪戰已經開始。據媒體報道,2013年至2014年以來, 大數據是互聯網醫療健康主要並購投資領域之一。
前身為中國首家專業從事醫院信息系統軟體開發與應用工程企業的北大醫療信息技術有限公司(下稱「北大醫信」)已經瞄準了醫療大數據的戰略方向。
今年3月,北大基金會向北大醫信投資3000萬,這是北大史上投資最大的「真金白銀」。在3月14日的北大醫信成立大會上,方正集團高級副總裁、方正信產集團CEO方中華直接給其賦予了重任:「北大和方正集團的大力支持、大數據時代帶來的無限機遇,都應該讓我們感到,我們的事業之無上光榮;光榮的背後是任重道遠,必須要共同努力將北大、方正賦予北大醫信的使命完成好、做好大數據事業,不僅要做北大大數據中心,未來還要做國家級、世界級的大數據中心。」
12月11日,弘毅投資、高盛、東軟控股及協同創新等投資者共同對東軟熙康進行1.7億美元的增資。東軟熙康是東軟集團旗下專門從事互聯網醫療和健康管理的公司,致力於通過大數據,雲計算、物聯網、移動互聯網提供基於O2O模式的健康管理與醫療服務平台,這筆投資刷新了國內互聯網醫療與健康管理領域最大單筆融資的紀錄,也是全球互聯網醫療與健康管理領域最大單筆融資之一。
上海醫聯工程已經建立了國內目前醫療機構聯網范圍最大的臨床信息共享系統。該工程的承建商萬達信息股份有限公司(下稱「萬達信息」),2014年7月收購上海復高計算機科技有限公司,8月收購寧波金唐軟體股份有限公司。這兩個公司都是在醫療信息化領域做了十多年的企業。
萬達信息股份有限公司總裁助理馮東雷告訴網易科技,萬達信息加上新收購的兩個子公司,現在一共有員工3500人左右,其中從事與醫療健康相關的有事業部和子公司,員工共有1500人左右,是萬達信息業務中最大的一塊。
上海金仕達衛寧軟體股份有限公司是一家專業從事醫療衛生領域信息化、數字化、軟體研究與開發的高科技企業。徐春華告訴網易科技,金仕達衛寧做數據處理是原有業務的一種延伸,但是在過去一年當中,他發現,涉足醫療大數據領域的不光傳統的做醫療IT軟硬體服務的企業,甚至還有許多跨界的、之前和醫療沒關系的上市公司,例如以地產起家的運盛實業、濃縮果汁生產企業國投中魯等。
而在日前的「2014年中國移動醫療產業年會」上,中國移動、中國電信、中國聯通、IBM、保險公司招商信諾等,還有各種健康管理公司都參與了主題為「健康大數據 全民大健康」的論壇。
企業之外,醫院和各路研究機構也在嘗試開展醫療大數據的研究。11月29日,中國科學院深圳先進技術研究院健康大數據研究中心成立。北京大學正在籌備成立北大醫療健康大數據中心。最近兩個月,馮東雷拜訪了北京大學、浙江大學、中山大學、中南大學等幾所高校,「這些高校都希望在大數據方面和我們進行合作。」他透露。
2014年10月18日,首都醫科大學附屬北京安貞醫院和輝瑞投資有限公司合作的國內首個心血管醫療大數據中心項目啟動。
臨床應用:還不成熟
目前對醫療大數據的需求集中在在三個層面:運營管理、輔助治療和輔助科研。在業界看來,目前在中國,醫療大數據已經取得良好效果的是行政管理。
北京市公共衛生信息中心統計室主任郭默寧告訴網易科技,目前在數據的挖掘和利用方面,北京市公共衛生信息中心做的比較有成效的是對醫療機構進行績效分析。
以前,對醫療機構進行績效評價並不容易,因為每個病人病情各異,醫療機構的工作難度和工作效果很難衡量,醫療機構之間進行對比也非常困難。郭默寧告訴網易科技,以往對醫療機構進行績效評估的通常模式是找專家給醫院評分,依據經驗和主觀判斷比較多。
2008年開始,北京市公共衛生信息中心嘗試根據通過數據挖掘得來的指標對轄區內醫療機構進行績效評價。她告訴網易科技:「利用統計學方法,可以把醫療機構收治的病症相似的病人進行分組,這樣在同組病人當中,就可以比較各個機構的服務優劣了。這樣可以促進醫療機構精細化管理,提高醫療服務的質量。」
郭默寧告訴網易科技,未來在公共衛生領域,醫療數據的挖掘和利用的前景是非常廣闊的。比如,在醫療衛生資源規劃、配置,疾病預警等方面都會得到充分的應用。
在臨床輔助治療和輔助科研方面,已經有機構在進行探索和嘗試,但是目前尚不成熟。
萬達信息之前研發的「臨床輔助決策系統」在業界比較知名,其目前可以在上海市38家市級醫院向醫生提供近期重復用葯、檢驗、檢查的提醒、治療安全警示以及臨床路徑(是指針對某一疾病建立一套標准化治療模式與治療程序,是一個有關臨床治療的綜合模式,以循證醫學證據和指南為指導來促進治療組織和疾病管理的方法,最終起到規范醫療行為,減少變異,降低成本,提高質量的作用)服務。
但是,馮東雷告訴網易科技,這些功能的提供,實際上需要做知識庫的建設,但是現在的知識庫都是基於現有的教科書、葯品使用說明以及一些臨床手冊,都比較簡單,今後要把醫生的真實的看病的經驗也輸入進來,才能在臨床上發揮更大的意義,這才是真正的大數據挖掘。他透露,在即將開展的「心血管疾病和腫瘤疾病大數據處理分析與應用研究」的項目中,就有心血管、腫瘤專家參與進來。
2012年,萬達信息、國家衛生工程中心就申請了上海市科委醫療健康大數據的課題。在這個項目中,萬達信息嘗試了對高血壓進行大數據分析,試圖找到病症、用葯和療效之間的關聯。但是馮東雷告訴網易科技,這樣的分析目前遇到一些困難。以往的臨床研究(隨機對照試驗RCT)是用實驗組和對照組進行的,對照組是一些排除了並發症等相對理想的對照人群。樣本量小,但每個樣本的數據顆粒很細。但是用醫療大數據做分析的話,樣本量很大,但是每個樣本數據顆粒比較粗。因此不能套用傳統RCT的研究方法。因此需要新的研究思路。目前用大數據已經發現了一些治療手段和效果的關聯性,但是這種結論在臨床使用上有多大的意義還有待檢驗。
這樣的研究還在繼續。國家「863」計劃2015年度項目申報指南中,在生物和醫葯技術領域已經部署「生物大數據開發與利用關鍵技術研究」,涉及的內容包括生物大數據標准化和集成、融合技術,生物大數據表述索引、搜索與存儲訪問技術,心血管疾病和腫瘤疾病大數據處理分析與應用研究,基於區域醫療與健康大數據處理分析與應用研究,組學大數據中心和知識庫構建與服務技術等。
萬達信息參與了其中的兩項,分別為「基於區域醫療與健康大數據處理分析與應用研究」,以及「心血管疾病和腫瘤疾病大數據處理分析與應用研究」。其中後者開展面向中醫的心血管疾病和腫瘤疾病大數據分析與應用的研究。
北大醫信也在與北京大學合作,研究臨床醫療大數據的分析和利用。北大醫信服務過的醫院超過500家,其中三甲醫院200多家,佔全國三甲醫院總數的1/4左右,北京大學下屬有9家附屬醫院、13家教學醫院,這些醫院信息系統中積累的大量數據,為進行大數據分析和利用打下了堅實的基礎。
北大醫信資深副總裁兼CTO鄒悅告訴網易科技,目前北大醫信的臨床決策支持體系正在北京大學人民醫院、北京大學國際醫院、江蘇省人民醫院進行試點。
北大醫信已經開發了臨床預警和建議類的應用。預警類的應用可以根據患者的一些生命體征,判斷患病風險並進行提示。建議類的應用,目前北大醫信做了糖尿病這個病種,系統可以根據糖尿病人的症狀、檢驗檢查結果和病歷,給出相應的治療方案建議。
在臨床科研方面,北大醫信也做了一些數據分析,並且得到了一些結果。比如,以往子宮內膜異位和子宮肌瘤的誤診率高達65.1%,因為兩種疾病的症狀非常相似。通過大數據分析發現,卵巢囊腫、腹痛、貧血這三種症狀在這兩種病中的權重是不同的,子宮內膜異位與卵巢囊腫的關聯最強,子宮肌瘤和貧血的關聯最強。
「我們分析出了這個結果,但是在臨床上怎麼用,還要再進一步探討。」鄒悅介紹。
好醫生集團董事長高瞻認為,要讓大數據產生價值,需要有一條完整的價值鏈,目前中國的這個價值鏈還有缺失。大數據的價值鏈有數據的收集、儲存、分析、應用四個環節,但是目前這個產業投入比較多的是收集和儲存,分析和應用還比較弱。即使在投入較多的數據收集環節,由於缺乏相應的機制,數據的質量也不是很高。
業內者說:怎麼做
在目前的情況下,如何做好大數據?高瞻認為,應當先抓住一些關鍵業務需求,同時數據基礎比較好,先做起來,然後再逐步擴展。他舉了兩個例子。
好醫生集團曾參與過安徽省肥西縣衛生局的一個項目。據高瞻介紹,肥西縣衛生局將新農合醫療報銷系統的數據和衛生局為居民建立的電子健康檔案做了一個關聯性分析。結果發現,居民的肥胖、抽煙與高血壓、糖尿病的發病關聯性很強。高瞻告訴網易科技,這不是什麼新的發現,但是應用大數據分析的意義在於,之前大家只是從概念上知道肥胖和抽煙會對高血壓和糖尿病產生影響,用大數據分析之後,能夠真實地看到具體的一個個人的肥胖和抽煙對病症產生了影響。之後,社區醫院應用了這個分析結果,給高血壓病人、糖尿病病人看病時不光降血壓、降血糖,還要干涉患者的肥胖和吸煙。現在整個肥西、還有安徽的很多縣都在推廣這樣的做法,這一個小小的改變,使得很多地方的居民電子健康檔案的使用率從20%左右變成了60%—70%,醫生們本沒有使用積極性的資料庫被激活了。
肥西還做了個試驗。原來農村治病,不管大人小孩,一般都是開抗生素、輸液,好醫生集團多年來做鄉村醫生的培訓,呼籲不要濫用抗生素,但是在實際中效果不大。今年年初,安徽省啟動了基層醫療衛生機構處方集系統,這個系統可以根據疾病診斷,提示建議處方,旨在規范診療行為和用葯行為。同時,從今年2月開始,肥西縣衛生局每月把醫生處方當中使用兩種以上抗生素的處方的比例發給醫生。結果到了10月份,原來高達20%-60%的數據降到了個位數。
高瞻總結,大數據應用應當先從「Low hanging fruits」,即掛得低的果子、容易達成的目標開始,先把手頭有限的「小數據」用好。
這個觀點與北京301醫院計算機室原主任任連仲不謀而合。
任連仲告訴網易科技,目前中等規模以上的醫院起碼都積累了數百GB的數據,每100GB的數據就相當於30萬份病歷。雖然這個數量級還沒達到PB級,但是其中一定蘊含著許多有價值的信息。
他拿自己的觀察舉例說:「我觀察了我身邊20個左右患惡性腫瘤的人,我發現其中六七成的人在生活中有過非常苦惱郁悶的一段時期。20個樣本,就可以總結出一點規律了,何況這個樣本量大到GB級呢?那會得到更多、更有價值、更准確的結論。」
他主張先把目前的數據利用起來,現在301醫院那些成摞的申請單就是真實的需求。他說:「目前在醫院里,這樣的服務還是被動的,是醫生找上門來我們才提供服務,如果這種服務再進一步走上主動,廣而告之,告訴廣大醫護人員和管理人員我們這里可以提供你們所需的『信息服務』,醫生在和技術人員在不斷交流的過程中,一定能挖掘出大數據更大的價值。」
任連仲今年80歲,但是老爺子嘴裡蹦出的詞是「快速迭代」,按照他的說法:「好工具是用出來的。這是一個巨大的市場,這個事我們不能等。」

④ 大數據應用在哪些領域

大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。

1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。

5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。

6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。

9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。

10、生物醫學:大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。

11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。

12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。

大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。

(4)生物醫葯大數據擴展閱讀

七個典型的大數據應用案例

1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。

3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。

4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。

5、Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。

6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。

7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。

⑤ 大數據戰略的介紹

大數據戰略是大數據科學平台、幹細胞與再生醫學等滿足國家重大需求的領域方內向、我國可容能實現重大科技突破的領域以及世界可能發生重大科技事件的領域加快或加強重大科技布局。證券之星挖掘優質概念股以供投資者參考。大數據科學將成為新的科研範式。「互聯網技術、互聯網經濟學、超級計算、環境科學、生物醫葯等研究產生海量數據,催生了大數據科學這一新的科研範式,將引起科研組織方式的深刻變化,並使知識的創造和應用更加緊密結合。

閱讀全文

與生物醫葯大數據相關的資料

熱點內容
美圖m6微信鈴聲怎麼改 瀏覽:206
輸出的json數據 瀏覽:552
xp關閉打開文件安全警告 瀏覽:905
win10用cad哪個版本好 瀏覽:883
文件從電腦傳送到手機 瀏覽:396
安卓系統怎麼設置網路 瀏覽:707
win10下的文件類型選項 瀏覽:512
元數據修改什麼意思 瀏覽:555
掃描pdf轉word 瀏覽:914
行業協會如何查行業平均數據 瀏覽:545
什麼app能長期使用 瀏覽:617
哪個APP可以學相聲 瀏覽:347
程序使用代理 瀏覽:149
文件大小怎麼調 瀏覽:924
javadouble經度 瀏覽:354
英國頒布了哪些綱領性文件 瀏覽:929
文件隔行選擇是哪些鍵 瀏覽:395
股票的數據儲存在哪裡 瀏覽:172
微信雙機同時登陸 瀏覽:448
vbnet網頁源代碼 瀏覽:409

友情鏈接