㈠ 大數據思維的三個維度分別是什麼
第一、描述思維
也就是要將一些的結構化的數據或者非結構化的數據都變為客觀的標准,在大數據思維的過程中,涉及了很多人為的因素,這些也是可以進行數據分析的,舉一個例子就是消費者行為的研究,消費者行為可以是定量的,也可以是不定量的,描述思維就要包含消費者行為的各個方面。這里舉一個例子就是商場會對連入區域網的客戶繼續進行數據的採集,了解客戶的消費情況以及分布的情況,消費者可以實現購物、用餐、休閑、娛樂一條龍的服務,並且也可以在很大的程度上提升用戶的體驗度。在一些大型的景區或者游樂場,大數據可以幫助景區進行更好的遊客管理。
第二、相關性思維
就是對於數據之間相關性的研究,對於消費者行為或者用戶行為的研究方面,這些行為在一定程度上,大大小小和其他不同的數據都是有內在的聯系的,大數據分析的結果就可以更好的建立起數據預測的模型,可以用來預測消費者的偏好和行為,相關性的研究和紛紛也可以更好的支持預測思維。
第三、攻略思維
在大數據繼續預測以及分析之後,企業可以根據大數據分析的結果進行營銷策略的調整,這才是大數據營銷的主要目的,從描述到預測,最後到攻略,這也是大數據思維的一個完整的過程。
關於大數據思維的三個維度分別是什麼,環球青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
㈡ 漫談大數據的思想形成與價值維度
漫談大數據的思想形成與價值維度
清華基於微博分析獲得的大數據幸福指數發現人們周六最幸福,相信大家心情不錯,因此今天不談枯燥的技術。關於大數據的思維、理念、方法論已經被反復消費了,本來我想直接進入交互環節,繼挺兄還是要求先有一部分規定動作,我就先自彈自唱幾十分鍾,既然是漫談,也不見得扣題,說到哪裡是哪裡。各位有問題,我可以擇時擇機插入討論。
先說大數據思想的形成吧。自從人類開始文字和數字,數據就開始產生。就數據增長曲線而言,極小的初值確實要經歷漫長的過程達到人類能感知的曲線拐點。谷歌前CEO埃里克·施密特曾給出了一個有趣的數據:從人類文明曙光初現到2003年一共產生的數據,只相當於2010年兩天產生的數據量。而一旦越過拐點,「大數據摩爾定律」的滾滾鐵輪下,指數效應爆發:最近兩年產生的數據量相當於之前產生的全部數據量。
在漫長的數據蓄水過程中,數學和統計學逐漸發展,人們開始注意對數據的量化分析,在人類進入信息時代以前這樣的例子就不勝枚舉。比如經濟上,黃仁宇先生對宋朝經濟的分析中發現了「數目字管理」(即定量分析)的廣泛應用(可惜王安石變法有始無終)。又如軍事,「向林彪學習數據挖掘」的橋段不論真假,其背後量化分析的思想無疑有其現實基礎,而這一基礎甚至可以回推到2000多年前,孫臏正是通過編造「十萬灶減到五萬灶再減到三萬灶」的數據、利用龐涓的量化分析習慣對其進行誘殺。
到上世紀50-60年代,磁帶取代穿孔卡片機,啟動了數據存儲的革命。磁碟驅動器隨即發明,它帶來的最大想像空間並不是容量,而是隨機讀寫的能力,這一下子解放了數據工作者的思維模式,開始數據的非線性表達和管理。資料庫應運而生,從層次型資料庫(IBM為阿波羅登月設計的層次型資料庫迄今仍在建行使用),到網狀資料庫,再到現在通用的關系資料庫。與數據管理同時發源的是決策支持系統(DSS),80年代演變到商業智能(BI)和數據倉庫,開辟了數據分析——也就是為數據賦予意義——的道路。
那個時代運用數據管理和分析最厲害的是商業。第一個數據倉庫是為寶潔做的,第一個太位元組的數據倉庫是在沃爾瑪。沃爾瑪的典型應用是兩個:一是基於retaillink的供應鏈優化,把數據與供應商共享,指導它們的產品設計、生產、定價、配送、營銷等整個流程,同時供應商可以優化庫存、及時補貨;二是購物籃分析,也就是常說的啤酒加尿布。關於啤酒加尿布,幾乎所有的營銷書都言之鑿鑿,我告訴大家,是Teradata的一個經理編的,人類歷史上從沒有發生過,但是,先教育市場,再收獲市場,它是有功的。
僅次於沃爾瑪的樂購(Tesco),強在客戶關系管理(CRM),細分客戶群,分析其行為和意圖,做精準營銷。
這些都發生在90年代。00年代時,科研產生了大量的數據,如天文觀測、粒子碰撞,資料庫大拿吉姆·格雷等提出了第四範式,是數據方法論的一次提升。前三個範式是實驗(伽利略從斜塔往下扔),理論(牛頓被蘋果砸出靈感,形成經典物理學定律),模擬(粒子加速太貴,核試驗太臟,於是乎用計算代替)。第四範式是數據探索。這其實也不是新鮮的,開普勒根據前人對行星位置的觀測數據擬合出橢圓軌道,就是數據方法。但是到90年代的時候,科研數據實在太多了,數據探索成為顯學。在現今的學科里,有一對孿生兄弟,計算XX學和XX信息學,前者是模擬/計算範式,後者是數據範式,如計算生物學和生物信息學。有時候計算XX學包含了數據範式,如計算社會學、計算廣告學。
2008年克里斯·安德森(長尾理論的作者)在《連線》雜志寫了一篇《理論的終結》,引起軒然大波。他主要的觀點是有了數據,就不要模型了,或者很難獲得具有可解釋性的模型,那麼模型所代表的理論也沒有意義了。跟大家說一下數據、模型和理論。大家先看個粗糙的圖。
首先,我們在觀察客觀世界中採集了三個點的數據,根據這些數據,可以對客觀世界有個理論假設,用一個簡化的模型來表示,比如說三角形。可以有更多的模型,如四邊形,五邊形。隨著觀察的深入,又採集了兩個點,這時發現三角形、四邊形的模型都是錯的,於是確定模型為五邊形,這個模型反映的世界就在那個五邊形里,殊不知真正的時間是圓形。
大數據時代的問題是數據是如此的多、雜,已經無法用簡單、可解釋的模型來表達,這樣,數據本身成了模型,嚴格地說,數據及應用數學(尤其是統計學)取代了理論。安德森用谷歌翻譯的例子,統一的統計學模型取代了各種語言的理論/模型(如語法),能從英文翻譯到法文,就能從瑞典文翻譯到中文,只要有語料數據。谷歌甚至能翻譯克萊貢語(StarTrek里編出來的語言)。安德森提出了要相關性不要因果性的問題,以後舍恩伯格(下面稱之為老舍)只是拾人牙慧了。
當然,科學界不認同《理論的終結》,認為科學家的直覺、因果性、可解釋性仍是人類獲得突破的重要因素。有了數據,機器可以發現當前知識疆域裡面隱藏的未知部分。而沒有模型,知識疆域的上限就是機器線性增長的計算力,它不能擴展到新的空間。在人類歷史上,每一次知識疆域的跨越式拓展都是由天才和他們的理論率先吹起的號角。
2010年左右,大數據的浪潮捲起,這些爭論迅速被淹沒了。看谷歌趨勢,」bigdata」這個詞就是那個時間一下子躥升了起來。吹鼓手有幾家,一家是IDC,每年給EMC做digitaluniverse的報告,上升到澤位元組范疇(給大家個概念,現在硬碟是太位元組,1000太=1拍,阿里、Facebook的數據是幾百拍位元組,1000拍=1艾,網路是個位數艾位元組,谷歌是兩位數艾位元組,1000艾=1澤);一家是麥肯錫,發布《大數據:創新、競爭和生產力的下一個前沿》;一家是《經濟學人》,其中的重要寫手是跟老舍同著《大數據時代》的肯尼思?庫克耶;還有一家是Gartner,杜撰了3V(大、雜、快),其實這3V在2001年就已經被編出來了,只不過在大數據語境里有了全新的詮釋。
咱們國內,歡總、國棟總也是在2011年左右開始呼籲對大數據的重視。
2012年子沛的書《大數據》教育政府官員有功。老舍和庫克耶的《大數據時代》提出了三大思維,現在已經被奉為圭臬,但千萬別當作放之四海而皆準的真理了。
比如要數據全集不要采樣。現實地講,1.沒有全集數據,數據都在孤島里;2.全集太貴,鑒於大數據信息密度低,是貧礦,投入產出比不見得好;3.宏觀分析中采樣還是有用的,蓋洛普用5000個樣本勝過幾百萬調查的做法還是有實踐意義;4.采樣要有隨機性、代表性,采訪火車上的民工得出都買到票的結論不是好采樣,現在只做固定電話采樣調查也不行了(行動電話是大頭),在國外基於Twitter采樣也發現不完全具有代表性(老年人沒被包括);5.采樣的缺點是有百分之幾的偏差,更會丟失黑天鵝的信號,因此在全集數據存在且可分析的前提下,全量是首選。全量>好的采樣>不均勻的大量。
再說混雜性由於精確性。擁抱混雜性(這樣一種客觀現象)的態度是不錯的,但不等於喜歡混雜性。數據清洗比以前更重要,數據失去辨識度、失去有效性,就該扔了。老舍引用谷歌PeterNovig的結論,少數高質量數據+復雜演算法被大量低質量數據+簡單演算法打敗,來證明這一思維。Peter的研究是Web文本分析,確實成立。但谷歌的深度學習已經證明這個不完全對,對於信息維度豐富的語音、圖片數據,需要大量數據+復雜模型。
最後是要相關性不要因果性。對於大批量的小決策,相關性是有用的,如亞馬遜的個性化推薦;而對於小批量的大決策,因果性依然重要。就如中葯,只到達了相關性這一步,但它沒有可解釋性,無法得出是有些樹皮和蟲殼的因導致治癒的果。西葯在發現相關性後,要做隨機對照試驗,把所有可能導致「治癒的果」的干擾因素排除,獲得因果性和可解釋性。在商業決策上也是一樣,相關性只是開始,它取代了拍腦袋、直覺獲得的假設,而後面驗證因果性的過程仍然重要。
把大數據的一些分析結果落實在相關性上也是倫理的需要,動機不代錶行為。預測性分析也一樣,不然警察會預測人犯罪,保險公司會預測人生病,社會很麻煩。大數據演算法極大影響了我們的生活,有時候會覺得挺悲哀的,是演算法覺得了你貸不貸得到款,谷歌每調整一次演算法,很多在線商業就會受到影響,因為被排到後面去了。
下面時間不多了,關於價值維度,我貼一些以前講過的東西。大數據思想中很重要的一點是決策智能化之外,還有數據本身的價值化。這一點不贅述了,引用馬雲的話吧,「信息的出發點是我認為我比別人聰明,數據的出發點是認為別人比我聰明;信息是你拿到數據編輯以後給別人,而數據是你搜集數據以後交給比你更聰明的人去處理。」大數據能做什麼?價值這個V怎麼映射到其他3V和時空象限中?
再貼上解釋。「見微」與「知著」在Volume的空間維度。小數據見微,作個人刻畫,我曾用《一代宗師》中「見自己」形容之;大數據知著,反映自然和群體的特徵和趨勢,我以「見天地、見眾生」比喻之。「著」推動「微」(如把人群細分為buckets),又拉動「微」(如推薦相似人群的偏好給個人)。「微」與「著」又反映了時間維度,數據剛產生時個人價值最大,隨著時間decay最後退化為以集合價值為主。
「當下」和「皆明」在Velocity的時間維度。當下在時間原點,是閃念之間的實時智慧,結合過往(負軸)、預測未來(正軸),可以皆明,即獲得perpetual智慧。《西遊記》里形容真假孫悟空,一個是「知天時、通變化」,一個是「知前後、萬物皆明」,正好對應。為達到皆明,需要全量分析、預測分析和處方式分析(prescriptiveanalytics,為讓設定的未來發生,需要採取什麼樣的行動)。
「辨訛」和「曉意」在Variety的空間維度。基於大體量、多源異質的數據,辨訛過濾雜訊、查漏補缺、去偽存真。曉意達到更高境界,從非結構數據中提取語義、使機器能夠窺探人的思想境界、達到過去結構化數據分析不能達到之高度。
先看知著,對宏觀現象規律的研究早已有之,大數據的知著有兩個新特點,一是從采樣到全量,比如央視去年「你幸福嗎」的調查,是街頭的采樣,前不久《中國經濟生活大調查》關於幸福城市排名的結論,是基於10萬份問卷(17個問題)的采樣,而清華行為與大數據實驗室做的幸福指數(繼挺兄、我、還有多位本群群友參與),是基於新浪微博數據的全集(托老王的福),這些數據是人們的自然表達(而不是面對問卷時的被動應對),同時又有上下文語境,因此更真實、也更有解釋性。北上廣不幸福,是因為空氣還是房價或教育,在微博上更容易傳播的積極情緒還是消極情緒,數據告訴你答案。《中國經濟生活大調查》說「再小的聲音我們都聽得見」,是過頭話,采樣和傳統的統計分析方法對數據分布採用一些簡化的模型,這些模型把異常和長尾忽略了,全量的分析可以看到黑天鵝的身影,聽到長尾的聲音。
另一個特點是從定性到定量。計算社會學就是把定量分析應用到社會學,已經有一批數學家、物理學家成了經濟學家、寬客,現在他們也可以選擇成為社會學家。國泰君安3I指數也是一個例子,它通過幾十萬用戶的數據,主要是反映投資活躍程度和投資收益水平的指標,建立一個量化模型來推知整體投資景氣度。
再看見微,我認為大數據的真正差異化優勢在微觀。自然科學是先宏觀、具體,進入到微觀和抽象,這時大數據就很重要了。我們更關注社會科學,那是先微觀、具體,再宏觀、抽象,許小年索性認為宏觀經濟學是偽科學。如果市場是個體行為的總和,我們原來看到是一張抽象派的畫,看不懂,通過客戶細分慢慢可以形成一張大致看得懂的現實圖景,不過是馬賽克的,再通過微分、甚至定位個人,形成高清圖。我們每一個人現在都生活在零售商的bucket中(前面說的樂購創造了這個概念),最簡單的是高收入、低收入這類反映背景的,再有就是反映行為和生活方式的,如「精打細算」、「右鍵點擊一族」(使用右鍵的比較techsavvy)。反過來我們消費者也希望能夠獲得個性化的尊崇,Nobodywantstobenobodytoday。
了解並掌握客戶比以往任何時候都更重要。奧巴馬贏在大數據上,就是因為他知道西岸40-49歲女性的男神是喬治·克魯尼,東岸同樣年齡段女性的偶像則是莎拉·傑西卡·帕克(《慾望都市》的主角),他還要更細分,搖擺州每一個郡每一個年齡段每一個時間段在看什麼電視,搖擺州(俄亥俄)1%選民隨時間變化的投票傾向,搖擺選民在Reddit上還是Facebook上,都在其掌握之中。
對於企業來說,要從以產品為中心,轉到以客戶(買單者)甚至用戶(使用者)為中心,從關注用戶背景到關注其行為、意圖和意向,從關注交易形成轉到關注每一個交互點/觸點,用戶是從什麼路徑發現我的產品的,決定之前又做了什麼,買了以後又有什麼反饋,是通過網頁、還是QQ、微博或是微信。
再講第三個,當下。時間是金錢,股票交易就是快魚吃慢魚,用免費股票交易軟體有幾秒的延遲,而佔美國交易量60-70%的高頻程序化交易則要發現毫秒級、低至1美分的交易機會。時間又是生命,美國國家大氣與海洋管理局的超級計算機在日本311地震後9分鍾發出海嘯預警,已經太晚。時間還是機會。現在所謂的購物籃分析用的其實並不是真正的購物籃,而是結帳完的小票,真正有價值的是當顧客還拎著購物籃,在瀏覽、試用、選擇商品的時候,在每一個觸點影響他/她的選擇。數據價值具有半衰期,最新鮮的時候個性化價值最大,漸漸退化到只有集合價值。當下的智慧是從刻舟求劍到見時知幾,原來10年一次的人口普查就是刻舟求劍,而現在東莞一出事網路遷徙圖就反映出來了。當然,當下並不一定是完全准確的,其實如果沒有更多、更久的數據,匆忙對網路遷徙圖解讀是可能陷入誤區的。
第四個,皆明。時間有限,就簡單說了。就是從放馬後炮到料事如神(predictiveanalytics),從料事如神到運籌帷幄(prescriptiveanalytics),只知道有東風是預測分析,確定要借箭的目標、並給出處方利用草船來借,就是處方性分析。我們現在要提高響應度、降低流失率、吸引新客戶,需要處方性分析。
辨訛就是利用多源數據過濾雜訊、查漏補缺和去偽存真。20多個省市的GDP之和超過全國的GDP就是一個例子,我們的GPS有幾十米的誤差,但與地圖數據結合就能做到精確,GPS在城市的高樓中沒有信號,可以與慣性導航結合。
曉意涉及到大數據下的機器智能,是個大問題,也不展開了。貼一段我的文章:有人說在涉及「曉意」的領域人是無法替代的。這在前大數據時代是事實。《點球成金(Moneyball)》講的是數量化分析和預測對棒球運動的貢獻,它在大數據背景下出現了傳播的誤區:一、它其實不是大數據,而是早已存在的數據思維和方法;二、它刻意或無意忽略了球探的作用。從讀者看來,奧克蘭競技隊的總經理比利·比恩用數量化分析取代了球探。而事實是,在運用數量化工具的同時,比恩也增加了球探的費用,軍功章里有機器的一半,也有人的一半,因為球探對運動員定性指標(如競爭性、抗壓力、意志力等)的衡量是少數結構化量化指標無法刻畫的。大數據改變了這一切。人的數字足跡的無意識記錄,以及機器學習(尤其是深度學習)曉意能力的增強,可能逐漸改變機器的劣勢。今年我們看到基於大數據的情感分析、價值觀分析和個人刻畫,當這些應用於人力資源,已經或多或少體現了球探承擔的作用。
以上是小編為大家分享的關於漫談大數據的思想形成與價值維度的相關內容,更多信息可以關注環球青藤分享更多干貨
㈢ DT時代,大數據的基本思維主要體現在哪幾個方面
1 大數據思維的整體性
隨著科技的不斷創新,進入大數據時代的同時必然帶動著大數據思維由一元思維升級至二元思維,目前根據人類思維的轉變模式進行分析,其依然進行至多元思維狀態,即追求和諧穩定社會的模式,但是研究大數據思維的發展進程發現,大數據的二元思維模式是一種高效率並適合現今社會發展的思維模式,其追求效率性、相關性、概率性,為創新發展提高了效率。根據當下社會的需求及其社會的快節奏發展,大數據思維已然在各領域發展處於主導地位,由其基本特徵層面分析,大數據思維主要特徵為整體性,整體性的理論基礎在於人類認識世界的能力在自然觀中的不斷變革而體現,現今社會通過人類對於整體數據的整合及分析能力進行體現,大數據時代,整體性大數據思維模式成為解決問題的首選為必然趨勢及結果,其原因在於整體性思維模式能夠更加高效的完成復雜的數據統計及分析。以我國人口普查為例,我國近三次人口普查時間間隔為十年,而面對我國龐大的人口數量,大數據思維在數據統計中佔領了絕對優勢,據悉我國人口普查總投入超過六億元人民幣,以2010年進行的人口普查數據分析,我國耗費了巨大的人力財力以及時間,倘若運用大數據進行人口普查,以其優勢進行僅使用百分之一的抽樣調查進行數據分析,將大大減少人口普查為政府帶來的難題。
2 大數據思維的互聯性
「一切皆可量化。」道格拉斯。相對微觀層面分析大數據思維特徵,較為典型的為切合現今社會及科技發展的量化互聯思維,量化為具體或明確目標的一種表述,而互聯代表著兩種事物間的連接,其作為大數據思維微觀層面的一種表達方式,更加說明大數據思維的重要性,知名投資人孫正義對於大數據時代的發展提出:「要麼數字化,要麼死亡。」直接地表達出大數據思維目前所處的地位,研究發現,數字信息成為時代發展的代表已成為必然趨勢,而量化思維為數字化特徵帶來的必然思維結果,換言之,量化可以解釋為共性語言描述和解釋世界的一種方式,其體現在於充分運用最新技術手段,對於各個領域進行信息全面定量採集以及信息互通,打通信息間隔閡,並進行全新的信息整合,實現分析實用性及數據科學性,創造更據價值的數據應用和信息資產。目前,大數據的運用不僅體現在網路平台當中,同時在人們的細微生活中、就業環境以及生態保護范圍內都做到了廣泛適用,gartner公司於2015年運用大數據分析出當下及未來人們就業環境,其調查結果表明,2015年全球范圍內數據崗位的需求量高達440萬,而2018年全球范圍內僅大數據就業背景管理人員的缺乏將高達150萬人,案例表明,全球范圍的人才緊缺將成為必然趨勢並不斷增加,該案列清晰的體現出大數據環境下大數據思維的量化互聯性,並且為未來就業環境做出了精準的預測。
3 大數據思維的價值性
由大數據思維的本質進行分析,大數據思維具有價值化特徵,大數據時代信息的不斷整合及分析已然使得信息及數據量化及互聯轉變為多維度的發展狀態,換言之,大數據思維滲透至各個領域及行業的不同維度是大數據發展的初始動機和直接目的,現今社會看待其價值化特徵將其價值性總結為大數據思維的本質,同時,萬物的量化互聯性及其整體性使得其價值性影響了多維度的發展,由此凸顯了數據及大數據思維的創造性及重要性。通過對於事實的研究證明,大數據時代背景下,其價值化特徵及其價值性的意義正在不斷演進並處於不斷被挖掘的狀態,各個領域大數據思維模式相繼被接受和適用也是大數據發展帶來的益處之一,隨著大數據思維的不斷開發和研究,其運用不僅在處理數據分析上實行了高效率,也對於事件及數據的預測上實現了精準並具有概率性的分析結果,google公司於2008年運用大數據思維對於流感爆發地點及人數進行准確預測的經典案列分析,大數據思維對於社會發展體現出其必要的價值性,並且改變了社會對於大數據的看法,可謂大數據的運用成功到達了一個全新的高度,Google公司通過對於數十億網路搜索請求的數據整合,對世界各地區的流感做出預測,該項目的成功引起了各國對於大數據的使用,同時帶動了人們的大數據思維及思考模式,將大數據思維上升至被社會認可的高度。
根據現今社會發展現狀分析,客觀角度說明我國以基本進入大數據時代,大數據思維的特徵已然體現在社會各領域當中,並且伴隨著多維度的運用,因此大數據思維全面運用指日可待,高級思維帶動我國科技及經濟的發展勢在必行。隨著人工智慧的不斷推出以及數據分析的不斷升級,並且基於大數據思維為社會帶來的發展前景研究,大數據思維引領我國科技發展已成為未來的必然趨勢。
㈣ 大數據定義、思維方式及架構模式
大數據定義、思維方式及架構模式
一、大數據何以為大
數據現在是個熱點詞彙,關於有了大數據,如何發揮大數據的價值,議論紛紛,而筆者以為,似乎這有點搞錯了原因與結果,就象關聯關系,有A的時候,B與之關聯,而有B的時候,A卻未必關聯,筆者還是從通常的4個V來描述一下我所認為的大數據思維。
1、大數據的量,數據量足夠大,達到了統計性意義,才有價值。筆者看過的一個典型的案例就是,例如傳統的,收集幾千條數據,很難發現血緣關系對遺傳病的影響,而一旦達到2萬條以上,那麼發現這種影響就會非常明顯。那麼對於我們在收集問題時,是為了發現隱藏的知識去收集數據,還是不管有沒有價值地收集,這還是值得商榷的。其實收集數據,對於數據本身,還是可以劃分出一些標准,確立出層級,結合需求、目標來收集,當然有人會說,這樣的話,將會導致巨大的偏差,例如說喪失了數據的完整性,有一定的主觀偏向,但是筆者以為,這樣至少可以讓收集到的數據的價值相對較高。
2、大數據的種類,也可以說成數據的維度,對於一個對象,採取標簽化的方式,進行標記,針對需求進行種類的擴充,和數據的量一樣,筆者認為同樣是建議根據需求來確立,但是對於標簽,有一個通常採取的策略,那就是推薦標簽和自定義標簽的問題,分類法其實是人類文明的一大創舉,採取推薦標簽的方式,可以大幅度降低標簽的總量,而減少後期的規約工作,數據收集時擴充量、擴充維度,但是在數據進入應用狀態時,我們是希望處理的是小數據、少維度,而通過這種推薦、可選擇的方式,可以在標准化基礎上的自定義,而不是毫無規則的擴展,甚至用戶的自定義標簽給予一定的限制,這樣可以使維度的價值更為顯現。
3、關於時效性,現在進入了讀秒時代,那麼在很短的時間進行問題分析、關聯推薦、決策等等,需要的數據量和數據種類相比以前,往往更多,換個說法,因為現在時效性要求高了,所以處理數據的方式變了,以前可能多人處理,多次處理,現在必須變得單人處理、單次處理,那麼相應的信息系統、工作方式、甚至企業的組織模式,管理績效都需要改變,例如筆者曾經工作的企業,上了ERP系統,設計師意見很大,說一個典型案例,以往發一張變更單,發出去工作結束,而上了ERP系統以後,就必須為這張變更單設定物料代碼,設置需要查詢物料的存儲,而這些是以前設計師不管的,又沒有為設計師為這些增加的工作支付獎勵,甚至因為物料的缺少而導致變更單不能發出,以至於設計師工作沒有完成,導致被處罰。但是我們從把工作一次就做完,提升企業的工作效率角度,這樣的設計變更與物料集成的方式顯然是必須的。那麼作為一個工作人員,如何讓自己的工作更全面,更完整,避免王府,讓整個企業工作更具有時間的競爭力,提高數據的數量、種類、處理能力是必須的。
4、關於大數據價值,一種說法是大數據有大價值,還有一種是相對於以往的結構化數據、少量數據,現在是大數據了,所以大數據的單位價值下降。筆者以為這兩種說法都正確,這是一個從總體價值來看,一個從單元數據價值來看的問題。而筆者提出一個新的關於大數據價值的觀點,那就是真正發揮大數據的價值的另外一個思路。這個思路就是針對企業的問題,首先要說什麼是問題,筆者說的問題不是一般意義上的問題,因為一說問題,大家都以為不好、錯誤等等,而筆者的問題的定義是指狀態與其期望狀態的差異,包括三種模式,
1)通常意義的問題,例如失火了,必須立即撲救,其實這是三種模式中最少的一種;
2)希望保持狀態,
3)期望的狀態,這是比原來的狀態高一個層級的。
我們針對問題,提出一系列解決方案,這些解決方案往往有多種,例如員工的培訓,例如設備的改進,例如組織的方式的變化,當然解決方案包括信息化手段、大數據手段,我們一樣需要權衡大數據的方法是不是一種相對較優的方法,如果是,那麼用這種手段去解決,那麼也就是有價值了。例如筆者知道的一個案例,一個企業某產品部件偶爾會出現問題,企業經歷數次後決定針對設備上了一套工控系統,記錄材料的溫度,結果又一次出現問題時,進行分析認為,如果工人正常上班操作,不應該有這樣的數據記錄,而經過與值班工人的質詢,值班工人承認其上晚班時睡覺,沒有及時處理。再往後,同樣的問題再沒有再次發生。
總結起來,筆者以為大數據思維的核心還是要落實到價值上,面向問題,收集足夠量的數據,足夠維度的數據,達到具有統計學意義,也可以滿足企業生產、客戶需求、甚至競爭的時效要求,而不是一味為了大數據而大數據,這樣才是一種務實、有效的正確思維方式,是一線大數據的有效的項目推進方式,在這樣的思維模式基礎上,採取滾雪球方式,把大數據逐步展開,才真正贏來大數據百花齊放的春天。
二、大數據思維方式
大數據研究專家舍恩伯格指出,大數據時代,人們對待數據的思維方式會發生如下三個變化:
1)人們處理的數據從樣本數據變成全部數據;
2)由於是全樣本數據,人們不得不接受數據的混雜性,而放棄對精確性的追求;
3)人類通過對大數據的處理,放棄對因果關系的渴求,轉而關注相關關系。
事實上,大數據時代帶給人們的思維方式的深刻轉變遠不止上述三個方面。筆者認為,大數據思維最關鍵的轉變在於從自然思維轉向智能思維,使得大數據像具有生命力一樣,獲得類似於「人腦」的智能,甚至智慧。
1、總體思維
社會科學研究社會現象的總體特徵,以往采樣一直是主要數據獲取手段,這是人類在無法獲得總體數據信息條件下的無奈選擇。在大數據時代,人們可以獲得與分析更多的數據,甚至是與之相關的所有數據,而不再依賴於采樣,從而可以帶來更全面的認識,可以更清楚地發現樣本無法揭示的細節信息。
正如舍恩伯格總結道:「我們總是習慣把統計抽樣看作文明得以建立的牢固基石,就如同幾何學定理和萬有引力定律一樣。但是,統計抽樣其實只是為了在技術受限的特定時期,解決當時存在的一些特定問題而產生的,其歷史不足一百年。如今,技術環境已經有了很大的改善。在大數據時代進行抽樣分析就像是在汽車時代騎馬一樣。
在某些特定的情況下,我們依然可以使用樣本分析法,但這不再是我們分析數據的主要方式。」也就是說,在大數據時代,隨著數據收集、存儲、分析技術的突破性發展,我們可以更加方便、快捷、動態地獲得研究對象有關的所有數據,而不再因諸多限制不得不採用樣本研究方法,相應地,思維方式也應該從樣本思維轉向總體思維,從而能夠更加全面、立體、系統地認識總體狀況。
2、容錯思維
在小數據時代,由於收集的樣本信息量比較少,所以必須確保記錄下來的數據盡量結構化、精確化,否則,分析得出的結論在推及總體上就會「南轅北轍」,因此,就必須十分注重精確思維。然而,在大數據時代,得益於大數據技術的突破,大量的非結構化、異構化的數據能夠得到儲存和分析,這一方面提升了我們從數據中獲取知識和洞見的能力,另一方面也對傳統的精確思維造成了挑戰。
舍恩伯格指出,「執迷於精確性是信息缺乏時代和模擬時代的產物。只有5%的數據是結構化且能適用於傳統資料庫的。如果不接受混亂,剩下95%的非結構化數據都無法利用,只有接受不精確性,我們才能打開一扇從未涉足的世界的窗戶」。也就是說,在大數據時代,思維方式要從精確思維轉向容錯思維,當擁有海量即時數據時,絕對的精準不再是追求的主要目標,適當忽略微觀層面上的精確度,容許一定程度的錯誤與混雜,反而可以在宏觀層面擁有更好的知識和洞察力。
3、相關思維
在小數據世界中,人們往往執著於現象背後的因果關系,試圖通過有限樣本數據來剖析其中的內在機理。小數據的另一個缺陷就是有限的樣本數據無法反映出事物之間的普遍性的相關關系。而在大數據時代,人們可以通過大數據技術挖掘出事物之間隱蔽的相關關系,獲得更多的認知與洞見,運用這些認知與洞見就可以幫助我們捕捉現在和預測未來,而建立在相關關系分析基礎上的預測正是大數據的核心議題。
通過關注線性的相關關系,以及復雜的非線性相關關系,可以幫助人們看到很多以前不曾注意的聯系,還可以掌握以前無法理解的復雜技術和社會動態,相關關系甚至可以超越因果關系,成為我們了解這個世界的更好視角。舍恩伯格指出,大數據的出現讓人們放棄了對因果關系的渴求,轉而關注相關關系,人們只需知道「是什麼」,而不用知道「為什麼」。我們不必非得知道事物或現象背後的復雜深層原因,而只需要通過大數據分析獲知「是什麼」就意義非凡,這會給我們提供非常新穎且有價值的觀點、信息和知識。也就是說,在大數據時代,思維方式要從因果思維轉向相關思維,努力顛覆千百年來人類形成的傳統思維模式和固有偏見,才能更好地分享大數據帶來的深刻洞見。
4、智能思維
不斷提高機器的自動化、智能化水平始終是人類社會長期不懈努力的方向。計算機的出現極大地推動了自動控制、人工智慧和機器學習等新技術的發展,「機器人」研發也取得了突飛猛進的成果並開始一定應用。應該說,自進入到信息社會以來,人類社會的自動化、智能化水平已得到明顯提升,但始終面臨瓶頸而無法取得突破性進展,機器的思維方式仍屬於線性、簡單、物理的自然思維,智能水平仍不盡如人意。
但是,大數據時代的到來,可以為提升機器智能帶來契機,因為大數據將有效推進機器思維方式由自然思維轉向智能思維,這才是大數據思維轉變的關鍵所在、核心內容。眾所周知,人腦之所以具有智能、智慧,就在於它能夠對周遭的數據信息進行全面收集、邏輯判斷和歸納總結,獲得有關事物或現象的認識與見解。同樣,在大數據時代,隨著物聯網、雲計算、社會計算、可視技術等的突破發展,大數據系統也能夠自動地搜索所有相關的數據信息,並進而類似「人腦」一樣主動、立體、邏輯地分析數據、做出判斷、提供洞見,那麼,無疑也就具有了類似人類的智能思維能力和預測未來的能力。
「智能、智慧」是大數據時代的顯著特徵,大數據時代的思維方式也要求從自然思維轉向智能思維,不斷提升機器或系統的社會計算能力和智能化水平,從而獲得具有洞察力和新價值的東西,甚至類似於人類的「智慧」。
舍恩伯格指出,「大數據開啟了一個重大的時代轉型。就像望遠鏡讓我們感受宇宙,顯微鏡讓我們能夠觀測到微生物一樣,大數據正在改變我們的生活以及理解世界的方式,成為新發明和新服務的源泉,而更多的改變正蓄勢待發」。
大數據時代將帶來深刻的思維轉變,大數據不僅將改變每個人的日常生活和工作方式,改變商業組織和社會組織的運行方式,而且將從根本上奠定國家和社會治理的基礎數據,徹底改變長期以來國家與社會諸多領域存在的「不可治理」狀況,使得國家和社會治理更加透明、有效和智慧。
㈤ 談談對大數據的理解和認識!
隨著大數據的概念提出,越來越多的人,開始關注數據,注重數據帶來的巨大的價值。大家談論的也都是與大數據相關的專業話題了,無論是商業BI,還是阿里雲。都是越來越多的行業內部人員乃至關注大數據的看客的討論熱點了。
大數據的鼻祖又是什麼呢?
大數據現實體現最初是人口普查,最早是在美國,10年為一個周期做一次人口普查工作,第一次,在1880年用了8年做完,到1890年,人口繼續增長,經過科學的預測,如果還是按照老方法去做,需用13年做完,這顯然跟不上時代的要求。所以人們開始從記錄,採集,整理,分析等多個領域尋求加快數據分析的速度,大數據的概念也慢慢被提出。
大數據在我們現在生活有哪些體現?
現如今,大數據體現最多的可能是社交網路之中了比如:facebook,微信等網路社交平台。其中也不乏實際應用的例子。
微信幾乎每個人都有,但微信的朋友圈可以向定向的人群發送指定的廣告,還可以選擇地區,可以選擇性別,年紀分類,教育程度分類,給所有用戶進行初步分類之後,再是根據你朋友圈的發文或者交流信息進行提取分析,進一步給每個客戶貼上獨特的標簽,最後把相關信息給到銷售部門,進行精準營銷。
如今還有絕大多數的公司對於大數據渴望又不知道如何下手,其中大致包括兩個方面。
1、想做數據分析,但是之前沒有相關的數據意識,基礎數據丟失或從未搜集,或者數據孤島嚴重,行業數據相對獨立而難以共享。
2、數據產生的體量大,維度高,提取難度大。例如某個知名商業銀行的信用卡部門,每天收集大量的個人客戶的多維度信息,面對大量信心無法價值化,因為涉及個人隱私和安全,數據不可買賣,又不知道如何內部進行分析促進其他相關業務增長。
此外,在整個企業的運作過程還可以分為交易數據和交互數據。
農夫山泉,幾年前銷量並不如今,當時他們基本上只掌握了大量的交易的數據,通過分析得出,農夫山泉的利潤始終上不來,是因為運輸成本很高,如何降低運輸成本成為問題的關鍵點,交互數據的需求成為至關重要的一環,所以決定,每個採集人員每天到10至20個銷售點,取收集大量的交互數據,其中包括水的位置,排列形狀,天氣,優惠活動,市場反饋等一系列交互數據,一個月一個人收集的信息量大約3個TB,繼而委託sap公司進行分析開發出物流成本控制處理系統,從而進行運輸預測,運輸安排和中轉站的一系列重新部署,最終直接降低運輸成本,提高了運輸效果,終於坐到飲用水市場第一的位置。
通過今天的介紹,希望給大家一些對於大數據的基本認識,也希望大家一同關注大數據發展,共同分享大數據帶來的驚喜。如果您還存在疑惑或是想要了解更多,歡迎關注西線學院。
㈥ 大數據開發的四個維度
數量:數據量
數量也許是與大數據最相關的特徵,指企業為了改進企業中的決策而試圖利用的大量數據。數據量持續以前所未有的速度增加。然而,真正造成數據量“巨大”的原因在不同和行業和地區各有不同,而且沒有達到通常引用的PB級(petabyte)和ZB級(zetabyte)。超過一半的受訪者認為數據量達到Terabyte和Petabyte之間才稱為大數據,而30%的受訪者不知道“大”對於其組織應該有多大。所有受訪者都同意,當前被認為“巨大的數量”在將來甚至會更大。
多樣性:不同類型的數據和數據源
多樣性是指管理多種數據類型的復雜性,包括結構化、半結構化和非結構化數據。企業需要整合並分析來自復雜的傳統和非傳統信息源的數據,包括企業內部和外部的數據。隨著感測器、智能設備和社會協同技術的爆炸性增長,數據的類型無以計數,包括:文本、微博、感測器數據、音頻、視頻、點擊流、日誌文件等。
速度:數據在運動中
數據創建、處理和分析的速度持續在加快。加速的原因是數據創建的實時性天性,以及需要將流數據結合到業務流程和決策過程中的要求。速度影響數據時延 – 從數據創建或獲取到數據可以訪問的時間差。目前,數據以傳統系統不可能達到的速度在產生、獲取、存儲和分析。對於對時間敏感的流程,例如實時欺詐監測或多渠道“即時”營銷,某些類型的數據必須實時地分析,以對業務產生價值。
精確性:數據不確定性
精確性指與某些數據類型相關的可靠性。追求高數據質量是一項重要的大數據挑戰,但是,即使最優秀的數據清理方法也無法消除某些數據固有的不可預測性,例如天氣、經濟或者客戶最終的購買決定。不確定性的確認和規劃的需求是大數據的一個維度,這是隨著高管需要更好地了解圍繞他們身邊的不確定性而引入的維度。
關於大數據開發的四個維度,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
以上是小編為大家分享的關於大數據開發的四個維度的相關內容,更多信息可以關注環球青藤分享更多干貨
㈦ 大數據的七大核心價值
大數據的七大核心價值
隨著移動互聯網的飛速發展,信息的傳輸日益方便快捷,端到端的需求也日益突出,縱觀整個移動互聯網領域,數據已被認為是繼雲計算、物聯網之後的又一大顛覆性的技術性革命,毋庸置疑,大數據市場是待挖掘的金礦,其價值不言而喻。可以說誰能掌握和合理運用用戶大數據的核心資源,誰就能在接下來的技術變革中進一步發展壯大。
大數據,可以說是史上第一次將各行各業的用戶、方案提供商、服務商、運營商以及整個生態鏈上游廠商,融入到一個大的環境中,無論是企業級市場還是消費級市場,亦或政府公共服務,都正或將要與大數據發生千絲萬縷的聯系。
近期有不少文章暢談大數據的價值,以及其價值主要凸顯在哪些方面,這里我們對大數據的核心具體價值進行了分門別類的梳理匯總,希望能幫助讀者更好的獲悉大數據的大價值。
核心價值究其用戶到底是誰?
談及價值,首先必須要弄清楚其用戶到底是誰?有針對企業數據市場的,還有針對終端消費者的,還有針對政府公共服務的;其次要弄清楚大數據核心價值的表現形式、價值的體現過程以及最後呈現的結果。
商業的發展天生就依賴於大量的數據分析來做決策,對於企業用戶,更關心的還是決策需求,其實早在BI時代這就被推上了日程,經過十餘年的探索,如今已形成了數據管理、數據可視化等細分領域,來加強對決策者的影響,達到決策支持的效果。還有企業營銷需求,從本質上來說,主要聚焦在針對消費者市場的精準營銷。
對於消費者用戶,他們對大數據的需求主要體現在信息能按需搜索,並能提供友好、可信的信息推薦,其次是提供高階服務,例如智能信息的提供、用戶體驗更快捷等等。
還有,大數據也不斷被應用到政府日常管理和為民服務中,並成為推動政府政務公開、完善服務、依法行政的重要力量。從戶籍制度改革,到不動產登記制度改革,再到徵信體系建設等等都對資料庫建設提出了更高的目標要求,而此時的資料庫更是以大數據為基礎的,可見,大數據已成為政府改革和轉型的技術支撐杠桿。
數據,除了它第一次被使用時提供的價值以外,那些積累下來的數據海洋並不是無用的廢物,它還有著無窮無盡的「剩餘價值」,關於這一點,人們已經有了越來越多的認識。事實上,大數據已經開始並將繼續影響我們的生活,接下來讓我們共同探索大數據的核心價值吧!當然這是需要藉助於一些具體的應用模式和場景才能得到集中體現的。
《大數據時代》一書作者維克托認為大數據時代有三大轉變:「第一,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不是依賴於隨機采樣。更高的精確性可使我們發現更多的細節。第二,研究數據如此之多,以至於我們不再熱衷於追求精確度。適當忽略微觀層面的精確度,將帶來更好的洞察力和更大的商業利益。第三,不再熱衷於尋找因果關系,而是事物之間的相關關系。例如,不去探究機票價格變動的原因,但是關注買機票的最佳時機。」大數據打破了企業傳統數據的邊界,改變了過去商業智能僅僅依靠企業內部業務數據的局面,而大數據則使數據來源更加多樣化,不僅包括企業內部數據,也包括企業外部數據,尤其是和消費者相關的數據。
隨著大數據的發展,企業也越來越重視數據相關的開發和應用,從而獲取更多的市場機會。
一方面,大數據能夠明顯提升企業數據的准確性和及時性;此外還能夠降低企業的交易摩擦成本;更為關鍵的是,大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和服務上的創新力,大幅提升企業的商業決策水平,降低了企業經營的風險。
一、大數據助企業挖掘市場機會探尋細分市場
大數據能夠幫助企業分析大量數據而進一步挖掘市場機會和細分市場,然後對每個群體量體裁衣般的採取獨特的行動。獲得好的產品概念和創意,關鍵在於我們到底如何去搜集消費者相關的信息,如何獲得趨勢,挖掘出人們頭腦中未來會可能消費的產品概念。用創新的方法解構消費者的生活方式,剖析消費者的生活密碼,才能讓吻合消費者未來生活方式的產品研發不再成為問題,如果你了解了消費者的密碼,就知道其潛藏在背後的真正需求。大數據分析是發現新客戶群體、確定最優供應商、創新產品、理解銷售季節性等問題的最好方法。
在數字革命的背景下,對企業營銷者的挑戰是從如何找到企業產品需求的人到如何找到這些人在不同時間和空間中的需求;從過去以單一或分散的方式去形成和這群人的溝通信息和溝通方式,到現在如何和這群人即時溝通、即時響應、即時解決他們的需求,同時在產品和消費者的買賣關系以外,建立更深層次的夥伴間的互信、雙贏和可信賴的關系。
大數據進行高密度分析,能夠明顯提升企業數據的准確性和及時性;大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和服務上的創新力,大幅提升企業的商業決策水平。因此,大數據有利於企業發掘和開拓新的市場機會;有利於企業將各種資源合理利用到目標市場;有利於制定精準的經銷策略;有利於調整市場的營銷策略,大大降低企業經營的風險。
企業利用用戶在互聯網上的訪問行為偏好能為每個用戶勾勒出一副「數字剪影」,為具有相似特徵的用戶組提供精確服務滿足用戶需求,甚至為每個客戶量身定製。這一變革將大大縮減企業產品與最終用戶的溝通成本。例如:一家航空公司對從未乘過飛機的人很感興趣(細分標準是顧客的體驗)。而從未乘過飛機的人又可以細分為害怕飛機的人,對乘飛機無所謂的人以及對乘飛機持肯定態度的人(細分標準是態度)。在持肯定態度的人中,又包括高收入有能力乘飛機的人(細分標準是收入能力)。於是這家航空公司就把力量集中在開拓那些對乘飛機持肯定態度,只是還沒有乘過飛機的高收入群體。通過對這些人進行量身定製、精準營銷取得了很好的效果。
二、大數據提高決策能力
當前,企業管理者還是更多依賴個人經驗和直覺做決策,而不是基於數據。在信息有限、獲取成本高昂,而且沒有被數字化的時代,讓身居高位的人做決策是情有可原的,但是大數據時代,就必須要讓數據說話。
大數據能夠有效的幫助各個行業用戶做出更為准確的商業決策,從而實現更大的商業價值,它從誕生開始就是站在決策的角度出發。雖然不同行業的業務不同,所產生的數據及其所支撐的管理形態也千差萬別,但從數據的獲取,數據的整合,數據的加工,數據的綜合應用,數據的服務和推廣,數據處理的生命線流程來分析,所有行業的模式是一致的。
這種基於大數據決策的特點是:一是量變到質變,由於數據被廣泛挖掘,決策所依據的信息完整性越來越高,有信息的理性決策在迅速擴大,拍腦袋的盲目決策在急劇縮小。二是決策技術含量、知識含量大幅度提高。由於雲計算出現,人類沒有被海量數據所淹沒,能夠高效率駕御海量數據,生產有價值的決策信息。三是大數據決策催生了很多過去難以想像的重大解決方案。如某些葯物的療效和毒副作用,無法通過技術和簡單樣本驗證,需要幾十年海量病歷數據分析得出結果;做宏觀經濟計量模型,需要獲得所有企業、居民以及政府的決策和行為海量數據,才能得出減稅政策最佳方案;反腐倡廉,人類幾千年歷史都沒解決,最近通過微博和人肉搜索,貪官在大數據的海洋中無處可藏,人們看到根治的希望等等。
如果在不同行業的業務和管理層之間,增加數據資源體系,通過數據資源體系的數據加工,把今天的數據和歷史數據對接,把現在的數據和領導和企業機構關心的指標關聯起來,把面向業務的數據轉換成面向管理的數據,輔助於領導層的決策,真正實現了從數據到知識的轉變,這樣的數據資源體系是非常適合管理和決策使用的。
在宏觀層面,大數據使經濟決策部門可以更敏銳地把握經濟走向,制定並實施科學的經濟政策;而在微觀方面,大數據可以提高企業經營決策水平和效率,推動創新,給企業、行業領域帶來價值。
三、大數據創新企業管理模式,挖掘管理潛力
當下,有多少企業還會要求員工像士兵一樣無條件服從上級的指示?還在通過大量的中層管理者來承擔管理下屬和傳遞信息的職責?還在禁止員工之間談論薪酬等信息?《華爾街日報》曾有一篇文章就說,NO。這一切已經過時了,嚴格控制,內部猜測和小道消息無疑更會降低企業效率。一個管理學者曾經將企業內部關系比喻為成本和消耗中心,如果內部都難以協作或者有效降低管理成本和消耗,你又如何指望在今天瞬息萬變的市場和競爭環境下生存、創新和發展呢?
我們試著想想,當購物、教育、醫療都已經要求在大數據、移動網路支持下的個性化的時代,創新已經成為企業的生命之源,我們還有什麼理由還要求企業員工遵循工業時代的規則,強調那種命令式集中管理、封閉的層級體系和決策體制嗎?當個體的人都可以通過佩戴各種感測器,搜集各種來自身體的信號來判斷健康狀態,那樣企業也同樣需要配備這樣的感測系統,來實時判斷其健康狀態的變化情況。
今天信息時代機器的性能,更多決定於晶元,大腦的存儲和處理能力,程序的有效性。因而管理從注重系統大小、完善和配合,到注重人,或者腦力的運用,信息流程和創造性,以及職工個性滿足、創造力的激發。
在企業管理的核心因素中,大數據技術與其高度契合。管理最核心的因素之一是信息搜集與傳遞,而大數據的內涵和實質在於大數據內部信息的關聯、挖掘,由此發現新知識、創造新價值。兩者在這一特徵上具有高度契合性,甚至可以標稱大數據就是企業管理的又一種工具。因為對於任何企業,信息即財富,從企業戰略著眼,利用大數據,充分發揮其輔助決策的潛力,可以更好地服務企業發展戰略。
大數據時代,數據在各行各業滲透著,並漸漸成為企業的戰略資產。數據分析挖掘不僅本身能幫企業降低成本:比如庫存或物流,改善產品和決策流程,尋找到並更好的維護客戶,還可以通過挖掘業務流程各環節的中間數據和結果數據,發現流程中的瓶頸因素,找到改善流程效率,降低成本的關鍵點,從而優化流程,提高服務水平。大數據成果在各相關部門傳遞分享,還可以提高整個管理鏈條和產業鏈條的投入回報率。
四、大數據變革商業模式催生產品和服務的創新
在大數據時代,以利用數據價值為核心,新型商業模式正在不斷涌現。能夠把握市場機遇、迅速實現大數據商業模式創新的企業,將在IT發展史上書寫出新的傳奇。
大數據讓企業能夠創造新產品和服務,改善現有產品和服務,以及發明全新的業務模式。回顧IT歷史,似乎每一輪IT概念和技術的變革,都伴隨著新商業模式的產生。如個人電腦時代微軟憑借操作系統獲取了巨大財富,互聯網時代谷歌抓住了互聯網廣告的機遇,移動互聯網時代蘋果則通過終端產品的銷售和應用商店獲取了高額利潤。
縱觀國內,以金融業務模式為例,阿里金融基於海量的客戶信用數據和行為數據,建立了網路數據模型和一套信用體系,打破了傳統的金融模式,使貸款不再需要抵押品和擔保,而僅依賴於數據,使企業能夠迅速獲得所需要的資金。阿里金融的大數據應用和業務創新,變革了傳統的商業模式,對傳統銀行業帶來了挑戰。
還有,大數據技術可以有效的幫助企業整合、挖掘、分析其所掌握的龐大數據信息,構建系統化的數據體系,從而完善企業自身的結構和管理機制;同時,伴隨消費者個性化需求的增長,大數據在各個領域的應用開始逐步顯現,已經開始並正在改變著大多數企業的發展途徑及商業模式。如大數據可以完善基於柔性製造技術的個性化定製生產路徑,推動製造業企業的升級改造;依託大數據技術可以建立現代物流體系,其效率遠超傳統物流企業;利用大數據技術可多維度評價企業信用,提高金融業資金使用率,改變傳統金融企業的運營模式等。
過去,小企業想把商品賣到國外要經過國內出口商、國外進口商、批發商、商場,最終才能到達用戶手中,而現在,通過大數據平台可以直接從工廠送達到用戶手中,交易成本只是過去的十分之一。以我們熟悉的網購平台淘寶為例,每天有數以萬計的交易在淘寶上進行,與此同時相應的交易時間、商品價格、購買數量會被記錄,更重要的是,這些信息可以與買方和賣方的年齡、性別、地址、甚至興趣愛好等個人特徵信息相匹配。運用匹配的數據,淘寶可以進行更優化的店鋪排名和用戶推薦;商家可以根據以往的銷售信息和淘寶指數進行指導產品供應、生產和設計,經營活動成本和收益實現了可視化,大大降低了風險,賺取更多的錢;而與此同時,更多的消費者也能以更優惠的價格買到了更心儀的產品。
維克托曾預言2020年,大數據時代就會真正來臨。在那個時候,最經常會用到的應用就是個性化生活所需要的,尤其是智能手機的應用。
五、大數據讓每個人更加有個性
對個體而言,大數據可以為個人提供個性化的醫療服務。比如,我們的身體功能可能會通過手機、移動網路進行監控,一旦有什麼感染,或身體有什麼不適,我們都可以通過手機得到警示,接著信息會和手機庫進行對接或者咨詢相關專家,從而獲得正確的用葯和其他治療。
過去我們去看病,醫生只能對我們的當下身體情況做出判斷,而在大數據的幫助下,將來的診療可以對一個患者的累計歷史數據進行分析,並結合遺傳變異、對特定疾病的易感性和對特殊葯物的反應等關系,實現個性化的醫療。還可以在患者發生疾病症狀前,提供早期的檢測和診斷。早期發現和治療可以顯著降低肺癌給衛生系統造成的負擔,因為早期的手術費用是後期治療費用的一半。
還有,在傳統的教育模式下,分數就是一切,一個班上幾十個人,使用同樣的教材,同一個老師上課,課後布置同樣的作業。然而,學生是千差萬別的,在這個模式下,不可能真正做到「因材施教」。
如一個學生考了90分,這個分數僅僅是一個數字,它能代表什麼呢?90分背後是家庭背景、努力程度、學習態度、智力水平等,把它們和90分聯系在一起,這就成了數據。大數據因其數據來源的廣度,有能力去關注每一個個體學生的微觀表現:如他在什麼時候開始看書,在什麼樣的講課方式下效果最好,在什麼時候學習什麼科目效果最好,在不同類型的題目上停留多久等等。當然,這些數據對其他個體都沒有意義,是高度個性化表現特徵的體現。同時,這些數據的產生完全是過程性的:課堂的過程,作業的情況,師生或同學的互動情景……而最有價值的是,這些數據完全是在學生不自知的情況下被觀察、收集的,只需要一定的觀測技術與設備的輔助,而不影響學生任何的日常學習與生活,因此它的採集也非常的自然、真實。
在大數據的支持下,教育將呈現另外的特徵:彈性學制、個性化輔導、社區和家庭學習、每個人的成功……大數據支撐下的教育,就是要根據每一個人的特點,釋放每一個人本來就有的學習能力和天分。
此外,維克托還建議中國政府要進一步補錄資料庫。政府以前提供財政補貼,現在可以提供資料庫,打造創意服務。在美國就有完全基於政府提供的資料庫,如為企業提供機場、高速公路的數據,提供航班可能發生延誤的概率,這種服務這可以幫助個人、消費者更好地預測行程,這種類型的創新,就得益於公共的大數據。
六、智慧驅動下的和諧社會
美國作為全球大數據領域的先行者,在運用大數據手段提升社會治理水平、維護社會和諧穩定方面已先行實踐並取得顯著成效。
近年來,在國內,「智慧城市」建設也在如火如荼的開展。截止去年底,我國的國家智慧城市試點已達193個,而公開宣布建設智慧城市的城市超過400個。智慧城市的概念包含了智能安防、智能電網、智慧交通、智慧醫療、智慧環保等多領域的應用,而這些都要依託於大數據,可以說大數據是「智慧」的源泉。
在治安領域,大數據已用於信息的監控管理與實時分析、犯罪模式分析與犯罪趨勢預測,北京、臨沂等市已經開始實踐利用大數據技術進行研判分析,打擊犯罪。
在交通領域,大數據可通過對公交地鐵刷卡、停車收費站、視頻攝像頭等信息的收集,分析預測出行交通規律,指導公交線路的設計、調整車輛派遣密度,進行車流指揮控制,及時做到梳理擁堵,合理緩解城市交通負擔。
在醫療領域,部分省市正在實施病歷檔案的數字化,配合臨床醫療數據與病人體征數據的收集分析,可以用於遠程診療、醫療研發,甚至可以結合保險數據分析用於商業及公共政策制定等等。
伴隨著智慧城市建設的火熱進行,政府大數據應用已進入實質性的建設階段,有效拉動了大數據的市場需求,帶動了當地大數據產業的發展,大數據在各個領域的應用價值已得到初顯。
七、大數據如何預言未來?
著名的瑪雅預言,盡管背後有著一定的天文知識基礎,但除催生了一部很火的電影《2012》外,其實很多人的生活尚未受到太大的影響。現在基於人類地球上的各種能源存量,以及大氣受污染、冰川融化的程度,我們獲取真的可以推算出按照目前這種工業生產、生活的方式,人類在地球上可以存活的年數。《第三次工業革命》中對這方面有很深入的解釋,基於精準預測,發現現有模式是死路一條後,人類就可以進行一些改變,這其實就是一種系統優化。
這種結合之前情景研究,不斷進行系統優化的過程,將賦予系統生命力,而大數據就是其中的血液和神經系統。通過對大數據的深入挖掘,我們將會了解系統的不同機體是如何相互協調運作的,同樣也可以通過對他們的了解去控制機體的下一個操作,甚至長遠的維護和優化。從這個角度講,基於網路的大數據可以看作是人類社會的神經中樞,因為有了網路和大數據人類社會才開始靈活起來,而不像以前那麼死板。基於大數據,個體之間相互連接有了基礎,相互的交互過程得到了簡化,各種交易的成本減少很多。廠家等服務提供方可以基於大數據研發出更符合消費者需求的服務,機構內部的管理也更為細致,有了血液和神經系統的社會才真的擁有生命活力。
結語
透過以上這些行業典型的大數據應用案例和場景,不難悟出大數據的典型的核心價值。大數據是看待現實的新角度,不僅改變了市場營銷、生產製造,同時也改變了商業模式。數據本身就是價值來源,這也就意味著新的商業機會,沒有哪一個行業能對大數據產生免疫能力,適應大數據才能在這場變革中繼續生存下去。
當下,正處於數據大爆發的時代,如何獲取這些數據並對這些數據進行有效分析就顯得尤為重要。各種企業機構之間的競爭非常殘酷。如何基於以往的運行數據,對未來的運行模式進行預測,從而提前進行准備或者加以利用、調整,對很多企業機構其實是一種生死存亡的問題。這樣一種情況同樣適用於國家級別。正因為這一點,目前無論是在企業級別還是國家級別都開始研究、部署大數據。
可見,大數據應用已經凸顯出了巨大的商業價值,觸角已延伸到零售、金融、教育、醫療、體育、製造、影視、政府等各行各業。你可能會問這些具體價值實現的推動者有哪些呢?就是所謂的大數據綜合服務提供商,從實踐情況看,主要包括大數據解決方案提供商、大數據處理服務提供商和數據資源提供商三個角色,分別向大數據的應用者提供大數據服務、解決方案和數據資源。
未來大數據還將徹底改變人類的思考模式、生活習慣和商業法則,將引發社會發展的深刻變革,同時也是未來最重要的國家戰略之一。
以上是小編為大家分享的關於大數據的七大核心價值的相關內容,更多信息可以關注環球青藤分享更多干貨
㈧ 大數據是什麼有什麼價值作用
「大數據」是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時性。在企業對企業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。
大數據的應用其實早已滲透到人們生活中的方方面面:亞馬遜運用大數據為客戶推薦商品信息,阿里用大數據成立了小微金融服務集團,而谷歌更是計劃用大數據接管世界??當下,很多行業都開始增加對大數據的需求。大數據時代不僅處理著海量的數據,同時也加工、傳播、分享它們。不知不覺中,數據可視化已經遍布我們生活的每一個角落,畢竟普通用戶往往更關心結果的展示。伴隨去年底網路地圖採用LBS定位春運的可視化大數據,就引起了學界對新聞創新和大數據可視化的熱議。
一、技術價值
大數據,根本上與數學、統計學、計算機學、數據學等基本理論知識無法分割,技術水平突飛猛進給數字領域帶來最直接的躍進。
App研發應用、資料庫編寫應用等促進人類社會技術進步的價值都來源於大數據的發明和運營。
大數據不僅創造了新的計算方式、技術處理方式,更加為其他技術的研發、應用和落地提供基礎,例如人工智慧等。
大數據中客戶與企業進行交易的數據,是大數據技術價值的核心映射。客戶的交易行為通過企業內部系統留存,基本以「事後」數據為主。
交易數據是推進企業數據驅動業務,與客戶聯系溝通、獲得有效和分析數據的初級門檻,無論大數據獲取能力如何發展,直接的交易信息永遠都是第一有效和值得關注的。
淘寶的交易分析報告中提到,大額買單後的重購次單和同店重購次單比例分別為25.0%和16.8%,要明顯高於普通買單的18.8%和10.7%,則表示在首次買單獲取了對賣家服務和商品質量的信任後,次單完全存在放大金額的可能,並且比普通買單的可能要高得多。
由此引導賣家增進服務、堅守質量,並適時推出捆綁推薦,以求同類商品同店大額下單的幾率。
只有有了大數據的處理技術,交易行為才能夠得到記錄分析,企業的大數據技術研發、應用和落地才能擁有基礎,以開發更新更適合時代的企業產業。
目前有很多傳統企業盲目行走大數據的道路,但其實大數據技術能力並沒有建立起來,真正獲得了有效數據並得以分析利用的就很少,很多該做的「埋點」沒有做,數據的統計也缺乏技術支撐。
這時大數據的技術價值就會顯得尤為重要,且是所有價值的基礎,一梁塌,全屋倒。
無法自主革新的企業會求助一些以提供大數據服務為產品的新型公司,也就催生了各種大數據公司雨後春筍般的出現,至於這些公司如何為傳統轉型服務在後面會提到。
二、商業價值
在實際的升級運行中,習慣於傳統經營的企業也許經常會為這樣幾個基礎的問題感到困惑:如何提升運營現狀?目標客群是誰?有哪些特點?與競品相比競爭優勢在哪?現有經營問題又是什麼?
而這些看似簡單的問題背後卻隱藏著海量數據的分析挖掘:客流數據、經營數據、以往活動相關數據、場內店鋪信息、競品數據,類此種種的深入透析才能幫助企業畫像潛客、分析經營、建立會員體系、策劃活動執行。
單就運營而論,數據作為一種度量方式,能夠真實的反映運營狀況,幫助企業進一步了解產品、了解用戶、了解渠道進而優化運營策略。
㈨ 什麼是大數據思維,數據思維劃分哪幾個維度
在中國「互聯網時代」這個詞彙似乎顯得那麼火熱,但在美國還未聽說過。這是因為互聯網思維更契合傳統東方思維方式。東方文化強調智慧,而西方更強調知識,智慧來源於經驗,而知識來源於數據。如何來證明這個論點?那麼,我們來看一下諸葛亮和司馬懿,他們兩個人可以說是一組典型的智慧PK知識的代表。司馬懿是諸葛亮的最大對手,他可能是早期的大數據最佳應用者。
從諸葛亮幾點睡覺,吃幾碗飯,他就能判斷諸葛亮活不長了;而諸葛亮則憑借智慧猜出司馬義膽子小,不敢進入空城。中國人崇尚智慧,可能更注重互聯網思維,但光有互聯網思維還不夠,還要對數據有更深的認識和更好的運用,才能實現最佳效果。 已經為大家精心准備了大數據的系統學習資料,從Linux-Hadoop-spark-......,需要的小夥伴可以點擊進入
其實,大數據思維不像互聯網思維那樣令人熱血沸騰。從最近一項研究來看,採用大數據的公司比不採用大數據的公司利潤平均高6個百分點。6個百分點,也許不那麼起眼,但「積少成多、聚沙成塔」,在激烈的競爭環境中,則是讓企業生存下來、脫穎而出的最大資本。比如說在美國排名前十的電商網站中,8家是傳統零售商,只有2家是純電商。傳統零售商擁有大量數據的沃爾瑪,一天的數據量達到PB級,這個數據資源可以轉化為企業贏得比賽的有效耐力。
那麼對於大數據思維,其實是有三個緯度的,包含定量思維、相關思維、實驗思維。第一,定量思維,即提供更多描述性的信息,其原則是一切皆可測。不僅銷售數據、價格這些客觀標准可以形成大數據,甚至連顧客情緒(如對色彩、空間的感知等)都可以測得,大數據包含了與消費行為有關的方方面面;第二,相關思維,一切皆可連,消費者行為的不同數據都有內在聯系。這可以用來預測消費者的行為偏好;第三,實驗思維,一切皆可試,大數據所帶來的信息可以幫助制定營銷策略。這就是三個大數據運用遞進的層次:首先是描述,然後是預測,最後產生攻略。而也正是大數據的這些有效耐力,讓企業贏了更多的市場。 已經為大家精心准備了大數據的系統學習資料,從Linux-Hadoop-spark-......,需要的小夥伴可以點擊進入