A. 什麼是大數據,大數據為什麼重要,如何應用大數據
「大數據」簡單理解為:
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。大數據是一個抽象的概念,對當前無論是企業還是政府、高校等單位面臨的數據無法存儲、無法計算的狀態。大數據,在於海量,單機無法快速處理,需要通過垂直擴展,即大內存高效能,水平擴展,即大磁碟大集群等來進行處理。
大數據為什麼重要:
獲取大數據後,用這些數據做:數據採集、數據存儲、數據清洗、數據分析、數據可視化
大數據技術對這些含有意義的數據進行專業化處理,對企業而言,大數據可提高工作效率,降低企業成本,精準營銷帶來更多客戶。對政府而言,可以利用大數進行統籌分析、提高管理效率、管理抓獲犯罪分子等。對個人而言,可以利用大數據更了解自己等。
如何應用大數據:
大數據的應用對象可以簡單的分為給人類提供輔助服務,以及為智能體提供決策服務。
大數據不僅包括企業內部應用系統的數據分析,還包括與行業、產業的深度融合。具體場景包括:互聯網行業、政府行業、金融行業、傳統企業中的地產、醫療、能源、製造、電信行業等等。通俗地講「大數據就像互聯網+,可以應用在各行各業",如電信、金融、教育、醫療、軍事、電子商務甚至政府決策等。
B. 大數據的介紹語20字
2. 大數據用一句話總結
數據(big data)指承受間范圍內用規軟體工具進行捕捉、管理處理數據集合
數據比喻蘊 藏能量煤礦煤炭按照性質焦煤、煙煤、肥煤、貧煤等類露煤礦、深山煤礦挖掘本與類似數據並於用價值含量、挖掘本比數量更重要於行業言何利用些規模數據贏競爭關鍵
數據價值體現幾面:
1)量消費者提供產品或服務企業利用數據進行精準營銷;
2) 做美模式尾企業利用數據做服務轉型;
3) 面臨互聯網壓力必須轉型傳統企業需要與俱進充利用數據價值
C. 「大數據之父」 數據是創新的驅動力
「大數據之父」:數據是創新的驅動力
「有時候不一定是理念驅動世界的變化,可能是實實在在的數據,在數據的基礎上產生理念,新的理念是創造性破壞的核心,而數據則是創新的驅動力。」「大數據之父」維克托·邁爾-舍恩伯格26日下午廣州中山大學[微博]黃埔論壇上作《大數據時代的變革與創新》主題演講時說。
作為牛津大學網路學院互聯網治理與監管專業教授,舍恩伯格是開大數據系統研究先河的學者,《經濟學人》曾評論說,在大數據領域,他是最受人尊敬的權威發言人。他有多達一百多篇論文發表在《科學》《自然》等著名學術期刊上,是《大數據時代》和《刪除:大數據取捨之道》等暢銷書的作者。
在當天的演講中,舍恩伯格指出,我們盡其所能去觀察這個世界,而這個觀察的過程實際上就是一個搜集數據的過程。通過搜集數據,我們進一步理解數據,通過理解數據我們理解了世界。
搜集數據、分析數據需要花費大量的時間、精力、財力,舍恩伯格進一步說道:「我們是否可以搜集最有必要的數據,然後對這些數據進行擠壓,從大量的數據中擠出最精華的東西來,然後在此基礎之上進行意義的構建?也就是說,我們從大數據中可以提取小數據,數據對我們來說成為了一種可以應用的、有價值的資產。」
今天的世界變得如此廣闊,其中所包含的信息海量的,過去20年中,我們數據的量翻了100倍,而且現在還在不斷地增長,在短短的4年內世界已經從一個模擬化的世界變成了數字化的世界。
舍恩伯格表示,這一變化意味著我們要理解我們的生活方式,就必須從過去小數據的世界走入真正的大數據時代。我們要思考數據搜集的方法和機制,要從最需要的數據中來。對所搜集到的數據進行轉化,成為了我們做出決策的一種最好方式。
他認為,數據的價值在於它可以循環使用、多次使用。「過去,人們對數據的使用只是冰山一角,只是有了問題才去搜集數據,然後分析數據,回答問題,然後把數據扔掉。」他指出,事實上,冰山下的那一塊才是數據更大的價值所在,也是我們能夠推動更多創新的地方。
他以特斯拉[微博]汽車、打車軟體Uber以及谷歌[微博]曾經斥巨資收購的NEST等為例指出,這些產品取得巨大成功,不僅僅是因為他們產品本身,更在於他們都是一個數據收集平台,「這意味著你只要能夠充分的使用信息,你就可以用數據來進行創新,進行突破,而且創造出一個新的環境。」
大數據給人們帶來了一個全新的社會,大家都在使用大數據提高決策能力,然而,舍恩伯格也提醒人們,在分析數據、解釋數據的時候,必須了解它的局限性,要非常小心,避免濫用數據。「問題不在數據本身,問題在我們對數據的使用上。
以上是小編為大家分享的關於「大數據之父」 數據是創新的驅動力的相關內容,更多信息可以關注環球青藤分享更多干貨
D. 馬雲在什麼時候第一次提到數據時代或者在哪能找到馬雲關於大數據的首次演講
第一次提及大數據時代內容的演講已經不可考,大致15年左右,受麥肯錫在12年提出大數回據時代論點發酵,答馬雲這段時間不少演講中提及大數據時代的概念,但是這時候他的目的性並不明確,並沒有形成專門的商業邏輯。
大致在16-17年區間馬雲該階段提及大數據的概念,其已經逐步將大數據與零售預測以及生產、物流等方面逐步完善起來,直到2018年2月提出了新零售的概念。
當完成了新零售與大數據的商業邏輯閉環之後,在2018年年中之後公開的演講里,馬雲將大數據未來與阿里商業模式的結合的重點放在了普惠金融方面了。
這個是公開場合中馬雲演講中大數據與其商業邏輯逐步結合並不斷產生新的應用方向的時間線,希望你能滿意。
具體比較深入闡述其大數據的演講內容,應該是2018年貴州中國國際大數據產業博覽會上的演講。
受貴州區域優越的水電資源優勢,國內大數據儲存中心偏貴州,所以其每年大數據峰會算是大數據行業國內比較高端的大會。相關視頻不少網站都有鏈接,就不一一指出了。
E. 什麼是大數據有什麼特徵與性質
大數據必然無法用單台的計算機進行處理,必須採用分布式架構。大數據也是具備有一定的特徵與性質的。以下是由我整理的大數據的內容,希望大家喜歡!
大數據的主要介紹
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產,
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)、Veracity(真實性)。
大數據的特徵
容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;
種類(Variety):數據類型的多樣性;
速度(Velocity):指獲得數據的速度;
可變性(Variability):妨礙了處理和有效地管理數據的過程。
真實性(Veracity):數據的質量
復雜性(Complexity):數據量巨大,來源多 渠道
價值(value):合理運用大數據,以低成本創造高價值
大數據的意義
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。[7] 阿里巴巴創辦人馬雲來台演講中就提到,未來的時代將不是IT時代,而是DT的時代,DT就是Data Technology數據科技,顯示大數據對於阿里巴巴集團來說舉足輕重。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在“大”,而在於“有用”。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是贏得競爭的關鍵。
大數據的價值體現在以下幾個方面:
1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2) 做小而美模式的中小微企業可以利用大數據做服務轉型
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
不過,“大數據”在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:“就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。”這確實是需要警惕的。
在這個快速發展的智能硬體時代,困擾應用開發者的一個重要問題就是如何在功率、覆蓋范圍、傳輸速率和成本之間找到那個微妙的平衡點。企業組織利用相關數據和分析可以幫助它們降低成本、提高效率、開發新產品、做出更明智的業務決策等等。例如,通過結合大數據和高性能的分析,下面這些對企業有益的情況都可能會發生:
1)及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。
2)為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。
3)分析所有SKU,以利潤最大化為目標來定價和清理庫存。
4)根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
5)從大量客戶中快速識別出金牌客戶。
6)使用點擊流分析和數據挖掘來規避欺詐行為。
大數據的結構
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
大數據的應用
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
大數據的主要特點
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
F. 商院案例:大數據安全隱患與體系建設
商院案例:大數據安全隱患與體系建設
著互聯網、雲計算、物聯網等網路技術快速發展和智能終端、智慧城市廣泛應用及大范圍建設,全球數據量呈現爆炸式增長,驅動著整個互聯網世界邁入大數據時代。
為應對大數據時代的挑戰,推廣大數據基礎分析、技術研發與應用、安全技術,以及推進大數據技術創新管理能力和業務能力、加強大數據安全與隱私管理,廣東省信息協會、廣東省計算機信息網路安全協會、廣東省大數據技術聯盟聯合主辦的「2014廣東省大數據應用與安全高峰論壇」定於10月21日(星期二)上午在廣東亞洲國際大酒店召開且圓滿結束。
藍盾股份作為中國信息安全行業領先的專業網路安全企業和服務提供商,也應邀參加該次峰會,並圍繞「大數據應用安全隱患與安全體系建設」作出了重要演講。
下文就演講的幾個重要方面整理成文,重點歸納總結了大數據的應用價值、大數據背景下面臨的安全問題以及對大數據時代安全建設的幾點考慮。
一、大數據背景介紹
1、大數據特性
大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據集合。」業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的基本特徵。
一是數據體量巨大(Volume)。據國際知名數據公司IDC 提供的更為復雜的新數據已經出現,而且生成的速度達到了前所未有的程度,IBM預計,到2020年將增至40萬億GB的水平。
二是數據類型繁多(Variety)。大數據來源種類豐富,更為復雜的新數據已經出現,社交網路數據、網路日誌、存檔數據和感測器數據、地理位置信息都屬於人們在分析中關注的新數據源。
三是價值密度低(Value)。雖然每天產生25億GB數據,但其中只有接近0.5%的經檢測數據才具有分析價值。
四是處理速度快(Velocity)。面對如此海量的數據,非結構化數據也越來越多,如何快速地處理這些數據並挖掘出有價值的信息,這也是大數據區分於傳統數據挖掘的最顯著特徵。
2、大數據技術趨勢
1)Hadoop技術的應用
Apache
hadoop是一個開源的分布式計算框架,通過集成MapRece技術,Hadoop將大數據分布到多個數據節點上進行處理。Hadoop遵循Apache 2.0許可證,可以輕松處理結構化、半結構化和非結構化數據,一舉成為現在非常流行的大數據解決方案,可以用來應對PB甚至ZB級的海量數據存儲。
2)與雲計算的融合
大數據和雲是兩個不同的概念,但兩者之間有很多交集。支撐大數據以及雲計算的底層原則是一樣的,即規模化、自動化、資源配置、自愈性,因此實際上大數據和雲之間存在很多合力的地方。可以說大數據和雲計算是相伴而生的,大數據的處理離不開雲,大數據應用是在雲上跑的、非常典型的應用。
二、大數據的應用價值
《華爾街日報》將大數據時代、智能化生產和無線網路革命稱為引領未來繁榮的三大技術變革。麥肯錫公司的報告指出數據是一種生產資料,大數據是下一個創新、競爭、生產力提高的前沿。更有世界經濟論壇報告認定:大數據為新財富,價值堪比石油。
就國內外對大數據的研究與投入來看,2014年,Intel、IBM、微軟、阿里巴巴[微博]等行業巨頭紛紛布局大數據。IDC預測2014年產生2萬TB數據,2014年大數據產值超6億,2016年將可望突破100億。
那麼,這些看似平凡的數據能為我們帶來什麼?事實上當你把微博等社交平台當作發泄工具時,專業的斂財高手們卻正在挖掘這些互聯網的「數據財富」,先人一步用這些數據來預判市場走勢,做出正確的決定,並取得不俗的收益。
大數據的核心價值是能夠為政府、企業提供決策服務,幫助企業把握市場機遇、迅速實現大數據商業模式創新,協助政府建設智慧城市和應對公共安全,幫助公安進行犯罪預測與預防。
例如,華爾街根據民眾情緒拋售股票;美國疾控中心依據國民搜索,分析全球范圍內流感等病疫的傳播狀況;投資機構搜集並分析上市企業聲明,從中尋找破產的蛛絲馬跡;電信行業利用大數據幫助電信業對業務的分析和優化;電子商務收集、分析海量的消費者數據,從中挖掘消費者多變、復雜的需求。
總之,在大數據時代,以利用數據價值為核心,合理挖掘和利用大數據,已經為各行各業帶來了巨額財富。
三、大數據的安全隱患
隨著大數據應用的爆發性增長,大數據衍生出獨特架構,並推動存儲、網路及計算機技術的發展,同時也引發了新的安全問題。
1、網路化社會使大數據成攻擊目標
開放的網路化社會,大數據的數據量大且相互關聯,對於攻擊者而言,相對低的成本可以獲得「滾雪球」的收益。用戶數據泄露,個人賬號信息失竊的事件時有發生,一旦遭受攻擊,失竊的數據量也是巨大的。
最近幾年來數以百萬計的信息大泄密和大量的網路犯罪案件說明,大數據和雲環境下的信息安全的風險度已非昔時可比。
2、大數據加大隱私泄露風險
大數據是把「雙刃劍」,快捷的網路、精準的營銷,雖能帶給人們一個更加便捷的生活方式,同時,卻也讓個人隱私的保護幾成空談。數據分析技術的發展,勢必對用戶隱私產生極大威脅。如今的大數據營銷,對於消費者而言,就好似被一雙眼睛盯著,每時每刻窺探著你的一舉一動,作為個體消費者,我們早就無法避免自己的個人隱私被網路系統記取被商家掌握並挖掘利用,甚至被惡意使用。
3、技術短板帶來的安全隱患
NOSQL(非關系型資料庫)作為大數據處理的基礎技術,與當前廣泛應用的SQL(關系型資料庫)技術不同,沒有經過長期改進和完善,在維護數據安全方面也未設置嚴格的訪問控制和隱私管理,缺乏保密性和完整性特質。
4、大數據環境打破傳統安全壁壘
大數據的處理和存儲離不開雲,其運營環境的特殊性打破了傳統的網路邊界壁壘,使得傳統的安全技術手段無法做到有效的安全防護。
大數據本身的安全防護存在漏洞,雖然雲計算對大數據提供了便利,但對大數據的安全控制力度仍然不夠。
5、大數據可能成為高級可持續攻擊的載體
APT攻擊是一個持續的過程,不具有被實時檢測到的明顯特徵。同時,隱藏在大量數據中的APT攻擊代碼也很難被發現。此外,攻擊者還可以利用社交網路和系統漏洞進行攻擊,在威脅特徵庫無法檢測出來的時間段發起攻擊行為。
四、大數據時代下的安全體系建設
1、大數據存儲安全
大量的數據產生、存儲和分析,數據安全存儲問題將在未來幾年內成為一個更大的問題。行業必須盡快盡早規劃和布局大數據安全存儲防護措施,協同技術的發展,加大安全防護投入。安全存儲是大數據安全的最基本需求,我們可以從集中存儲、加密存儲、加密傳輸、認證授權和日誌審計等方面來對大數據的安全存儲環境加大保護力度。
2、個人隱私信息的保護
大數據和個人隱私之間的「戰爭」早已打響,必須從技術和法規層面上保障大數據時代的隱私安全,完善用戶個人信息的保障體系。
法規層面應從標准和法律兩個方面界定數據屬性和銷售許可,出台相應資質認證和法律法規,建立健全大數據隱私安全保障體系。
技術層面應使用大數據清洗、去隱私化等技術完成對客戶隱私數據的隱藏化處理。
3、大數據雲安全
大數據一般都需要在雲中實現上傳、下載及交互,在吸引越來越多黑客和病毒攻擊的雲端及客戶端做好安全保護必不可少。
我們可基於虛擬化的雲數據中心提供系統性的安全解決方案,以安全虛擬器件代替原有硬體設備的產品交付方式,確保物理、虛擬和雲環境中伺服器的應用程序和數據的安全,可以為雲和虛擬化環境提供主動防禦、自動安全保護,將傳統數據中心的安全策略擴展到雲計算平台上。
4、建立防禦機制
在規劃大數據發展的同時,建立並完善大數據信息安全體系很有必要。結合傳統信息安全技術和考量大數據收集、處理和應用時的實際環境安全需求,建立面向大數據信息安全的事件監測機制,及時發現信息系統安全問題,當大數據運營環境遭到攻擊前或已經遭到攻擊時,快速、准確地發現攻擊行為,並迅速啟動處置和應急機制。
5、重新規范管理員的許可權
大數據的跨平台傳輸應用在一定程度上會帶來內在風險,可以根據大數據的密級程度和用戶需求的不同,將大數據和用戶設定不同的許可權等級,並嚴格控制訪問許可權。而且,通過單點登錄的統一身份認證與許可權控制技術,對用戶訪問進行嚴格的控制,有效地保證大數據應用安全。
總之,大數據時代機遇與挑戰並存,在推進大數據技術創新管理能力和業務能力的同時,要加強大數據安全與隱私管理相關研究的力度,通過政策法規與技術手段相互作用,使大數據在我國各個行業得以沿著正確的方向更快、更深入的發展。
特別說明:由於各方面情況的不斷調整與變化,新浪網所提供的所有考試信息僅供參考,敬請考生以權威部門公布的正式信息為准。
以上是小編為大家分享的關於商院案例:大數據安全隱患與體系建設的相關內容,更多信息可以關注環球青藤分享更多干貨
G. 技術干貨:SQL on Hadoop在快手大數據平台的實踐與優化
快手大數據架構工程師鍾靚近日在 A2M 人工智慧與機器學習創新峰會分享了題為《SQL on Hadoop 在快手大數據平台的實踐與優化》的演講,主要從 SQL on Hadoop 介紹、快手 SQL on Hadoop 平台概述、SQL on Hadoop 在快手的使用經驗和改進分析、快手 SQL on Hadoop 的未來計劃四方面介紹了 SQL on Hadoop 架構。
SQL on Hadoop,顧名思義它是基於 Hadoop 生態的一個 SQL 引擎架構,我們其實常常聽到 Hive、SparkSQL、Presto、Impala 架構。接下來,我會簡單的描述一下常用的架構情況。
HIVE,一個數據倉庫系統。它將數據結構映射到存儲的數據中,通過 SQL 對大規模的分布式存儲數據進行讀、寫、管理。
根據定義的數據模式,以及輸出 Storage,它會對輸入的 SQL 經過編譯、優化,生成對應引擎的任務,然後調度執行生成的任務。
HIVE 當前支持的引擎類型有:MR、SPARK、TEZ。
基於 HIVE 本身的架構,還有一些額外的服務提供方式,比如 HiveServer2 與 MetaStoreServer 都是 Thrift 架構。
此外,HiveServer2 提供遠程客戶端提交 SQL 任務的功能,MetaStoreServer 則提供遠程客戶端操作元數據的功能。
Spark,一個快速、易用,以 DAG 作為執行模式的大規模數據處理的統一分析引擎,主要模塊分為 SQL 引擎、流式處理 、機器學習、圖處理。
SPARKSQL 基於 SPARK 的計算引擎,做到了統一數據訪問,集成 Hive,支持標准 JDBC 連接。SPARKSQL 常用於數據交互分析的場景。
SPARKSQL 的主要執行邏輯,首先是將 SQL 解析為語法樹,然後語義分析生成邏輯執行計劃,接著與元數據交互,進行邏輯執行計劃的優化,最後,將邏輯執行翻譯為物理執行計劃,即 RDD lineage,並執行任務。
PRESTO,一個互動式分析查詢的開源分布式 SQL 查詢引擎。
因為基於內存計算,PRESTO 的計算性能大於有大量 IO 操作的 MR 和 SPARK 引擎。它有易於彈性擴展,支持可插拔連接的特點。
業內的使用案例很多,包括 FaceBook、AirBnb、美團等都有大規模的使用。
我們看到這么多的 SQL on Hadoop 架構,它側面地說明了這種架構比較實用且成熟。利用 SQL on Hadoop 架構,我們可以實現支持海量數據處理的需求。
查詢平台每日 SQL 總量在 70 萬左右,DQL 的總量在 18 萬左右。AdHoc 集群主要用於交互分析及機器查詢,DQL 平均耗時為 300s;AdHoc 在內部有 Loacl 任務及加速引擎應用,所以查詢要求耗時較低。
ETL 集群主要用於 ETL 處理以及報表的生成。DQL 平均耗時為 1000s,DQL P50 耗時為 100s,DQL P90 耗時為 4000s,除上述兩大集群外,其它小的集群主要用於提供給單獨的業務來使用。
服務層是對上層進行應用的。在上層有四個模塊,這其中包括同步服務、ETL 平台、AdHoc 平台以及用戶程序。在調度上層,同樣也有四方面的數據,例如服務端日誌,對它進行處理後,它會直接接入到 HDFS 里,我們後續會再對它進行清洗處理;服務打點的數據以及資料庫信息,則會通過同步服務入到對應的數據源里,且我們會將元數據信息存在後端元數據系統中。
網頁爬取的數據會存入 hbase,後續也會進行清洗與處理。
HUE、NoteBook 主要提供的是互動式查詢的系統。報表系統、BI 系統主要是 ETL 處理以及常見的報表生成,額外的元數據系統是對外進行服務的。快手現在的引擎支持 MR、Presto 及 Spark。
管理系統主要用於管理我們當前的集群。HiveServer2 集群路由系統,主要用於引擎的選擇。監控系統以及運維系統,主要是對於 HiveServer2 引擎進行運維。
我們在使用 HiveServer2 過程中,遇到過很多問題。接下來,我會詳細的為大家闡述快手是如何進行優化及實踐的。
當前有多個 HiveServer2 集群,分別是 AdHoc 與 ETL 兩大集群,以及其他小集群。不同集群有對應的連接 ZK,客戶端可通過 ZK 連接 HiveServer2 集群。
為了保證核心任務的穩定性,將 ETL 集群進行了分級,分為核心集群和一般集群。在客戶端連接 HS2 的時候,我們會對任務優先順序判定,高優先順序的任務會被路由到核心集群,低優先順序的任務會被路由到一般集群。
BeaconServer 服務為後端 Hook Server 服務,配合 HS2 中的 Hook,在 HS2 服務之外實現了所需的功能。當前支持的模塊包括路由、審計、SQL 重寫、任務控制、錯誤分析、優化建議等。
•無狀態,BeaconServer 服務支持水平擴展。基於請求量的大小,可彈性調整服務的規模。
•配置動態載入,BeaconServer 服務支持動態配置載入。各個模塊支持開關,服務可動態載入配置實現上下線。比如路由模塊,可根據後端加速引擎集群資源情況,進行路由比率調整甚至熔斷。
•無縫升級,BeaconServer 服務的後端模塊可單獨進行下線升級操作,不會影響 Hook 端 HS2 服務。
•Hive 支持 SPARK 與 TEZ 引擎,但不適用於生產環境。
•SQL on Hadoop 的 SQL 引擎各有優缺點,用戶學習和使用的門檻較高。
•不同 SQL 引擎之間的語法和功能支持上存在差異,需要大量的測試和兼容工作,完全兼容的成本較高。
•不同 SQL 引擎各自提供服務會給數倉的血緣管理、許可權控制、運維管理、資源利用都帶來不便。
•在 Hive 中,自定義實現引擎。
•自動路由功能,不需要設置引擎,自動選擇適合的加速引擎。
•根絕規則匹配 SQL,只將兼容的 SQL 推給加速引擎。
•復用 HiveServer2 集群架構。
基於 HiveServer2,有兩種實現方式。JDBC 方式是通過 JDBC 介面,將 SQL 發送至後端加速引擎啟動的集群上。PROXY 方式是將 SQL 下推給本地的加速引擎啟動的 Client。
JDBC 方式啟動的後端集群,均是基於 YARN,可以實現資源的分時復用。比如 AdHoc 集群的資源在夜間會自動回收,作為報表系統的資源進行復用。
路由方案基於 HS2 的 Hook 架構,在 HS2 端實現對應 Hook,用於引擎切換;後端 BeaconServer 服務中實現路由 服務,用於 SQL 的路由規則的匹配處理。不同集群可配置不同的路由規則。
為了保證後算路由服務的穩定性,團隊還設計了 Rewrite Hook,用於重寫 AdHoc 集群中的 SQL,自動添加 LIMIT 上限,防止大數據量的 SCAN。
•易於集成,當前主流的 SQL 引擎都可以方便的實現 JDBC 與 PROXY 方式。再通過配置,能簡單的集成新的查詢引擎,比如 impala、drill 等。
•自動選擇引擎,減少了用戶的引擎使用成本,同時也讓遷移變得更簡單。並且在加速引擎過載 的情況下,可以動態調整比例,防止因過載 對加速性能的影響。
•自動降級,保證了運行的可靠性。SQL 路由支持 failback 模塊,可以根據配置選擇是否再路由引擎執行失敗後,回滾到 MR 運行。
•模塊復用,對於新增的引擎,都可以復用 HiveServer2 定製的血緣採集、許可權認證、並發鎖控制等方案,大大降低了使用成本。
•資源復用,對於 adhoc 查詢佔用資源可以分時動態調整,有效保證集群資源的利用率。
當查詢完成後,本地會輪詢結果文件,一直獲取到 LIMIT 大小,然後返回。這種情況下,當有大量的小文件存在,而大文件在後端的時候,會導致 Bad Case,不停與 HDFS 交互,獲取文件信息以及文件數據,大大拉長運行時間。
在 Fetch 之前,對結果文件的大小進行預排序,可以有數百倍的性能提升。
示例:當前有 200 個文件。199 個小文件一條記錄 a,1 個大文件混合記錄 a 與 test 共 200 條,大文件名 index 在小文件之後。
Hive 中有一個 SimpleFetchOptimizer 優化器,會直接生成 FetchTask,減小資源申請時間與調度時間。但這個優化會出現瓶頸。如果數據量小,但是文件數多,需要返回的條數多,存在能大量篩掉結果數據的 Filter 條件。這時候串列讀取輸入文件,導致查詢延遲大,反而沒起到加速效果。
在 SimpleFetchOptimizer 優化器中,新增文件數的判斷條件,最後將任務提交到集群環境,通過提高並發來實現加速。
示例:讀取當前 500 個文件的分區。優化後的文件數閾值為 100。
一個表有大量的子分區,它的 DESC 過程會與元數據交互,獲取所有的分區。但最後返回的結果,只有跟表相關的信息。
與元數據交互的時候,延遲了整個 DESC 的查詢,當元數據壓力大的時候甚至無法返回結果。
針對於 TABLE 的 DESC 過程,直接去掉了跟元數據交互獲取分區的過程,加速時間跟子分區數量成正比。
示例:desc 十萬分區的大表。
•復用 split 計算的數據,跳過 rece 估算重復統計輸入過程。輸入數據量大的任務,調度速率提升 50%。
•parquetSerde init 加速,跳過同一表的重復列剪枝優化,防止 map task op init 時間超時。
•新增 LazyOutputFormat,有 record 輸出再創建文件,避免空文件的產生,導致下游讀取大量空文件消耗時間。
•statsTask 支持多線程聚合統計信息,防止中間文件過多導致聚合過慢,增大運行時間。
•AdHoc 需要打開並行編譯,防止 SQL 串列編譯導致整體延遲時間增大的問題。
HS2 啟動時會對物化視圖功能進行初始化,輪詢整個元資料庫,導致 HS2 的啟動時間非常長,從下線狀態到重新上線間隔過大,可用性很差。
將物化視圖功能修改為延遲懶載入,單獨線程載入,不影響 HS2 的服務啟動。物化視圖支持載入中獲取已緩存信息,保證功能的可用性。
HS2 啟動時間從 5min+提升至<5s。
HS2 本身上下線成本較高,需要保證服務上的任務全部執行完成才能進行操作。配置的修改可作為較高頻率的操作,且需要做到熱載入。
在 HS2 的 ThriftServer 層我們增加了介面,與運維系統打通後,配置下推更新的時候自動調用,可實現配置的熱載入生效。
HiveServer2 的 scratchdir 主要用於運行過程中的臨時文件存儲。當 HS2 中的會話創建時,便會創建 scratchdir。在 HDFS 壓力大的時候,大量的會話會阻塞在創建 scratchdir 過程,導致連接數堆積至上限,最終 HS2 服務無法再連入新連接,影響服務可用性。
對此,我們先分離了一般查詢與 create temporay table 查詢的 scratch 目錄,並支持 create temporay table 查詢的 scratch 的懶創建。當 create temporay table 大量創建臨時文件,便會影響 HDFS NameNode 延遲時間的時候,一般查詢的 scratchdir HDFS NameNode 可以正常響應。
此外,HS2 還支持配置多 scratch,不同的 scratch 能設置載入比率,從而實現 HDFS 的均衡負載。
Hive 調度其中存在兩個問題。
一、子 Task 非執行狀態為完成情況的時候,若有多輪父 Task 包含子 Task,導致子 Task 被重復加入調度隊列。這種 Case,需要將非執行狀態修改成初始化狀態。
二、當判斷子 Task 是否可執行的過程中,會因為狀態檢測異常,無法正常加入需要調度的子 Task,從而致使查詢丟失 Stage。而這種 Case,我們的做法是在執行完成後,加入一輪 Stage 的執行結果狀態檢查,一旦發現有下游 Stage 沒有完成,直接拋出錯誤,實現查詢結果狀態的完備性檢查。
•HS2 實現了介面終止查詢 SQL。利用這個功能,可以及時終止異常 SQL。
•metastore JDOQuery 查詢優化,關鍵字異常跳過,防止元數據長時間卡頓或者部分異常查詢影響元數據。
•增加開關控制,強制覆蓋外表目錄,解決 insert overwrite 外表,文件 rename 報錯的問題。
•hive parquet 下推增加關閉配置,避免 parquet 異常地下推 OR 條件,導致結果不正確。
•executeForArray 函數 join 超大字元串導致 OOM,增加限制優化。
•增加根據 table 的 schema 讀取分區數據的功能,避免未級聯修改分區 schema 導致讀取數據異常。
•部分用戶並沒有開發經驗,無法處理處理引擎返回的報錯。
•有些錯誤的報錯信息不明確,用戶無法正確了解錯誤原因。
•失敗的任務排查成本高,需要對 Hadoop 整套系統非常熟悉。
•用戶的錯誤 SQL、以及需要優化的 SQL,大量具有共通性。人力維護成本高,但系統分析成本低。
SQL 專家系統基於 HS2 的 Hook 架構,在 BeaconServer 後端實現了三個主要的模塊,分別是 SQL 規則控制模塊、SQL 錯誤分析模塊,與 SQL 優化建議模塊。SQL 專家系統的知識庫,包含關鍵字、原因說明、處理方案等幾項主要信息,存於後端資料庫中,並一直積累。
通過 SQL 專家系統,後端可以進行查詢 SQL 的異常控制,避免異常 SQL 的資源浪費或者影響集群穩定。用戶在遇到問題時,能直接獲取問題的處理方案,減少了使用成本。
示例:空分區查詢控制。
SQL 專家系統能解決一部分 HS2 的任務執行的錯誤診斷需求,但是比如作業 健康 度、任務執行異常等問題原因的判斷,需要專門的系統來解決,為此我們設計了作業診斷系統。
作業診斷系統在 YARN 的層面,針對不同的執行引擎,對搜集的 Counter 和配置進行分析。在執行層面,提出相關的優化建議。
作業診斷系統的數據也能通過 API 提供給 SQL 專家系統,補充用於分析的問題原因。
作業診斷系統提供了查詢頁面來查詢運行的任務。以下是命中 map 輸入過多規則的任務查詢過程:
H. 什麼是大數據的40頁ppt免費下載
不要用設計模板,用修改背景的方法1、在幻燈片空白地方單擊右鍵選擇背景,可以選擇填充效果 2、在填充效果立選擇你需要的圖片背景或者其他 3、最後選擇全部應用就可以了
I. 「SAECCE議程劇透」新能源汽車大數據應用——機遇與融合
導讀
新能源 汽車 大數據的利用不僅在 汽車 產業內部釋放了巨大的數據紅利,未來也必將成為 汽車 產業與其他產業融合的重要紐帶。隨著我國「新基建」的不斷推進,高速低延遲的5G網路覆蓋與新能源 汽車 充電樁的建設,勢必會加速新能源 汽車 的發展與數據井噴。由此可見,大數據技術在新能源 汽車 上的應用會加快 汽車 產業向信息化與智能化邁進的腳步,而新能源 汽車 大數據與電力等行業的融合還將產生出巨大的藍海市場。
2020中國 汽車 工程學會年會暨展覽會(SAECCE 2020) 將於 2020年10月27-29日 在 上海 汽車 會展中心 舉辦。迄今為止,SAECCE年會已成功舉辦26屆,成為在國內舉辦的 汽車 行業標桿活動之一。
本專題分會以 「新能源 汽車 大數據應用——融合與機遇」 為主題,邀請國內外權威專家主旨演講和互動討論。通過聚焦「大數據背景下新能源車輛全局優化式能量管理方法研究」等若干議題,共同交流新能源 汽車 大數據應用的主流技術與最新發展趨勢,加速新能源 汽車 大數據技術成熟,並加大 汽車 產業的輻射帶動能力。
N01:新能源 汽車 大數據應用——機遇與融合
會議時間&地點
2020年10月27日 13:30-18:00
上海 汽車 會展中心
協辦單位
吉林大學 汽車 工程學院
會議主席
王震坡
博士/教授/博士生導師,北京理工大學電動車輛國家工程實驗室主任、新能源 汽車 國家大數據聯盟秘書長
王震坡,教授、博士生導師,北京理工大學電動車輛國家工程實驗室主任、新能源 汽車 國家大數據聯盟秘書長。入選了教育部「新世紀優秀人才」、北京市「 科技 北京百名領軍人才」、 科技 部「中青年 科技 創新領軍人才」、 國家「萬人計劃」和機械行業「『十二五』先進 科技 工作者」。主持了國家自然基金重點項目(動力電池系統熱失控與安全管理)、國家重點研發計劃項目(分布式驅動電動 汽車 集成與控制)、國家863計劃項目(電動 汽車 充換電設施設計集成與管理)等縱向項目12項,發表第一作者或通訊作者SCI論文29篇(ESI高被引3篇),第一作者EI論文60餘篇。第一作者出版專(譯)著4部(「電動車輛動力電池系統及應用技術」入選「十二五」高等教育本科國家級規劃教材),授權第一發明人發明專利24項。獲國家 科技 進步二等獎1項,省部級科研一等獎3項,二等獎2項(1項排名第一),中國 汽車 工業科學技術一等獎1項(排名第一),北京市教學成果一等獎1項。
聯合會議主席
許楠
博士/副教授/博士生導師,吉林大學 汽車 工程學院
許楠,吉林大學 汽車 工程學院車輛工程專業 副教授兼博士生導師,工學博士,博士後,新能源 汽車 國家大數據聯盟理事,美國電氣電子工程師學會(IEEE)會員,目前擔任Applied Energy、IEEE Transaction on Vehicular Technology、IEEE Transaction on Power Electronics、International Journal of Electronics和SAE Journal等國際期刊審稿專家。發表新能源 汽車 領域論文二十餘篇,授權發明專利10項,軟體著作權13項。作為項目負責人承擔國家自然科學基金青年基金項目、國家博士後科學基金面上項目、吉林省 科技 發展計劃項目以及企業的合作研究等項目。榮獲國家教育部博士生新人獎,入選國家留學基金委國際清潔能源拔尖創新人才培養項目(iCET2019),吉林大學優秀青年教師重點培養計劃等。
主要研究城市智能交通系統規劃與評價、車輛全局優化式能量管理、人-車-路系統數據挖掘與分析、新能源車輛動力系統控制與評價、開放式繞組電機控制、智能輔助駕駛。
01
演講嘉賓簡介及演講摘要提前看
大數據+區塊鏈在新能源 汽車 動力電池溯源管理方面的應用研究
劉鵬
北京理工大學副教授,碩士生導師,新能源 汽車 大數據聯盟副秘書長
演講要點
1、新能源 汽車 動力電池發展現狀。
2、新能源 汽車 動力電池溯源管理平台建設及應用現狀介紹。
3、大數據及區塊鏈技術在新能源 汽車 動力電池溯源管理方面的應用現狀及最新研究。
4、動力電池數據管理所面臨的問題和挑戰。
演講摘要
概述近年來新能源 汽車 和動力電池發展數據研究現狀,以及大數據平台建設及應用狀況,並對大數據及區塊鏈技術在新能源 汽車 動力電池溯源管理方面的應用及研究進行介紹,對動力電池數據管理方面所面臨的挑戰進行分析和展望。
一種基於數據的電動 汽車 全工況行駛能耗評價方法
袁新枚
吉林大學 汽車 工程學院教授
演講要點
1、電動 汽車 能耗評價的需求。
2、一種新型的電動 汽車 能耗模型及基於數據的能耗評價方法。
3、模擬實驗結果及討論。
4、該方法在高速路充電站規劃上的一個應用。
演講摘要
智能網聯新能源 汽車 的能量管理策略
宋珂
同濟大學 汽車 學院燃料電池創新研究所所長
演講要點
1、智能網聯 汽車 概述。
2、智能網聯 汽車 的通信技術。
3、智能網聯新能源 汽車 能量管理技術發展歷程。
4、智能網聯新能源 汽車 能量管理技術發展趨勢。
演講摘要
智能網聯 汽車 與新能源 汽車 將是未來 汽車 技術發展的兩個重要方向。當今 社會 和人們對這兩項技術的協調發展提出了更高的要求。通過使用智能網聯技術(ICT),新能源 汽車 可以與外部世界(例如其他行駛車輛、道路基礎設施,互聯網等)進行信息實時交互,這就是所謂的車聯網系統(V2X)。在對各種交通信息進行深入分析的基礎上,車輛可以識別當前行駛狀況並對未來駕駛狀況進行有效預測,從而實現車輛動力系統能量管理的實時優化,以滿足不同駕駛條件下的車輛駕駛需求。這不僅能大大改善新能源 汽車 的燃油經濟性,也能夠有效緩解了交通擁堵問題。介紹近年來智能網聯技術在新能源 汽車 上的應用情況,基於智能網聯技術的新能源 汽車 能量管理策略研究現狀以及智能網聯技術與新能源 汽車 技術協調發展的趨勢。
大數據在新能源 汽車 安全風險防控的應用研究
張照生
北京理工大學機械與車輛學院副教授
演講要點
1、新能源 汽車 安全情況統計分析。
2、新能源 汽車 安全預警與防控方法研究。
3、典型事故案例數據分析。
演講摘要
基於新能源 汽車 國家監管平台數據,統計分析車輛報警、事故車輛相關情況,從大數據角度分析影響新能源 汽車 安全相關因素,提出新能源 汽車 安全預警和防控方法,並以具體事故案例分析新能源 汽車 預警情況,為新能源 汽車 安全管控及產業 健康 發展提供技術支撐。
大數據背景下新能源車輛全局優化式能量管理方
法研究
許楠
吉林大學 汽車 工程學院 副教授,博士生導師,新能源 汽車 大數據聯盟理事
演講要點
1、新能源車輛能量管理方法研究現狀。
2、大數據背景下全局優化式能量管理方法所面臨的機遇和挑戰。
3、"信息-物質-能量"三層式全局優化架構的建立及應用。
4、全局優化式能量管理平台的應用前景。
演講摘要
概述近年來新能源車輛能量管理方法研究現狀,介紹大數據為全局優化式能量管理帶來的機遇,明確全局優化式能量管理方法所面臨的問題和挑戰,提出「信息-物質-能量」三層式全局優化架構以解決全局優化式能量管理方法實際應用問題。最後,針對全局優化式能量管理平台未來在區域交通能耗優化等方面的應用,提出了相關建議與展望。
數據驅動的鋰離子動力電池管理演算法 探索 研究
韓雪冰
清華大學車輛與運載學院助理研究員
演講要點
1、基於雲端大數據的電池管理是未來的發展方向。
2、基於數據可以有效的實現電池的安全預警。
3、基於數據可以有效的實現電池的壽命估計。
演講摘要
在新能源 汽車 使用過程中,伴隨著電池的使用,電池性能不斷衰減,電池組內單體間的不一致性持續增加,一致性問題還可能導致電池組的失效,引發安全問題。隨著雲端數據的廣泛應用,電動 汽車 的數據能被監測、記錄。基於這些數據可以有效的評估電池組一致性、估計電池壽命,進行電池安全預警,實現更加安全可靠的電池管理。
大數據背景下基於儲能應用的電動 汽車 電池的
二次利用
班伯源
中國科學院合肥物質科學研究院副研究員
演講要點
1、退役電動 汽車 電池二次利用的必要性。
2、電動 汽車 鋰電池的衰減現象的本質。
3、退役電動 汽車 電池二次利用的關鍵技術 SOH估算。
4、退役電動 汽車 電池二次利用國內應用實例。
演講摘要
近年來電動 汽車 (EV)產業飛速發展,為了保證 汽車 的動態性能和行駛安全,電動 汽車 電池在一定服役時間或性能下降後就需要更換。退役 汽車 電池二次利用是將保留了足夠的性能的退役電動 汽車 電池組,用於特定的儲能系統中。在本報告中整理了鋰離子 汽車 蓄電池二次利用的相關法律法規,收集了SOH估算的相關方法,特別是針對目前大數據背景下的提出了整合電動車能源管理系統的SOH估算方法,列舉了退役 汽車 電池可能的二次利用的利用場景。最後,根據目前國內退役電動 汽車 電池二次利用的現狀,提出了相關建議與展望。
新能源車與外部環境的數據融合帶來的機遇和
挑戰
王川久
北京泓達九通 科技 發展有限公司董事長
演講要點
1、大數據讓新能源車看的更遠,了解的更多,同時我們對車輛也有了更深的了解。
2、車輛與道路交通系統的關系。
3、大數據能給我們帶來什麼。
4、幾個大數據的應用場景。
演講摘要
新能源 汽車 與外部環境的大數據交換,將使車輛更好的融入道路交通系統,提高整個交通系統的效率,同時車輛的設計、生產、銷售、質量控制等各個環節均發揮出與以往不同的作用。
關於SAECCE 2020
2020中國 汽車 工程學會年會暨展覽會(SAECCE 2020) 將於 2020年10月27-29日 在 上海 汽車 會展中心 舉辦,誠邀 汽車 及相關行業的企業高層、技術領軍人物、資深專家學者、廣大 科技 工作者參與會議。SAECCE以「 汽車 +,協同創新」為主題,圍繞新能源 汽車 技術、智能網聯 汽車 技術、 汽車 關鍵共性技術,深度探討如何快速推動技術創新,重塑新型產業格局。
中國 汽車 工程學會年會暨展覽會(SAECCE)已成功舉辦26屆,成為在國內舉辦的 汽車 行業標桿活動之一。此外,原定於今年5月在北京召開的第七屆國際智能網聯 汽車 技術年會(CICV 2020)將和2020中國 汽車 工程學會年會暨展覽會(SAECCE 2020)合並舉辦。
SAECCE2020將組織1天(2場)全體大會、50多場專題分會、20多場(論文交流)技術分會,展覽面積約10000平米,預計將吸引3000多位來自政府機構及行業組織、整車企業、零部件企業、高校及科研院所的代表參會及參觀。
歡迎廣大企業、高校、科研院所等機構、以及廣大 科技 工作者通過組團或個人報名的方式積極參與!
02
SAECCE 2020 日程架構