㈠ 什麼叫大數據 怎麼理解大數據
1、「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
2、麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
3、大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
4、從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
5、隨著雲時代的來臨,大數據(Bigdata)也吸引了越來越多的關注。大數據(Bigdata)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
6、大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
㈡ 如何理解大數據
1、我理解的大數據就是:數據量大(Volume)、數據種類多樣(Variety)、 要求實時性強(Velocity) 。對它關注也是因為它蘊藏的商業價值大(Value)。也是大數據的4V特性。符合這些特性的,叫大數據。
2、對它關注一個原因就它的大價值,比方ebay,建立的大數據分析平台可以准確分析用戶的購物行為。通過對顧客的行為進行跟蹤、對搜索關鍵字廣告的投入產出進行衡量,優化後eBay 產品銷售的廣告費降低了99%,頂級賣家占總銷售額的百分比卻上升至32%。就大數據價值這一塊,例子很多,詳情可以再自己查查。
再一個對它關注的原因就是因為這么大量和復雜的數據確實不好管理,這樣就有了處理大數據的一些技術,比如Hadoop。Hadoop是個開源的,像網路做搜索,就用Hadoop管理數據。淘寶在2011年11月11日,搞得優惠活動,你想想在零點的時候,淘寶點擊有多高,每一筆買賣算一個數據請求,那怎麼保證網站的正常運轉啊?這些就是一些技術方面的關注了。
3、它的作用更多,拿球賽說,我們現在可以通過比賽錄像找出對手缺點了。有個大數據應用是視頻教練工具,用這個工具,球員可以比較和對比同一投球手的不同投球,或是幾天或幾周的投球情況的時間序列數據。
4、解決的問題。你問的大數據解決什麼問題,應該是處理大數據的技術解決什麼問題。通過我上面說的,你大概也能知道一點了,管理大規模的復雜數據需要用到大數據的技術,通過大數據的技術把這些大數據管理分析好了,可以使企業領導對各方面有更明確的認識,做出更好的決策。
總結下:大數據更多的體現數據的價值。各行業的數據都越來越多,在大數據情況下,如何保障業務的順暢,有效的管理分析數據,能讓領導層做出最有利的決策。這是關注大數據的原因。也是大數據技術要解決的問題。
這些都是我自己寫的我個人的理解,供你參考。再有不明白的可以網路,或者加追問咱們共同探討。嘿嘿。
㈢ 對大數據的理解
大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,簡單來說大數據就是海量的數據,就是數據量大、來源廣、種類繁多(日誌、視頻、音頻),大到PB級別,現階段的框架就是為了解決PB級別的數據。
大數據的7大特徵:海量性,多樣性,高速性,可變性,真實性,復雜性,價值性
隨著大數據產業的發展,它逐漸從一個高端的、理論性的概念演變為具體的、實用的理念。
很多情況下大數據來源於生活。比如你點外賣,准備什麼時候買,你的位置在哪,商家位置在哪,想吃什麼……這都是數據,人一多各種各樣的信息就越多,還不斷增長,把這些信息集中,就是大數據。
大數據的價值並不是在這些數據上,而是在於隱藏在數據背後的——用戶的喜好、習慣還有信息。
㈣ 什麼是「大數據」,如何理解「大數據」
大數據,IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
㈤ 什麼是「大數據」,如何理解「大數據」
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
㈥ 大數據的含義簡短
大數據是指那些數據量特別大、數據類別特別復雜的數據集,這種數據集不能用傳統的資料庫進行轉存、管理和處理,是需要新處理模式才能具有更強大的決策力、洞察發現力和流程優化能力的海量、高增差率和多樣化的信息資產。
大數據比想像中復雜。它不只是一項數據存儲技術,而是一系列和海量數據相關的抽取、集成、管理、分析、解釋技術,是一個龐大的框架系統。更進一步來說,大數據是一種全新的思維方式和商業模式。
大數據的特點
1、大量
大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。只有數據體量達到了PB級別以上,才能被稱為大數據。
2、高速
大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。
3、多樣
廣泛的數據來源,決定了大數據形式的多樣性。比如當前的上網用戶中,年齡,學歷,愛好,性格等等每個人的特徵都不一樣,這個也就是大數據的多樣性,當然了如果擴展到全國,那麼數據的多樣性會更強,每個地區,每個時間段,都會存在各種各樣的數據多樣性。
4、價值
這也是大數據的核心特徵。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識。
㈦ 大數據含義是什麼
問題一:什麼是大數據?大數據是什麼意思? 「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,大數據時代怎麼理解呢,一起來看看吧。
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
大 數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、 GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到 其內在規律。
大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
大 數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關 的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對, 挖掘主效基因。例子還有很多。
大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運 用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本 質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
商業智能的技術體系主要有數據倉庫(Data Warehouse,DW)、聯機分析處理(OLAP)以及數據挖掘(Data Mining,DM)三部分組成。
數據倉庫是商業智能的基礎,許多基本報表可以由此生成,但它更大的用處是作為進一步分析的數據源。所謂數據倉庫(DW)就是面向主題的、集成的、穩定的、不同時間的數據 *** ,用以支持經營管理中的決策制定過程。多維分析和數據挖掘是最常聽到的例子,數據倉庫能供給它們所需要的、整齊一致的數據。
在線分析處理(OLAP)技術則幫助分析人員、管理人員從多種角度把從原始數據中轉化出來、能夠真正為用戶所理解的、並真實反映數據維特性的信息,進行快速、一致、交互地訪問,從而獲得對數據的更深入了解的一類軟體技術。
數據挖掘(DM)是一種決策支持過程,它主要基於AI、機器學習、統計學等技術,高度自動化地分析企業原有的數據,做出歸納性的推理,從中挖掘出潛在的模式,預測客戶的行為,幫助企業的決策者調整市場策略,減少風險,做出正確的決策。
商業智能的應用范圍
1.采購管理
2.財務管理
3.人力資源管理
4.客戶服務
5.配銷管......>>
問題二:什麼是大數據 大數據是什麼意思 「大數據」不是「數據分析」的另一種說法!大數據具有規模性、高速性、多樣性、而且無處不在等全新特點,具體地說,是指需要通過快速獲取、處理、分析和提取有價值的、海量、多樣化的交易數據、交互數據為基礎,針對企業的運作模式提出有針對性的方案。由於物聯網和智能可穿戴的普及帶來的,生產線上普通的藍領員工,前台電話員,等企業內的低階員工也成為產生大數據的數據內容的一部分,數據的產生除了來自社交網路,網站,電子商務網站,郵箱外,智能手機,各種感測器,和物聯網,智能可穿戴設備。
大數據營銷與傳統營銷最顯著的區別是大數據可以深入到營銷的各個環節,使營銷無處不在。如用戶的偏好?上網的時間段?上網主要瀏覽頁?對頁面和產品的點擊次數?網站上的用戶評價對他的影響?他會在哪些地方分享對產品和購物過程的體驗?這些都是對用戶網上消費和品牌關注度的深入分析,可以直接影響用戶消費的傾向等商業效果。
大數據徹底改變企業內部運作模式,以往的管理是「領導怎麼說?」現在變成「大數據的分析結果」,這是對傳統領導力的挑戰,也推動企業管理崗位人才的定義。不僅懂企業的業務流程,還要成為數據專家,跨專業的要求改變過去領導力主要體現在經驗和過往業績上,如今熟練掌握大數據分析工具,善於運用大數據分析結果結合企業的銷售和運營管理實踐是新的要求。
當然大數據對企業的作用一個不可迴避的關鍵因素是數據的質量,有句話叫「垃圾進,垃圾出」指的是如果採集的是大量垃圾數據會導致出來的分析結果也是毫無意義的垃圾。此外,企業內部是否會形成一個個孤立的數據孤島,數據是否會成就企業內某些人或團隊新的權力,導致數據不能得到實時有效地分享,這些都會是阻礙大數據在企業中有效應用的因素。
而隨著大數據時代的到來,對大數據商業價值的挖掘和利用逐漸成為行業人士爭相追捧的利潤焦點。業內人士稱,電商企業通過大數據應用,可以探索個人化、個性 化、精確化和智能化地進行廣告推送和推廣服務,創立比現有廣告和產品推廣形式性價比更高的全新商業模式。同時,電商企業也可以通過對大數據的把握,尋找更 多更好地增加用戶粘性,開發新產品和新服務,降低運營成本的方法和途徑。
問題三:什麼是「大數據」的真正含義 大講台大數據 在線培訓為你解答:大數據(bigdata),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
問題四:大數據是什麼含義? 大數據的意思就是數據要在線,這樣你的數據才能有價值,用於分析或者處理。大量的數據在線後的分析才有意義。
問題五:大數據是什麼意思 大數據是指整個分析運營的各個方面的數據整合。特別是指互聯網帶來的整個方方面的物流 信息流 資金流都在數據分析下整合
希望你能接受這個答案。
問題六:大數據是什麼意思? 大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的加工能力,通過加工實現數據的增值。
問題七:大數據的概念是什麼意思 什麼是大數據概念?
大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托・邁爾-舍恩伯格及肯尼斯・庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
問題八:大數據的含義包括哪些 大數據(英語:Big data[1][2]或Megadata),或稱巨量數據、海量數據、大資料,指的是所涉及的數據量規模巨大到無法通過人工,在合理時間內達到截取、管理、處理、並整理成為人類所能解讀的信息。
在總數據量相同的情況下,與個別分析獨立的小型數據集(data
set)相比,將各個小型數據 *** 並後進行分析可得出許多額外的信息和數據關系性,可用來察覺商業趨勢、判定研究質量、避免疾病擴散、打擊犯罪或測定實時交通路況等;這樣的用途正是大型數據集盛行的原因。
大數據的應用示例包括大科學、RFID、感測設備網路、天文學、大氣學、基因組學、生物學、大社會數據分析、互聯網文件處理、製作互聯網搜索引擎索引、通信記錄明細、軍事偵查、社交網路、通勤時間預測、醫療記錄、照片圖像和視頻封存、大規模的電子商務等。
問題九:什麼是大數據?有什麼意義? 大數據就是大量的數據,通過分析找出他們的規律
問題十:什麼是大數據,大數據的意義是什麼? 大數據的意思就是數據要在線,這樣你的數據才能有價值,用於分析或者處理。大量的數據在線後的分析才有意義。可能得到你想要的數據,電影里好多這種素材,比如人臉的搜索,人員的定位,人流的分析,運行的狀態等等都有使用。現在做這些應用的也很多,只是落地的還稍微少一點。還是為了創造價值。
㈧ 大數據的定義是什麼
大數據首先是一個非常大的數據集,可以達到TB(萬億位元組)甚至ZB(十萬億億位元組)。這裡面的數據可能既有結構化的數據,也有半結構化和非結構化的數據,而且來自於不同的數據源。
結構化的數據是什麼呢?對於接觸過關系型資料庫的小夥伴來說,應該一點都不陌生。對了,就是我們關系型資料庫中的一張表,每行都具有相同的屬性。如下面的一張表:
(子標簽的次序和個數不一定完全一致)
那什麼又是非結構化數據呢?這類數據沒有預定義完整的數據結構,在我們日常工作生活中可能更多接觸的就是這類數據,比如,圖片、圖像、音頻、視頻、辦公文檔等等。
知道了這三類結構的數據,我們再來看看大數據的數據源有哪些呢?歸納起來大致有五種數據源。
一是社交媒體平台。如有名氣的Facebook、Twitter、YouTube和Instagram等。媒體是比較受歡迎的大數據來源之一,因為它提供了關於消費者偏好和變化趨勢的寶貴依據。並且因為媒體是自我傳播的,可以跨越物理和人口障礙,因此它是企業深入了解目標受眾、得出模式和結論、增強決策能力的方式。
二是雲平台。公有的、私有的和第三方的雲平台。如今,越來越多的企業將數據轉移到雲上,超越了傳統的數據源。雲存儲支持結構化和非結構化數據,並為業務提供實時信息和隨需應變的依據。雲計算的主要特性是靈活性和可伸縮性。由於大數據可以通過網路和伺服器在公共或私有雲上存儲和獲取,因此雲是一種高效、經濟的數據源。
三是Web資源。公共網路構成了廣泛且易於訪問的大數據,個人和公司都可以從網上或「互聯網」上獲得數據。此外,國內的大型購物網站,淘寶、京東、阿里巴巴,更是雲集了海量的用戶數據。
四是IoT(Internet of Things)物聯網數據源。物聯網目前正處於迅猛發展勢頭。有了物聯網,我們不僅可以從電腦和智能手機獲取數據,還可以從醫療設備、車輛流程、視頻游戲、儀表、相機、家用電器等方面獲取數據。這些都構成了大數據寶貴的數據來源。
五是來自於資料庫的數據源。現今的企業都喜歡融合使用傳統和現代資料庫來獲取相關的大數據。這些數據都是企業驅動業務利潤的寶貴資源。常見的資料庫有MS Access、DB2、Oracle、MySQL以及大數據的資料庫Hbase、MongoDB等。
我們再來總結一下,什麼樣的數據就屬於大數據呢?通常來大數據有4個特點,這就是業內人士常說的4V,volume容量、 variety多樣性、velocity速度和veracity准確性。
㈨ 什麼是大數據
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低的四大特徵。
大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
大數據最核心的價值就是在於對於海量數據進行存儲和分析;大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。