導航:首頁 > 網路數據 > 大數據的典型處理流程

大數據的典型處理流程

發布時間:2023-02-05 04:16:30

大數據處理流程包括哪些

品牌型號:華為MateBook D15
系統:Windows 10

大數據處理流程包括:數據採集、數據預處理、數據入庫、數據分析、數據展現。

1、數據採集概念:目前行業會有兩種解釋:一是數據從無到有的過程(web伺服器列印的日誌、自定義採集的日誌等)叫做數據採集;另一方面也有把通過使用Flume等工具把數據採集到指定位置的這個過程叫做數據採集。

2、數據預處理:通過maprece程序對採集到的原始日誌數據進行預處理,比如清洗,格式整理,濾除臟數據等,並且梳理成點擊流模型數據。

3、數據入庫:將預處理之後的數據導入到HIVE倉庫中相應的庫和表中。

4、數據分析:項目的核心內容,即根據需求開發ETL分析語句,得出各種統計結果。

5、數據展現:將分析所得數據進行數據可視化,一般通過圖表進行展示。

② 大數據流程

大數據流程:
從流程角度上看,整個大數據處理可分成4個主要步驟。
第一步是數據的搜集與存儲;
第二步是通過數據分析技術對數據進行探索性研究,包括無關數據的剔除,即數據清洗,與尋找數據的模式探索數據的價值所在;
第三步為在基本數據分析的基礎上,選擇和開發數據分析演算法,對數據進行建模。從數據中提取有價值的信息,這其實是真正的阿里雲大數據的學習過程。這當中會涉及很多演算法和技術,比如機器學習演算法等;
最後一步是對模型的部署和應用,即把研究出來的模型應用到生產環境之中。

③ 如何進行大數據處理

大數據處理之一:收集


大數據的收集是指運用多個資料庫來接收發自客戶端(Web、App或許感測器方式等)的 數據,而且用戶能夠經過這些資料庫來進行簡略的查詢和處理作業,在大數據的收集進程中,其主要特色和應戰是並發數高,因為同時有可能會有成千上萬的用戶 來進行拜訪和操作


大數據處理之二:導入/預處理


雖然收集端本身會有許多資料庫,但是假如要對這些海量數據進行有效的剖析,還是應該將這 些來自前端的數據導入到一個集中的大型分布式資料庫,或許分布式存儲集群,而且能夠在導入基礎上做一些簡略的清洗和預處理作業。導入與預處理進程的特色和應戰主要是導入的數據量大,每秒鍾的導入量經常會到達百兆,甚至千兆等級。


大數據處理之三:核算/剖析


核算與剖析主要運用分布式資料庫,或許分布式核算集群來對存儲於其內的海量數據進行普通 的剖析和分類匯總等,以滿足大多數常見的剖析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及根據 MySQL的列式存儲Infobright等,而一些批處理,或許根據半結構化數據的需求能夠運用Hadoop。 核算與剖析這部分的主要特色和應戰是剖析觸及的數據量大,其對系統資源,特別是I/O會有極大的佔用。


大數據處理之四:發掘


主要是在現有數據上面進行根據各種演算法的核算,然後起到預測(Predict)的作用,然後實現一些高等級數據剖析的需求。主要運用的工具有Hadoop的Mahout等。該進程的特色和應戰主要是用於發掘的演算法很復雜,並 且核算觸及的數據量和核算量都很大,常用數據發掘演算法都以單線程為主。


關於如何進行大數據處理,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

④ 大數據處理的基本流程有幾個步驟

步驟一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,所以需要在採集端部署大量資料庫才能支撐。
步驟二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
步驟三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
步驟四:挖掘
數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。
該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。

⑤ 大數據處理過程一般包括哪幾個步驟

大數據處理過程一把包括四個步驟,分別是
1、收集數據、有目的的收集數據
2、處理數據、將收集的數據加工處理
3、分類數據、將加工好的數據進行分類
4、畫圖(列表)最後將分類好的數據以圖表的形式展現出來,更加的直觀。

⑥ 大數據的處理流程包括了哪些環節

處理大數據的四個環來節自:

⑦ 大數據處理的基本流程有什麼

大數據處理流程主要包括數據收集、數據預處理、數據存儲、數據處理與分析、數據展示/數據可視化、數據應用等環節,其中數據質量貫穿於整個大數據流程,每一個數據處理環節都會對大數據質量產生影響作用。
通常,一個好的大數據產品要有大量的數據規模、快速的數據處理、精確的數據分析與預測、優秀的可視化圖表以及簡練易懂的結果解釋,本文將基於以上環節分別分析不同階段對大數據質量的影響及其關鍵影響因素。

⑧ 大數據的常見處理流程

大數據的常見處理流程

具體的大數據處理方法其實有很多,但是根據長時間的實踐,筆者總結了一個基本的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,以及挖掘。

採集

大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。

在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。

導入/預處理

雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。

導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。

統計/分析

統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC 的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。

統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。

挖掘

與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的K-Means、用於統計學習的SVM和用於分類的Naive Bayes,主要使用的工具有Hadoop的Mahout等。

該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,還有,常用數據挖掘演算法都以單線程為主。

閱讀全文

與大數據的典型處理流程相關的資料

熱點內容
win10todo 瀏覽:786
word自動更新選項 瀏覽:518
虛擬編程屬於什麼專業 瀏覽:912
如何壓縮文件的行距 瀏覽:894
js選擇器class 瀏覽:164
硬碟裝機工具 瀏覽:550
2016年蘋果新年活動 瀏覽:283
選幣app是什麼意思 瀏覽:238
消失點教程 瀏覽:988
linuxdb2刪除資料庫命令 瀏覽:610
excel跨文件表引用 瀏覽:119
快手調幀數教程 瀏覽:519
線切割割一個圓怎麼編程 瀏覽:930
ps6關閉多個文件 瀏覽:899
農行掌上銀行app怎麼看賬單 瀏覽:31
蘋果6plus怎樣查詢真偽 瀏覽:229
文件未響應怎麼辦 瀏覽:593
哪個數據恢復軟體價格低 瀏覽:755
為什麼米動app顯示步數 瀏覽:189
word2007圖片裁剪工具 瀏覽:902

友情鏈接