導航:首頁 > 網路數據 > 大數據人才培養模式研究

大數據人才培養模式研究

發布時間:2023-02-04 19:21:06

大數據人才培養

01

大數據的重點

大數據是為了解決具體的問題,例如,科學研究問題,商業決策問題,政府管理問題等,基於數據驅動的智能化解決問題。

02

大數據人才培養的重點

大數據的人才培養時一定以問題和目標為導向,研究和選擇合適的技術加以應用,怎麼快速組合、快速搭積木、快速產出的問題。

不同的業務領域需要不同方向理論、技術和工具的支持,是業務決定技術和工具,而不是根據技術、工具來考慮業務。

03

大數據人才的思維方式

大數據人才的「數據驅動」與「數據閉環」思維方式。

數據閉環是指構造起包括數據採集、建模分析、效果評估到反饋修正各個環節在內的完整「數據閉環」,從而能夠不斷地自我升級,螺旋上升;

數據驅動是指經營管理決策可以自下而上地由數據來驅動。

大數據人才需要涉及交叉學科和交叉領域,通過完整的培訓體系培養大數據人才的全局觀、大局觀,既可以自頂向下的通過業務探索數據背後蘊含的商業價值,又可以自底向上的去實現數據獲取、數據挖掘、以及數據決策的全流程,以適應大數據時代的發展。

㈡ 為什麼有那麼多人進行大數據培訓

國家鼓勵發展大數據,現在大數據應用的也廣泛,總結來說就是前景好,薪資高唄

㈢ 學歷的高低能否決定大數據工程師的發展前景

不能
大數據近年來越來越火,因為有了它,好像什麼行業都能精準分析。但是,大數據本身的發展卻很少有人分析。近日,國家信息中心、南海大數據應用研究院聯合發布了《2017中國大數據發展報告》,首次把中國大數據本身的發展特點和存在的問題,全面呈現了出來。
用大數據來了解大數據
這份報告全面匯聚了國家發改委互聯網大數據分析中心、國家信息中心、「一帶一路」大數據中心所掌握的30多個種類,總計40多億條相關數據,綜合運用多種大數據分析方法,對我國大數據產業發展進行了全面分析。所以,稱得上是用大數據來了解大數據。
北京、廣東、上海大數據發展位居前三
報告顯示,我國大數據發展總體處於起步階段。但是從地域上看,就有意思了。
國家信息中心信息化研究部副主任、南海大數據應用研究院院長於施洋指出:「從地域分布,從各個省來說,北京排第一,這個不足為怪,東部沿海地區這些省份排在前面,大家也都能夠想像。但是在西南地區,四川、重慶、貴州這三個地方異軍突起,是我們大數據發展的第二個增長極。」
產業落後是地方大數據發展的突出短板
具體來看,各省份大數據發展指數的排名中,貴州、重慶、四川,緊隨東部沿海省份,全部排進了前十名,領先任何一個中部省份。分析認為,這主要是地方政策引領的結果。這三個西部省市,早早都把大數據產業的發展作為重點工程來打造。對於這種「彎道超車」現象,國家行政學院教授汪玉凱建議,這些地方下一步可以重點考慮產業落地問題:「它們是首先抓住了一個概念,然後佔了一個先機。但是相對能夠落地的產業應用還是比較少的,這是它們的軟肋。所以我認為,你們一定要注意應用,要打造你的優勢。」
人才短缺問題日益突出
報告指出,數據管理環節漏洞較多,是大數據發展面臨的首要問題,包括由此引發的運營成本過高、資源利用率低、應用部署過於復雜等難點。而我們更關注的是另一大問題。
我們會發現,大數據領域里數據是有了,但是能駕馭這些數據的人是極其匱乏的。比如說大數據的專業人才方面,現在分析類的人才,市場是供不應求,缺口非常大,而項目管理類的人才,供給又遠遠大於需求,所以結構上還不平衡。高端的人才奇缺,這是最突出的問題。」
發展大數據要謹防人才「眼高手低」
大數據的核心就是數據的抓取與分析,而分析環節,目前離不開人工設置變數,建立模型。所謂「差之毫釐,謬之千里」,大數據分析對人才的要求很高。但首份大數據發展報告卻揭示,我國大數據人才能搞管理的不少,真正能做分析的卻遠遠不夠,這是典型的「眼高手低」,勢必傷害大數據產業的長遠發展。人才短板可以從教育方面著手彌補,探索新的人才培養模式。比如,將高校大數據系列課程分為理論教學和技術教學兩方面;比如社會上優質的專注大數據人才培養機構等多方面進行。

㈣ 關於數據科學與大數據技術

數據科學與大數據技術專業都學些什麼?
屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等,知識結構是二專多能復合的跨界人才(有專業知識、有數據思維)。
數據科學與大數據技術專業人才需求情況怎樣?
根據領英發布的《2016年中國互聯網最熱職位人才報告》顯示,研發工程師、產品經理、人力資源、市場營銷、運營和數據分析是中國護理萬網行業需求最旺盛的職位。
目前國內有30萬數據人才,預計2018年,大數據人才需求將有大幅增長,高端人才如大數據科學家的缺口在14萬至19萬之間;懂得利用大數據做決策的分析師和經理缺口達到150萬,數據分析師現在需求就很旺盛了,2年工作經驗的月薪可達到8K,碩士學歷的數據分析師月薪可達到12K,5年工作經驗的可達到40萬至60萬元。
數據科學與大數據技術專業可以從事的工作有哪些?
重視數據的機構已經越來越多,上到國防部,下到互聯網創業公司、金融機構需要通過大數據項目來做創新驅動,需要數據分析或處理崗位也很多;常見的食品製造、零售電商、醫療製造、交通檢測等也需要數據分析與處理,如優化庫存,降低成本,預測需求等。人才主要分成三大類:大數據系統研發類、大數據應用開發類、大數據分析類。
數據科學與大數據技術專業報考建議:
1、當下企業用人現象:一個專業集群對應一個行業熱點。大數據是交叉學科,走的是「復合型」培養路線,行業內從事相關職能的人專業背景各異。大數據作為人才培養方向在探索中,如果直接從各專業人才中遴選學苗開展碩士研究生階段的教育會更適合一些,直接開設本科階段的教育還相對不夠成熟。
2、人才培養與行業發展存在差距。由於教學大綱更新不會太及時,大數據人才7年畢業(本科四年、碩士研究生三年)後,所學恐怕落後於行業發展。
3、大數據人才的典型勝任特徵:善於做需求分析、寫代碼;善於與人溝通,喜歡探索未知;需要根據數據推演、分析、提出解決方案,有數據思維;需要持續保持學習狀態;內性格上能動能靜。
4、不同辦學層次的院校開設此專業,培養模式會有差異。例如,高職類院校學生由於數學基礎相對薄弱,會跟多偏向於工具的使用,如數據清洗、數據存儲以及數據可視化等相關工具的使用;本科院校會傾向於大數據相關基礎知識全面覆蓋性教學,在研究生段則會專攻某一技術領域,比如數據挖掘、數據分析、商業智能、人工智慧等。

㈤ 大數據究竟多大才算是,該如何學習大數據

大數據本身是基於數據價值化而構建出來的新概念,雖然概念比較新,但是數據卻一直都在,所以大數據的核心並不在「大」上,而是基於大數據所構建出的一個新的價值空間。

在理解大數據概念的時候,通常都有幾個較為明顯的誤區,其一是只有足夠大的數據才能算是大數據范疇;其二是大數據和互聯網是隔離的;其三是大數據就是統計學;其四是大數據會「殺熟」,應該盡量遠離大數據等等。

在大數據時代,任何體量的數據都可以採用大數據技術進行處理,傳統的結構化數據處理方式也已經並入到了大數據的技術體系,所以大數據技術本身對於數據量的大小並沒有絕對的要求,並不是說數據量小就不能採用大數據技術。

大數據本身是互聯網、物聯網和傳統信息系統共同發展所導致的結果,所以大數據與互聯網存在緊密的聯系,事實上目前互聯網領域是推動大數據發展的重要力量,所以大數據與互聯網本身就密不可分。從互聯網發展的前景來看,大數據是互聯網價值的重要體現,所以未來大數據的價值必然會不斷得到提升。

由於目前大數據分析技術往往會採用統計學的方式,這導致不少人認為大數據就是統計學,實際上大數據在進行數據分析的過程中,不僅需要統計學技術,也需要機器學習相關技術。當然,統計學作為大數據的三大基礎學科,在大數據技術體系中佔有重要的地位。

目前大數據人才的培養既包括研究生教育(培養創新型人才),也包括專科教育和本科教育,隨著大數據技術體系的逐漸成熟,學習大數據的過程也會更為順利。

如果有互聯網、大數據、人工智慧等方面的問題,或者是考研方面的問題,都可以在評論區留言,或者私信我!

大數據並非是大的數據,而是將數據價值化的新概念,可以說任何體量的數據都可以使用大數據技術來處理。在大數據時代,企業中有很多商業數據需要大數據開發工程師來採集、儲存、處理,所以逐漸的大數據崗位越來越多。

目前是大數據開發落地應用的初級階段,市場需要更多的大數據開發人才,面對偌大的市場需求,有越來越多的小夥伴想學習大數據開發技術,但是並不是每個人都可以學習的,學習大數據對編程基礎和邏輯思維能力有一定的需求,因為大數據是比較復雜且綜合性比較強的編程語言。

由於大數據的復雜性,對於小夥伴學習大數據的難易程度來講,不同基礎的小夥伴,難易程度不同,那小夥伴該如何去學習大數據開發技術呢?

1.注重編程基礎知識的積累

上面我也說過了,大數據是比較復雜的編程語言,想要學習大數據開發技術是需要有一定的編程基礎的,但是有些零基礎學習大數據的小夥伴,還是需要學習java、Python、web等編程基礎。

2.確定發展方向,以用為學

小夥伴可以事先了解一下企業對大數據開發技術的需求是什麼,確定自己的發展方向,根據企業所需要的大數據開發技術需求,制定適合自己的學習路線,針對性學習,才能提高學習效率。

3.多練習項目案例

在平時,小夥伴在積累基礎知識的過程中,不要忘了多加練習項目案例,多敲代碼,培養自己的編程思維。

最後,小夥伴想要學習大數據開發技術,還需要不斷的 探索 適合自己的學習方法。尚矽谷大數據培訓班是一家比較靠譜的IT教育培訓機構,以理論實踐相結合的教學方式傳授更多的大數據開發技術知識,讓小夥伴在學習大數據開發技術知識的同時,積累更多的項目實戰經驗。

http://www.atguigu.com/bigdata_video.shtml

大數據,什麼是大數據呢?多大的數據叫大數據?紅火一時的數據分析走向了我們,紛紛稱不分析數據企業將長久不了,可是究竟什麼樣的數據才是大數據呢,什麼樣的數據才是最大的呢?

如果你沒有接觸過大數據,那麼你就不知道大數據究竟有多大,大到什麼樣的數據才能稱之為大數據。那麼,根據數據收集的埠,企業端與個人端之間,大數據的數量級別是不同的。

大數據開發學習有一定難度,零基礎入門首先要學習Java語言打基礎,一般而言,Java學習SE、EE,需要約3個月的時間;然後進入大數據技術體系的學習,主要學習Hadoop、Spark、Storm等。

什麼是大數據 究竟多大才算是大數據

大數據是什麼?

多大的數據叫大數據?

很多沒有接觸過大數據的人,都很難清楚地知道,究竟多大的數據量才可以稱之為大數據。那麼,根據數據收集的埠,企業端與個人端之間,大數據的數量級別是不同的。

企業端(B端)數據近十萬的級別,就可以稱為大數據;個人端(C端)的大數據要達到千萬級別。收集渠道沒有特定要求,PC端、移動端或傳統渠道都可以,重點要達到這樣數量級的有效數據,形成數據服務即可。很有趣,大家可以看到2B和2C,兩類大數據差了兩個數量級。

有些小公司,數據只有千到萬級的規模,但經過收集分析,也能從中有針對性的總結出這一群體的原則,同樣能指導企業進行一定程度的用戶分析、獲取或者是服務工作,但這並不是大數據,而是一般性的數據挖掘。

大數據的產業鏈是怎樣的?

我在接受采訪的時候,依照大數據公司在產業鏈的上下游關系,提出把它們分成三種不同類別:

大數據採集公司

所謂「找數據」,內部可以再分兩種:

在自身正常運營的過程中就能產生大量數據源;

通過跟電信運營商、金融企業合作,獲取數據源。

大數據分析公司

這一類公司,基本上都有自己的套模型,但大部分資料庫模型源於相同的幾個機理,包括統計學模型、深度學習演算法等等。也基於美國IBM、cloudera公司開發的應用型分析模塊等等。

大數據銷售公司

雖然說是賣數據,但出售的並不是單一數據,而是基於數據的全套解決方案,比如精準營銷等等。

這三類公司是如何協作,並把大數據作用於我們的生活呢?最容易理解的就是現在在微信朋友圈上投放的廣告。

騰訊在把廣告推廣給每個用戶的時候,都已經對用戶做過精準的分析。通過收集人們在微信上使用習慣,進而分析用戶的消費能力、消費習慣,形成一套精準營銷方案後,給廣告商生成一些定向的廣告。

比如說,蘭蔻的廣告就從來不會推廣給男性用戶、豪車廣告也不會推給應屆畢業生。整個的微信廣告體系都用到了大數據的分析模式,大家普遍反饋,在騰訊上投放的廣告比網易、新浪等平台上投放的廣告轉化率高,正是得益於騰訊的大數據基礎。

大數據本身是基於數據價值化而構建出來的新概念,雖然概念比較新,但是數據卻一直都在,所以大數據的核心並不在「大」上,而是基於大數據所構建出的一個新的價值空間。

大數據開發學習有一定難度,零基礎入門首先要學習Java語言打基礎,一般而言,Java學習SE、EE,需要約3個月的時間;然後進入大數據技術體系的學習,主要學習Hadoop、Spark、Storm等。

企業端(B端)數據近十萬的級別,就可以稱為大數據;個人端(C端)的大數據要達到千萬級別。收集渠道沒有特定要求,PC端、移動端或傳統渠道都可以,重點要達到這樣數量級的有效數據,形成數據服務即可。很有趣,大家可以看到2B和2C,兩類大數據差了兩個數量級。

有些小公司,數據只有千到萬級的規模,但經過收集分析,也能從中有針對性的總結出這一群體的原則,同樣能指導企業進行一定程度的用戶分析、獲取或者是服務工作,但這並不是大數據,而是一般性的數據挖掘。

大數據面向的是更海量的一個數據,藉助了更廣義的知識資料庫的分析方法。大部分的數據公司的數據來源是海量的,它的收集和分析,並不是局限於個體,而是以一個非常非常廣泛的群體為對象展開的。

要兌現大數據的商業價值,第一個要求,就是達到大數據的數據量級。那麼目前,在數據量上最有優勢是BAT三家。在PC時代,網路在數據上的優勢非常強,但到移動時代,騰訊和阿里實現了反超。

騰訊有微信、QQ,拿到了移動端數據生成量的九成;阿里利用它的消費數據資源,更有垂直性。那麼對於中小企業、創業企業而言,兌現商業價值的重點就變成了,如何在自身規模較小的時候,利用別人的大數據資源為自己的創業更好的服務。這是需要深層次判斷和挖掘的。

所以,對於數據相關的公司,在投資判斷的時候,不單是看現有業務的發展,更重要的是在他不斷的發展的過程中,能不能積累有效數據、積累高准確性的數據,實現數據的實時更新性。這樣的企業才能夠更好地建立起競爭壁壘。

什麼是大數據

大數據指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

為什麼大數據很重要?

大數據的重要性不在於您擁有多少數據,而在於您使用它做了多少。您可以從任何來源獲取數據並進行分析,以找到能夠降低成本,減少時間,新產品開發和優化產品,以及智能決策的答案。將大數據與高性能分析結合使用時,您可以完成與業務相關的任務,例如:

1.近乎實時地確定故障,問題和缺陷的根本原因;

2.根據客戶的購買習慣在銷售點生成優惠券;

3.在幾分鍾內重新計算整個風險組合;

4.在欺詐行為影響您的組織之前檢測它。

從大數據中提取大價值的挖掘技術。專業的說,就是根據特定目標,從數據收集與存儲,數據篩選,演算法分析與預測,數據分析結果展示,以輔助作出最正確的抉擇,其數據級別通常在PB以上,復雜程度前所未有。

眾所周知,IT 行業是個高薪行業,也是很多人的夢想職業,在全球最缺人的十大行業中IT行業居首位。而事實證明,IT行業不失為一個好的職業方向。

中公優就業可以為您規劃學習過程以及後期就業方向,為您的未來保駕護航

在大數據時代,任何體量的數據都可以採用大數據技術進行處理,傳統的結構化數據處理方式也已經並入到了大數據的技術體系,所以大數據技術本身對於數據量的大小並沒有絕對的要求,並不是說數據量小就不能採用大數據技術。

數據收集不分大小,用到大數據這個詞彙!

是統計學中一個概念,數據信息越大越全!誤差越小,也就越准確!

建議先從統計學入手,理論性知識先了解!再針對行業情況實戰做有效數據收集,達到基數後去證實數據的有效性和真實性!

這些都是基礎!

㈥ 從「T」型人才到「π」型人才,大數據人才培養之路該如何走

具體來說,大數據人才首先應具備獲取大數據的能力,例如能根據任務要求,綜合利用各種計算機技術和知識,收集、整理海量數據並加以存儲,為支撐相關決策和行為做好數據准備。其次,應具備分析大數據的能力,能根據具體需求,採用有效方法和模型分析數據,並形成報告,為實際問題提供決策依據。最後,還應具備良好的團隊合作精神。大數據時代的數據分析任務,多數需要與他人合作實現既定目標。
從數據科學與大數據技術專業畢業的學生,授予的是理學與工學學位。由此可見,此專業具有非常明顯的理工交叉特點。」南開大學統計研究院副院長王兆軍告訴記者,大數據催生了數據科學,而數據科學是處理和分析大數據的理論支撐與保證。「因此,高校在制定培養計劃和方案時,應注意數學、統計學、計算機科學的有機融合及與應用領域的深入結合。

㈦ 如何實現大數據時代的政府治理創新

1、在政府系統進一步確立大數據的理念,研究制定大數據施政發展規劃

2、夯實大數據產業基礎,提供大數據施政平台技術支撐。

3、打通各部門各層級之間信息孤島,實現大數據信息資源互聯共享。

4、發揮第三方力量的作用,政府積極購買大數據相關技術服務

㈧ 大數據發展方向發展前景怎麼樣是就業是否有保障

大數據廣為所知的未來方向有三個,由高級到普通分別為數據科學家、數據工程師和數據分析師。

一 、職業定位
數據科學家
數據科學家是指能採用科學方法、運用數據挖掘工具對復雜多量的數字、符號、文字、網址、音頻或視頻等信息進行數字化重現與認識,並能尋找新的數據洞察的工程師或專家(不同於統計學家或分析師)。
數據工程師
數據工程師一般被定義成「深刻理解統計學科的明星軟體工程師」。數據工程師的核心價值在於他們藉由清晰數據創建數據管道的能力。充分了解文件系統,分布式計算與資料庫是成為一位優秀數據工程師的必要技能。數據工程師對演演算法有相當好的理解。因此,數據工程師理應能運行基本數據模型。
數據分析師
數據分析師指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。他們知道如何提出正確的問題,非常善於數據分析,數據可視化和數據呈現。
二、 職業職責
數據科學家
數據科學家傾向於用探索數據的方式來看待周圍的世界。把大量散亂的數據變成結構化的可供分析的數據,還要找出豐富的數據源,整合其他可能不完整的數據源,並整理成結果數據集。新的競爭環境中,挑戰不斷地加劇,新數據不斷地流入,數據科學家需要幫助決策者穿梭於各種數據的交互分析中。最終把蘊含在數據中的規律建議給決策者,從而影響生產、決策等各個環節。
數據工程師
數據工程師有三個最主要的任務,它們分別是分析歷史、預測未來和優化選擇。通過這三個工作方向,他們能夠幫助企業做出更好的商業決策。
大數據工程師一個很重要的工作,就是通過分析數據來找出過去事件的特徵,它最大的作用是可以幫助企業更好地認識消費者。通過分析用戶以往的行為軌跡,就能夠了解這個人,並預測他的行為。而通過引入關鍵因素,大數據工程師也可以預測未來的消費趨勢。
根據不同企業的業務性質,大數據工程師可以通過數據分析來達到不同的目的。以騰訊來說,能反映大數據工程師工作的最簡單直接的例子就是選項測試(AB Test),即幫助產品經理在A、B兩個備選方案中做出選擇。在過去,決策者只能依據經驗進行判斷,但如今大數據工程師可以通過大范圍地實時測試—比如,在社交網路產品的例子中,讓一半用戶看到A界面,另一半使用B界面,觀察統計一段時間內的點擊率和轉化率,以此幫助市場部做出最終選擇。
數據分析師
數據分析師主要有以下五方面的職責:
1、負責項目的需求調研、數據分析、商業分析和數據挖掘模型等,通過對用戶的行為進行分析了解用戶的需求;
2、參與業務部門臨時數據分析需求的調研、分析及實現;
3、參與數據挖掘模型的構建、維護、部署和評估;
4、整理編寫商業數據分析報告,及時發現和分析其中隱含的變化和問題,為業務發展提供決策支持;
5、對產品部門下的運營,產品,研發,市場銷售等各方面的數據分析,處理和研究的工作需求。
職業要求
數據科學家需要滿足的要求
1,計算機科學
一般來說,數據科學家大多要求具備編程、計算機科學相關的專業背景。簡單來說,就是對處理大數據所必需的hadoop、Mahout等大規模並行處理技術與機器學習相關的技能。
2,數學、統計、數據挖掘等
除了數學、統計方面的素養之外,還需要具備使用SPSS、SAS等主流統計分析軟體的技能。其中,面向統計分析的開源編程語言及其運行環境「R」最近備受矚目。R的強項不僅在於其包含了豐富的統計分析庫,而且具備將結果進行可視化的高品質圖表生成功能,並可以通過簡單的命令來運行。
3,數據可視化(Visualization)
信息的質量很大程度上依賴於其表達方式。對數字羅列所組成的數據中所包含的意義進行分析,開發Web原型,使用外部API將圖表、地圖、Dashboard等其他服務統一起來,從而使分析結果可視化,這是對於數據科學家來說十分重要的技能之一。
數據工程師需要滿足的要求
1,數學及統計學相關的背景
對於大數據工程師的要求都是希望是統計學和數學背景的碩士或博士學歷。缺乏理論背景的數據工作者,容易進入一個技能上的危險區域(Danger Zone)—只知道結果,卻並不明白數據所代表的真正意義。只有具備一定的理論知識,才能用普通模型、復用模型甚至創新模型,來解決實際問題。
2,計算機編碼能力
實際開發能力和大規模的數據處理能力是作為大數據工程師的必備素養。因為許多數據的價值來自於挖掘的過程,你必須親自動手才能發現金子的價值。舉例來說,現在人們在社交網路上所產生的許多記錄都是非結構化的數據,如何從這些毫無頭緒的文字、語音、圖像甚至視頻中攫取有意義的信息就需要大數據工程師親自挖掘。即使在某些團隊中,大數據工程師的職責以商業分析為主,但也要熟悉計算機處理大數據的方式。
3,對特定應用領域或行業的知識
大數據工程師這個角色很重要的一點是,不能脫離市場,因為大數據只有和特定領域的應用結合起來才能產生價值。所以,在某個或多個垂直行業的經歷能為應聘者積累對行業的認知程度,對於之後能否成為大數據工程師有很大幫助,因此這也是應聘這個崗位時較有說服力的加分項。
C. 數據分析師需要滿足的要求
1、懂業務。從事數據分析工作的前提就會需要懂業務,即熟悉行業知識、公司業務及流程,最好有自己獨到的見解,若脫離行業認知和公司業務背景,分析的結果只會是脫了線的風箏,沒有太大的使用價值。
2、懂管理。一方面是搭建數據分析框架的要求,比如確定分析思路就需要用到營銷、管理等理論知識來指導,如果不熟悉管理理論,就很難搭建數據分析的框架,後續的數據分析也很難進行。另一方面的作用是針對數據分析結論提出有指導意義的分析建議。
3、懂分析。指掌握數據分析基本原理與一些有效的數據分析方法,並能靈活運用到實際工作中,以便有效的開展數據分析。基本的分析方法有:對比分析法、分組分析法、交叉分析法、結構分析法、漏斗圖分析法、綜合評價分析法、因素分析法、矩陣關聯分析法等。高級的分析方法有:相關分析法、回歸分析法、聚類分析法、判別分析法、主成分分析法、因子分析法、對應分析法、時間序列等。
4、懂工具。指掌握數據分析相關的常用工具。數據分析方法是理論,而數據分析工具就是實現數據分析方法理論的工具,面對越來越龐大的數據,我們不能依靠計算器進行分析,必須依靠強大的數據分析工具幫我們完成數據分析工作。
5、懂設計。懂設計是指運用圖表等可視化方法,有效地表達數據分析師的分析觀點,使分析結果一目瞭然。圖表的設計是門大學問,如圖形的選擇、版式的設計、顏色的搭配等等,都需要掌握一定的設計原則。
至於說大數據的前景,這幾年國家也確實重視了起來,更是把大數據戰略放到了十三五規劃中,未來資源勢必會傾斜,而且查看BAT之類的巨頭招聘信息也能知道,大數據目前的前景還是非常可觀的……

㈨ 大數據時代的人才培養機制是什麼樣

世界上最動人的承諾

閱讀全文

與大數據人才培養模式研究相關的資料

熱點內容
win10todo 瀏覽:786
word自動更新選項 瀏覽:518
虛擬編程屬於什麼專業 瀏覽:912
如何壓縮文件的行距 瀏覽:894
js選擇器class 瀏覽:164
硬碟裝機工具 瀏覽:550
2016年蘋果新年活動 瀏覽:283
選幣app是什麼意思 瀏覽:238
消失點教程 瀏覽:988
linuxdb2刪除資料庫命令 瀏覽:610
excel跨文件表引用 瀏覽:119
快手調幀數教程 瀏覽:519
線切割割一個圓怎麼編程 瀏覽:930
ps6關閉多個文件 瀏覽:899
農行掌上銀行app怎麼看賬單 瀏覽:31
蘋果6plus怎樣查詢真偽 瀏覽:229
文件未響應怎麼辦 瀏覽:593
哪個數據恢復軟體價格低 瀏覽:755
為什麼米動app顯示步數 瀏覽:189
word2007圖片裁剪工具 瀏覽:902

友情鏈接