1. 大數據的作用是什麼
在測量和測試計算機應用程序時,科學家和工程師每天都會收集大量的數據。例如,世界上最大的被稱為大型強子對撞機的粒子持有者對撞機每秒產生大約40太位元組的數據。波音公司的噴氣發動機每三十分鍾就會產生大約十兆兆位元組的數據。當一架Jumbo噴氣式飛機跨大西洋航行時,噴氣式飛機上的四台發動機可產生大約640太位元組的數據。如果將這種數據乘以每天平均2500次的航班,每天產生的數據量是驚人的;這就是所謂的大數據。
歡迎關注大數據周刊
從大量的數據中得出結論並獲得可操作的數據是一項艱巨的任務,大數據包含了這個問題。大數據帶來了新的數據處理方式。比如:深度的數據分析工具,數據集成工具,搜索工具,報告工具和維護工具,幫助處理大數據以從中獲取價值。
國際數據公司(IDC)對音樂,視頻文件和其他數據文件進行了分析。研究表明,系統產生的數據量每年翻一番。這是摩爾定律的一般概念。
摩爾定律如何改變?
當談到微處理器的力量時,可能會經歷摩爾定律的最後一個寬度。如果處理能力增加了,其他計算領域將不得不被檢查。從雲計算的能力來看,雲計算提供了可共享的資源,處理能力將提高創新能力,提高業務效率。
為了提高微處理器的處理能力,有一項新的技術正在研究和測試中。英特爾正在德克薩斯州測試光子學。 Photonics使用光線傳輸數據的速度更快,而且不會造成信號損失。這降低了電力的產生並使數據以光速傳播。這個實驗將有助於摩爾定律增加其過程流量和能力,重新開始一個新的循環。
摩爾定律之後,人工智慧又如何呢?
人工智慧已經成為下一個主流的技術範例,這使得人工智慧需要新的力量,因為摩爾定律和Dennard標度不夠強。摩爾定律指出,晶元特定區域的晶體管數量將在兩年後翻倍。在Dennard縮放中,保持晶體管所需的功率量正在縮小。
過去幾年來,英特爾已經減少了生產具有更密集和更小晶體管的新晶元的步伐。幾年前,小型晶體管效率的提高也停滯不前,這導致了功耗的問題。
AI如何處理更多的數據負載需要更強大的晶元。
科學家和大數據
大數據來源非常多。例如,在現實世界中收集的數據令人震驚地多樣化,並且負載巨大。 RF信號,振動,壓力,磁性,聲音,溫度,光線,電壓等的測量都以不同形式和高速度記錄。
摩爾定律在哪裡?
一個晶體管的物理長度和其他關鍵邏輯的重要維度將逐漸縮小到2028年,但3D概念已經占據了中心位置。與內存有關的行業已經接受了三維架構提升NAND快閃記憶體容量,緩解小型化的壓力。這並不意味著摩爾定律的結束。
結論
摩爾定律在處理大數據方面依然有效,但在使用3D架構方面更具經濟意義。人工智慧將在未來幾年帶來日益增長的處理能力需求,而晶元製造公司必須生產真正快速的處理器來處理工作量。
2. 大數據的含義簡短
大數據是指那些數據量特別大、數據類別特別復雜的數據集,這種數據集不能用傳統的資料庫進行轉存、管理和處理,是需要新處理模式才能具有更強大的決策力、洞察發現力和流程優化能力的海量、高增差率和多樣化的信息資產。
大數據比想像中復雜。它不只是一項數據存儲技術,而是一系列和海量數據相關的抽取、集成、管理、分析、解釋技術,是一個龐大的框架系統。更進一步來說,大數據是一種全新的思維方式和商業模式。
大數據的特點
1、大量
大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。只有數據體量達到了PB級別以上,才能被稱為大數據。
2、高速
大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。
3、多樣
廣泛的數據來源,決定了大數據形式的多樣性。比如當前的上網用戶中,年齡,學歷,愛好,性格等等每個人的特徵都不一樣,這個也就是大數據的多樣性,當然了如果擴展到全國,那麼數據的多樣性會更強,每個地區,每個時間段,都會存在各種各樣的數據多樣性。
4、價值
這也是大數據的核心特徵。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識。
3. 大數據的產生背景是什麼
大數據有兩種含義:
一種是大批量的數據。量級有多大?比如通常讀一本幾百萬字的電子小說,每天專注地快速地閱讀,少說用時也需7-15天,而文檔在手機、電腦上存儲佔用空間有多大呢?10MB而已,也就是說如果按照7天處理10MB文字,推算1GB的內容需耗時710+天,相當於兩年時間,而當下互聯網企業每天產生的數據量是10GB-10000GB不等,這樣的數據量,如果用一個人去處理的話,每天的數據量得花20年到20000年,在時間長度和成本上而言幾乎是不可能實現的,因為這才是一天的數據量。同樣可以感受一下存儲成本:大家手機、電腦都有存儲空間,手機256GB應該為主流了,電腦2TB(2048GB)左右,即便存儲空間應景很大,而實際企業生產中用不了幾天就存儲不下了。大家想像一下,如果打開一個1GB大小的EXCEL或者TXT文本文檔會發生什麼現象呢?有興趣的小夥伴可以試一試,你會發現電腦變得超級慢超級卡,而且你甚至都打不開這個文檔。
第二種就是大數據處理技術,簡稱大數據。對企業而言企業絕對不能接受上述現象的發生,因為數據處理不了,相當於干再多活都不知道哪些賺了哪些賠了,企業是要靠賺錢來存活的,如果為了處理數據再購買更高性能的機器作為伺服器去處理這些信息,那成本將會極其高昂,企業負擔不起,於是乎就有人發出這樣的疑問:
有沒有一種可以讓很多台廉價的機器組建成一台牛逼的機器的技術?就好比合體技能一樣?
有需求就有大牛,很快,一項新的計算機計算技術框架——分布式數據處理框架誕生了,目的很明確,就是解決了上面提到的疑問——讓很多台廉價的機器組合起來變成了一個牛逼的、專門針對短時間內處理大量數據的系統,這就叫大數據處理技術。
如果你還是覺得理解不透徹,可以去多易教育的官網看看帶有圖片和講解視頻的專欄,通俗易懂的讓你迅速了解什麼是大數據,畢竟多易是大數據培訓行業的領頭羊嘛!
4. 大數據的特點 大數據的特點有什麼
1、大數據有4個特點,為別為:Volume(大量)、Variety(多樣)、Velocity(高速)、Value(價值),一般我們稱之為4V。
2、大量。大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。
3、多樣。廣泛的數據來源,決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。
4、高速。大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。
5、價值。這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。
5. 什麼叫大數據
大數據概述
專業解釋:大數據英文名叫big data,是一種IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
通俗解釋:大數據通俗的解釋就是海量的數據,顧名思義,大就是多、廣的意思,而數據就是信息、技術以及數據資料,合起來就是多而廣的信息、技術、以及數據資料。
大數據提出時間
「大數據」這個詞是由維克托·邁爾-舍恩伯格及肯尼斯·庫克耶於2008年8月中旬共同提出。
大數據的特點
Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)-由IBM提出。
大數據存在的意義和用途是什麼?
看似大數據是一個很高大上的感覺,和我們普通人的生活相差甚遠,但是其實不然!大數據目前已經存在我們生活中的各種角落裡了,舉個例子,我們現在目前最關心的疫情情況數據,用的就是大數據的技術,可以實時查看確診人數以及各種疫情數據。
大數據存在的意義是什麼?
從剛才的舉例中我們基本可以了解,大數據是很重要的,其存在的意義簡單來說也是為了幫助人們更直觀更方便的去了解數據。而通過了解這些數據後又可以更深一步的去挖掘其他有價值的數據,例如今日頭條/抖音等產品,通過對用戶進行整理和分析,然後根據用戶的各種數據來判斷用戶的喜愛,進而推薦用戶喜歡看的東西,這樣做不僅提升了自身產品的體驗度,也為用戶提供了他們需要的內容。
大數據的用途有哪些?
要說大數據的用途,那可就相當廣泛了,基本各行各業都可以運用到大數據的知識。如果簡單理解的話,可分為以下四類:
用途一:業務流程優化
大數據更多的是協助業務流程效率的提升。能夠根據並運用社交網路數據信息 、網站搜索及其天氣預告找出有使用價值的數據信息,這其中大數據的運用普遍的便是供應鏈管理及其派送線路的提升。在這兩個層面,自然地理精準定位和無線通信頻率的鑒別跟蹤貨物和送大貨車,運用交通實時路況線路數據信息來選擇更好的線路。人力資源管理業務流程也根據大數據的剖析來開展改善,這這其中就包含了職位招聘的調整。
用途二:提高醫療和研發
大型數據分析應用程序的計算能力允許我們在幾分鍾內解碼整個dna。可以創造新的治療方法。它還能更好地掌握和預測疾病。如同大家配戴智能手錶和別的能夠轉化成的數據信息一樣,互聯網大數據還可以協助病人盡快醫治疾患。現在大數據技術已經被用於醫院監測早產兒和生病嬰兒的狀況。通過記錄和分析嬰兒的心跳,醫生預測可能的不適症狀。這有助於醫生更好地幫助寶寶。
用途三:改善我們的城市
大數據也被用於改進我們在城市的生活起居。比如,依據城市的交通實時路況信息,運用社交媒體季節變化數據信息,增加新的交通線路。現階段,很多城市已經開展數據分析和示範點新項目。
用途四:理解客戶、滿足客戶服務需求
互聯網大數據的運用在這個行業早已廣為人知。重點是如何使用大數據來更好地掌握客戶及其興趣和行為。企業非常喜歡收集社交數據、瀏覽器日誌、分析文本和感測器數據,以更全面地掌握客戶。一般來說,建立數據模型是為了預測。
如何利用大數據?
那我們了解了這么多關於大數據的知識,既然大數據這么好,我們怎麼去利用大數據呢?那這個就要說到大數據的工具BI了,BI簡單理解就是用來分析大數據的工具,從數據的採集到數據的分析以及挖掘等都需要用到BI,BI興起於國外,比較知名的BI工具有Tableau、Power BI等;而國內比較典型的廠家就是億信華辰了。雖然BI興起於國外,但是這些年隨著國內科技的進步以及不斷的創新,目前國內BI在技術上也不比國外的差,而且因為國內外的差異化,在BI的使用邏輯上,國內BI更符合國內用戶的需求。
希望對您有所幫助!~
6. 什麼叫大數據
什麼叫大數據?
大數據-網路
大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
大數據-維基網路
大數據(英語:Big data或Megadata),或稱巨量數據、海量數據、大資料,指的是所涉及的數據量規模巨大到無法通過人工,在合理時間內達到截取、管理、處理、並整理成為人類所能解讀的信息[3][4]。在總數據量相同的情況下,與個別分析獨立的小型數據集(data set)相比,將各個小型數據集合並後進行分析可得出許多額外的信息和數據關系性,可用來察覺商業趨勢、判定研究質量、避免疾病擴散、打擊犯罪或測定實時交通路況等;這樣的用途正是大型數據集盛行的原因。
截至2012年,技術上可在合理時間內分析處理的數據集大小單位為艾位元組(exabytes)。在許多領域,由於數據集過度龐大,科學家經常在分析處理上遭遇限制和阻礙;這些領域包括氣象學、基因組學[9]、神經網路體學、復雜的物理模擬,以及生物和環境研究。這樣的限制也對網路搜索、金融與經濟信息學造成影響。數據集大小增長的部分原因來自於信息持續從各種來源被廣泛收集,這些來源包括搭載感測設備的移動設備、高空感測科技(遙感)、軟體記錄、相機、麥克風、無線射頻辨識(RFID)和無線感測網路。自1980年代起,現代科技可存儲數據的容量每40個月即增加一倍;截至2012年,全世界每天產生2.5艾位元組(2.5×1018)的數據。
大數據幾乎無法使用大多數的資料庫管理系統處理,而必須使用「在數十、數百甚至數千台伺服器上同時平行運行的軟體」。大數據的定義取決於持有數據組的機構之能力,以及其平常用來處理分析數據的軟體之能力。「對某些組織來說,第一次面對數百GB的數據集可能讓他們需要重新思考數據管理的選項。對於其他組織來說,數據集可能需要達到數十或數百兆位元組才會對他們造成困擾。」
隨著大數據被越來越多的提及,有些人驚呼大數據時代已經到來了,2012年《紐約時報》的一篇專欄中寫到,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。但是並不是所有人都對big data感興趣,有些人甚至認為這是商學院或咨詢公司用來嘩眾取寵的buzzword,看起來很新穎,但只是把傳統重新包裝,之前在學術研究或者政策決策中也有海量數據的支撐,大數據並不是一件新興事物。
大數據時代的來臨帶來無數的機遇,但是與此同時個人或機構的隱私權也極有可能受到沖擊,大數據包含了各種個人信息數據,現有的隱私保護法律或政策無力解決這些新出現的問題。有人提出,大數據時代,個人是否擁有「被遺忘權」,被遺忘權即是否有權利要求數據商不保留自己的某些信息,大數據時代信息為某些互聯網巨頭所控制,但是數據商收集任何數據未必都獲得用戶的許可,其對數據的控制權不具有合法性。2014年5月13日歐盟法院就「被遺忘權」(right to be forgotten)一案作出裁定,判決Google應根據用戶請求刪除不完整的、無關緊要的、不相關的數據以保證數據不出現在搜索結果中。這說明在大數據時代,加強對用戶個人權利的尊重才是時勢所趨的潮流。
7. 大數據是什麼意思
大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據其實就是海量資料巨量資料,這些巨量資料來源於世界各地隨時產生的數據,在大數據時代,任何微小的數據都可能產生不可思議的價值。
(7)大數據每天產生擴展閱讀
1、大量。
大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。隨著信息技術的高速發展,數據開始爆發性增長。
社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB。
臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。
2、多樣。
廣泛的數據來源,決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。
日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如圖片、音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。
3、高速。
大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。
並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。
基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。
4、價值。
這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中。
挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。
8. REU大數據每天產生的數據有價值嗎
雖然REU大數據在國內還處於初級階段,但是商業價值已經顯現出來。首內先,手中握有數據容的公司站在金礦上,基於數據交易即可產生很好的效益;其次,基於數據挖掘會有很多商業模式誕生,定位角度不同,或側重數據分析。比如幫企業做內部數據挖掘,或側重優化,幫企業更精準找到用戶,降低營銷成本,提高企業銷售率,增加利潤。
未來,REU大數據可能成為最大的交易商品。但數據量大並不能算是大數據,大數據的特徵是數據量大、數據種類多、非標准化數據的價值最大化。因此,REU大數據的價值是通過數據共享、交叉復用後獲取最大的數據價值。在他看來,未來REU大數據將會如基礎設施一樣,有數據提供方、管理者、監管者,數據的交叉復用將大數據變成一大產業。據統計,大數據所形成的市場規模在51億美元左右,而到2017年,此數據預計會上漲到530億美元。
9. 大數據概念是如何產生的
大數據概念產生過程:大數據的名稱來自於未來學家托夫勒所著的《第三次浪潮》,盡管「大數據」這個詞直到最近才受到人們的高度關注,但早在1980年,著名未來學家托夫勒在其所著的《第三次浪潮》中就熱情地將「大數據」稱頌為「第三次浪潮的華彩樂章」。《自然》雜志在2008年9月推出了名為「大數據」的封面專欄。從2009年開始「大數據」才成為互聯網技術行業中的熱門詞彙。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的採集:科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。
更多關於大數據概念是如何產生的,進入:https://www.abcgonglue.com/ask/99689e1615995935.html?zd查看更多內容