① 大數據挖掘需要學習哪些技術大數據的工作
首先
我由各種編程語言的背景——matlab,R,java,C/C++,python,網路編程等
我又一定的數學基礎——高數,線代,概率論,統計學等
我又一定的演算法基礎——經典演算法,神經網路,部分預測演算法,群智能演算法等
但這些目前來講都不那麼重要,但慢慢要用到
Step 1:大數據理論,方法和技術
大數據理論——啥都不說,人家問你什麼是大數據時,你能夠講到別人知道什麼是大數據
大數據方法——然後別人問你,那怎麼實現呢?嗯,繼續講:說的是方法(就好像歸並排序演算法:分,並)。到目前外行人理解無障礙
大數據技術——多嘴的人繼續問:用的技術。
這階段只是基礎,不涉及任何技術細節,慢慢看慢慢總結,積累對「大數據」這個詞的理解。
Step 2:大數據思維
Bang~這是繼Step 1量變發展而來的質變:學了那麼久「大數據」,把你扔到製造業,你怎麼辦?
我想,這就是「學泛」的作用吧,並不是學到什麼具體東西,而是學到了對待事物的思維。
----------------------------------------------------------------------
以下階段我還沒開始=_=,不好誤導大家
Step 3:大數據技術基礎
Step 4:大數據技術進階
Step 5:打實戰
Step 6:大融合
② 大數據挖掘技術涉及哪些內容
大數據挖掘技術涉及的主要內容有:模式跟蹤,數據清理和准備,基於分類的數據挖掘技術,異常值檢測,關聯,聚類。
基於大環境下的數據特點,挖掘技術與對應:
1.數據來源多, 大數據挖掘的研究對象往往不只涉及一個業務系統, 肯定是多個系統的融合分析, 因此,需要強大的ETL技術, 將多個系統的數據整合到一起, 並且, 多個系統的數據可能標准不同, 需要清洗。
2.數據的維度高, 整合起來的數據就不只傳統數據挖掘的那一些維度了, 可能成百上千維, 這需要降維技術了。
3.大數據量的計算, 在單台伺服器上是計算不了的, 這就需要用分布式計算, 所以要掌握各種分布式計算框架, 像hadoop, spark之類, 需要掌握機器學習演算法的分布式實現。
數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
想了解更多大數據挖掘技術,請關注CDA數據分析課程。CDA(Certified Data Analyst),即「CDA 數據分析」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。國家發展戰略的要求,崗位人才的缺口以及市場規模的帶動,都從不同方面體現了數據分析師職業的重要性。大數據挖掘技術的學習,有利於提高人在職場的信譽度,增加職場競爭力,提高自己的經濟地位。點擊預約免費試聽課。
③ 數據挖掘技術主要包括哪些
數據挖掘技術主要有決策樹 、神經網路 、回歸 、關聯規則 、聚類 、貝葉斯分類6中。
1、決策樹技術。
決策樹是一種非常成熟的、普遍採用的數據挖掘技術。在決策樹里,所分析的數據樣本先是集成為一個樹根,然後經過層層分枝,最終形成若干個結點,每個結點代表一個結論。
2、神經網路技術。
神經網路是通過數學演算法來模仿人腦思維的,它是數據挖掘中機器學習的典型代表。神經網路是人腦的抽象計算模型,數據挖掘中的「神經網路」是由大量並行分布的微處理單元組成的,它有通過調整連接強度從經驗知識中進行學習的能力,並可以將這些知識進行應用。
3、回歸分析技術。
回歸分析包括線性回歸,這里主要是指多元線性回歸和邏輯斯蒂回歸。其中,在數據化運營中更多使用的是邏輯斯蒂回歸,它又包括響應預測、分類劃分等內容。
4、關聯規則技術。
關聯規則是在資料庫和數據挖掘領域中被發明並被廣泛研究的一種重要模型,關聯規則數據挖掘的主要目的是找出數據集中的頻繁模式,即多次重復出現的模式和並發關系,即同時出現的關系,頻繁和並發關系也稱作關聯。
5、聚類分析技術。
聚類分析有一個通俗的解釋和比喻,那就是「物以類聚,人以群分」。針對幾個特定的業務指標,可以將觀察對象的群體按照相似性和相異性進行不同群組的劃分。經過劃分後,每個群組內部各對象間的相似度會很高,而在不同群組之間的對象彼此間將具有很高的相異度。
6、貝葉斯分類技術。
貝葉斯分類方法是非常成熟的統計學分類方法,它主要用來預測類成員間關系的可能性。比如通過一個給定觀察值的相關屬性來判斷其屬於一個特定類別的概率。貝葉斯分類方法是基於貝葉斯定理的,樸素貝葉斯分類方法作為一種簡單貝葉斯分類演算法甚至可以跟決策樹和神經網路演算法相媲美。
④ 數據挖掘有哪些技術
1、模式跟蹤
模式跟蹤是數據挖掘的一項基本技術。它旨在通過識別和監視數據中的趨勢或模式,以對業務成果形成智能推斷。例如,企業可以用它來識別銷售數據的發展趨勢。如果發現某種產品在某些特定人群中的銷售情況,要好於其他產品,那麼該企業便可以據此來創建類似的產品或服務,甚至只是簡單地為此類人群增加原始產品的庫存。
2、數據清理和准備
作為數據挖掘過程中的一個重要環節,我們必須對原始數據進行清理和格式化,以用於各種後續的分析。具體而言,數據的清理和准備工作包含了:數據建模,轉換,遷移,集成和聚合等各種元素。這是理解數據基本特徵和屬性,進而確定其最佳用途的必要步驟。
3、分類
基於分類的數據挖掘技術,主要涉及到分析各種類型數據之間的關聯屬性。一旦確定了數據類型的關鍵特徵,企業便可以對它們進行分類。企業可以據此判定是該保護,還是該刪除某些個人身份信息。
4、異常值(Outlier)檢測
異常值檢測可被用於識別數據集中的異常情況。企業在發現數據中異常值後,可以通過防範此類事件的發生,以順利實現業務目標。例如,信用卡系統在某個特定時段出現使用和交易的高峰,那麼企業便可以通過分析了解到,可能是由於“大促”所致,並為將來的此類活動做好資源上的事先部署與准備。
5、關聯
關聯是一種與統計學相關的數據挖掘技術。它旨在建立某些數據與其他數據、或數據驅動型事件的聯系。它與機器學習中的“共現(co-occurrence)”概念相似,即:某個基於數據的事件的發生概率,是由另一個事件的存在性所標識的。例如,用戶購買漢堡這一行為,往往會伴隨著購買薯片的可能性。兩者之間有著較強的關聯性,卻又不是絕對的伴生關系。
6、聚類
聚類是一種依靠可視化方法,來理解數據的分析技術。聚類機制使用圖形或顏色,來顯示數據在不同類別指標下的分布情況。通過圖形式的聚類分析,用戶可以直觀地獲悉數據隨業務目標發展的趨勢。
⑤ 大數據挖掘學習課程需要多久
去年學的學了5個月,魔據條件不錯,我自己認為五十人左右還是可以接受的,但是還是自身要足夠努力才行,像有些機構一百人以上,那就有點接受不了了,感覺老師也顧忌不過來不要去,可以去實際考察一下。
⑥ 大數據的關鍵技術有哪些
預測分析:預測分析是一種統計或數據挖掘解決方案,包含可在結構化和非結構化數據中使用以確定未來結果的演算法和技術。可為預測、優化、預報和模擬等許多其他用途而部署。
NoSQL資料庫:非關系型資料庫包括Key-value型(Redis)資料庫、文檔型(MonogoDB)資料庫、圖型(Neo4j)資料庫;雖然NoSQL流行語火起來才短短一年的時間,但是不可否認,現在已經開始了第二代運動。盡管早期的堆棧代碼只能算是一種實驗,然而現在的系統已經更加的成熟、穩定。
搜索和認知商業:當今時代大數據與分析已經發展到一個新的高度,那就是認知時代,認知時代不再是簡單的數據分析與展示,它更多的是上升到一個利用數據來支撐人機交互的一種模式。
流式分析:目前流式計算是業界研究的一個熱點,最近Twitter、LinkedIn等公司相繼開源了流式計算系統Storm、Kafka等,加上Yahoo!之前開源的S4,流式計算研究在互聯網領域持續升溫,流式分析可以對多個高吞吐量的數據源進行實時的清洗、聚合和分析;對存在於社交網站、博客、電子郵件、視頻、新聞、電話記錄、傳輸數據、電子感應器之中的數字格式的信息流進行快速處理並反饋的需求。目前大數據流分析平台有很多、如開源的spark,以及ibm的 streams 。
內存數據結構:通過動態隨機內存訪問(DRAM)、Flash和SSD等分布式存儲系統提供海量數據的低延時訪問和處理;
⑦ 數據挖掘技術涉及哪些技術領域
數據挖掘的技術有很多種,按照不同的分類有不同的分類法,大致有十三種常用的數據挖掘的技術。
1、統計技術
2、關聯規則
3、基於歷史的MBR(Memory-based Reasoning)分析
4、遺傳演算法GA(Genetic Algorithms)
5、聚集檢測
6、連接分析
7、決策樹
8、神經網路
9、粗糙集
10、模糊集
11、回歸分析
12、差別分析
13、概念描述
由於人們急切需要將存在於資料庫和其他信息庫中的數據轉化為有用的知識,因而數據挖掘被認為是一門新興的、非常重要的、具有廣闊應用前景和富有挑戰性的研究領域,並應起了眾多學科(如資料庫、人工智慧、統計學、數據倉庫、在線分析處理、專家系統、數據可視化、機器學習、信息檢索、神經網路、模式識別、高性能計算機等)研究者的廣泛注意。隨著數據挖掘的進一步發展,它必然會帶給用戶更大的利益。
如果對數據挖掘的學習有疑問的話,推薦CDA數據分析師的課程,它安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的應用實現,並根據輸出的結果分析業務需求,為進行合理、有效的策略優化提供數據支撐。課程培養學員硬性的數據挖掘理論與Python數據挖掘演算法技能的同時,還兼顧培養學員軟性數據治理思維、商業策略優化思維、挖掘經營思維、演算法思維、預測分析思維,全方位提升學員的數據洞察力。點擊預約免費試聽課。
⑧ 常用的數據挖掘演算法有哪幾類
可以參考https://wizardforcel.gitbooks.io/dm-algo-top10/content/index.html