導航:首頁 > 網路數據 > 怎麼找想要的大數據

怎麼找想要的大數據

發布時間:2023-01-30 13:36:09

1. 網貸大數據要怎麼查詢

網貸查大數據:說到徵信,就得談到互聯網大數據系統,上有高大上的人民銀行徵信,中間有獲得個人徵信牌照的8大徵信機構,最後就是像同盾科技這樣遊走於徵信主流外的第三方數據機構。當然,即使查詢的結果沒有顯示黑名單,也不一定平台會下款給你,因為第三方數據僅是占平台風控評分的一小部分。

2. 如何獲取大數據

問題一:怎樣獲得大數據? 很多數據都是屬於企業的商業秘密來的,你要做大數據的一些分析,需要獲得海量的數據源,再此基礎上進行挖掘,互聯網有很多公開途徑可以獲得你想要的數據,通過工具可以快速獲得,比如說象八爪魚採集器這樣的大數據工具,都可以幫你提高工作效率並獲得海量的數據採集啊

問題二:怎麼獲取大數據 大數據從哪裡來?自然是需要平時對旅遊客群的數據資料累計最終才有的。
如果你們平時沒有收集這些數據 那自然是沒有的

問題三:怎麼利用大數據,獲取意向客戶線索 大數據時代下大量的、持續的、動態的碎片信息是非常復雜的,已經無法單純地通過人腦來快速地選取、分析、處理,並形成有效的客戶線索。必須依託雲計算的技術才能實現,因此,這樣大量又精密的工作,眾多企業紛紛藉助CRM這款客戶關系管理軟體來實現。
CRM幫助企業獲取客戶線索的方法:
使用CRM可以按照統一的格式來管理從各種推廣渠道獲取的潛在客戶信息,匯總後由專人進行篩選、分析、跟蹤,並找出潛在客戶的真正需求,以提供滿足其需求的產品或服務,從而使潛在客戶轉變為真正為企業帶來利潤的成交客戶,增加企業的收入。使用CRM可以和網站、電子郵件、簡訊等多種營銷方式相結合,能夠實現線上客戶自動抓取,迅速擴大客戶線索數量。

問題四:如何進行大數據分析及處理? 大數據的分析從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?1. 可視化分析。大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。2. 數據挖掘演算法。大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。3. 預測性分析。大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。4. 語義引擎。非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。5.數據質量和數據管理。大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。大數據的技術數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。數據存取:關系資料庫、NOSQL、SQL等。基礎架構:雲存儲、分布式文件存儲等。數據處理:自然語言處理(NLP,Natural Language Processing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理解(NLU,Natural Language Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。數據挖掘:分類(Classification)、估計(Estimation)、預測(Predic膽ion)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化......>>

問題五:網路股票大數據怎麼獲取? 用「網路股市通」軟體。
其最大特色是主打大數據信息服務,讓原本屬於大戶的「大數據炒股」變成普通網民的隨身APP。

問題六:通過什麼渠道可以獲取大數據 看你是想要哪方面的,現在除了互聯網的大數據之外,其他的都必須要日積月累的

問題七:通過什麼渠道可以獲取大數據 有個同學說得挺對,問題傾向於要的是數據,而不是大數據。
大數據講究是全面性(而非精準性、數據量大),全面是需要通過連接來達成的。如果通過某個app獲得使用該app的用戶的終端信息,如使用安卓的佔比80%,使用iPhone的佔比為20%, 如果該app是生活訂餐的應用,你還可以拿到使用安卓的這80%的用戶平時網上訂餐傾向於的價位、地段、口味等等,當然你還會獲取這些設備都是在什麼地方上網,設備的具體機型你也知道。但是這些數據不斷多麼多,都不夠全面。如果將這部分用戶的手機號或設備號與電子商務類網站數據進行連接,你會獲取他們在電商網站上的消費數據,傾向於購買的品牌、價位、類目等等。每個系統可能都只存儲了一部分信息,但是通過一個連接標示,就會慢慢勾勒出一個或一群某種特徵的用戶的較全面的畫像。

問題八:如何從大數據中獲取有價值的信息 同時,大數據對公共部門效益的提升也具有巨大的潛能。如果美國醫療機構能夠有效地利用大數據驅動醫療效率和質量的提高,它們每年將能夠創造超過3萬億美元的價值。其中三分之二是醫療支出的減少,占支出總額超過8%的份額。在歐洲發達國家, *** 管理部門利用大數據改進效率,能夠節約超過14900億美元,這還不包括利用大數據來減少欺詐,增加稅收收入等方面的收益。
那麼,CIO應該採取什麼步驟、轉變IT基礎設施來充分利用大數據並最大化獲得大數據的價值呢?我相信用管理創新的方式來處理大數據是一個很好的方法。創新管道(Innovation pipelines)為了最終財務價值的實現從概念到執行自始至終進行全方位思考。對待大數據也可以從相似的角度來考慮:將數據看做是一個信息管道(information pipeline),從數據採集、數據訪問、數據可用性到數據分析(4A模型)。CIO需要在這四個層面上更改他們的信息基礎設施,並運用生命周期的方式將大數據和智能計算技術結合起來。
大數據4A模型
4A模型中的4A具體如下:
數據訪問(Access):涵蓋了實時地及通過各種資料庫管理系統來安全地訪問數據,包括結構化數據和非結構化數據。就數據訪問來說,在你實施越來越多的大數據項目之前,優化你的存儲策略是非常重要的。通過評估你當前的數據存儲技術並改進、加強你的數據存儲能力,你可以最大限度地利用現有的存儲投資。EMC曾指出,當前每兩年數據量會增長一倍以上。數據管理成本是一個需要著重考慮的問題。
數據可用性(Availability):涵蓋了基於雲或者傳統機制的數據存儲、歸檔、備份、災難恢復等。
數據分析(Analysis):涵蓋了通過智能計算、IT裝置以及模式識別、事件關聯分析、實時及預測分析等分析技術進行數據分析。CIO可以從他們IT部門自身以及在更廣泛的范圍內尋求大數據的價值。
用信息管道(information pipeline)的方式來思考企業的數據,從原始數據中產出高價值回報,CIO可以使企業獲得競爭優勢、財務回報。通過對數據的完整生命周期進行策略性思考並對4A模型中的每一層面都做出詳細的部署計劃,企業必定會從大數據中獲得巨大收益。 望採納

問題九:如何獲取互聯網網大數據 一般用網路蜘蛛抓取。這個需要掌握一門網路編程語言,例如python

問題十:如何從網路中獲取大量數據 可以使用網路抓包,抓取網路中的信息,推薦工具fiddler

3. 拼多多的各大數據怎麼查找呢

可以在多多聚寶上面查找的,多多聚寶是為拼多多商家提供精細化數據分析服務平台,功能包括【市場分析】查看不同類目的熱銷產品top榜;【監控分析】監控競品店鋪、單品實時銷量數據、類目排名、關鍵詞排名;【插件工具】拼多多詳情頁、拼多多批發、拼多多推廣、競品分析等。多多聚寶

4. 大數據在那個網站查找怎麼運用

找數據到「天天數據」,網路。

5. 我要怎麼查大數據

憑借你的手機號,身份證號就可以查詢自己的大數據了。

目前,一般網貸版平台常用的有三種征權信資料庫。

網貸資料庫,百行徵信,央行徵信。

網貸資料庫一般統計不上徵信的網貸,基本上不上徵信的網貸都會上傳到網貸資料庫。

百行徵信統計一些P2P網貸平台的借款數據信息。

央行徵信只統計正規網貸的借款數據信息。

普遍來說,如果想要查詢網貸數據報告,那麼只需要查詢網貸數據與央行徵信即可。

網貸數據能夠直接查看一些P2P網貸平台的數據,

可以在微信查找:米米數據。

該資料庫與2000多家網貸平台合作,查詢的數據非常精準全面。

能夠查看到用戶的申請次數,網貸數據,網黑指數分,命中風險提示,法院起訴信息,仲裁案件信息,失信人信息等數據。

其中,用戶可以憑借網黑指數分來判斷自身是否為網貸黑名單用戶。

網黑指數分標准為:0-100分,分數越低,信用越好。

6. 怎樣查找自己想用的大數據

vlookup函數:vlookup(lookup_value,table_array,col_index_num,[range_lookup]) 第一個參數:lookup_value表示你想要根據哪個值來查找到你想要的數據,比如:可以根據值a可以找到b,那麼lookup_value就填寫成"a"; 第二個參數:table_value表示你想要在哪個表區域中進行數據查找; 第三個參數:[range_lookup],表示是精確查找還是模糊匹配;如果為false或0 ,則返回精確匹配,如果找不到,則返回錯誤值 #N/A;如果 range_lookup 為TRUE或1,函數 VLOOKUP 將查找近似匹配值,也就是說,如果找不到精確匹配值,則返回小於 lookup_value 的最大數值。默認為模糊匹配。 下邊舉例說明: 1.現要將表1中的學生的總分進行填充,笨的方法是一個個根據表1中的學生姓名到表2中找到對應的名字的總分,這樣效率太低,可利用vlookup函數輕松完成。 2.切換到「表一」頁簽,在單元格B2輸入:=vlookup(A2, 3.接著切換到「表二」頁簽,選中要查找數據的區域,這時表一」頁簽單元格B2的值自動變為:=vlookup(A2,表二!A2:B17。 說明:表二!A2:B17的意思是:系統將在表二」頁簽的A2:B17形成的表格區域中進行數據查找。 4.再切換回「表一」頁簽,將單元格B2的值「=vlookup(A2,表二!A2:B17」修改為"=vlookup(A2,表二!$A$2:$B$17",有童鞋就會問為什麼要將表二!A2:B17改為表二!$A$2:$B$17,在這里解釋下$表示絕對的意思,$A$2:$B$17表示在下拉填充其他單元格時行列不變,這一點很重要。 5.然後在單元格B2中接著輸入:=vlookup(A2,表二!$A$2:$B$17,2,false),並回車 說明:第三個參數「2」代表的是意思是指在「表二!A2:B17」形成的表格的中第2列中返回值,第四個參數"false"表示是按精確。 6.下拉單元格B2將B列的其他單元格進行vlookup公式復制自動填充並計算,結果如圖中所示。

7. 怎麼找電子版七上歷史大數據

怎麼找電子版七上歷史大數據
資料搜集是個相當繁瑣與累的工作,也是投資入門的基本,良好的信息資料搜集能力有利於我們快速了解投資主體的基本情況,為後續的調研及一手資料的獲得打下較好的基礎。

一、搜索引擎(重點掌握)

搜索引擎是我們信息資料搜集的最重要的渠道之一,用搜索引擎查找信息資料需要使用恰當的關鍵詞和一些搜索技巧。目前國內主要的搜集引擎有如下10個,近期還有較多行業型搜索冒出來,需找專業型行業資料可以使用行業型搜索引擎。

由於每個搜索引擎都有一定的局限性,可以把要搜索的關鍵詞在多個搜索引擎試一下,可能會搜出你意想不到的結果。

大家對國內的引擎基本都很熟悉,尤其是網路和google,需要搜索同一主題的資料,不同的人所搜出來的結果可能就天差地別了,主要原因在於如下兩點:

1、搜索關鍵字的選擇

舉例說明,假如我們要搜索大數據行業發展相關資料,如果我們就在網路上搜索「大數據」,結果非常多,無法進行篩選,可以對關鍵詞進一步界定,如「大數據行業」、「大數據市場規模」、「中國大數據產業」、「大數據技術」、「大數據企業」等等,需要不停地變換搜索關鍵詞,直到查到滿意的搜索結果,在查找的過程中可以根據查找結果內容再進行對關鍵詞進行修正,修正有些名稱專業表達方式,因為最開始搜索我們表達的不一定準確。

2、搜索技巧

主要是針對網路、google等搜索引擎一些高級搜索技巧。常用技巧主要有如下幾個方面:

(1)文件類型搜索:使用filetype,如在網路或google中鍵入「filetype:pdf 大數據」搜索出有關大數據內容pdf內容,而且這些文檔基本都是可直接下載。還可以變換為其他的如「filetype:doc」、「filetype:ppt」、「filetype:xls」等等,注意其中的冒號為英文的冒號,一定要變換為英文冒號。

(2)定位於哪個網站上搜索:使用site,如在網路或google中鍵入「大數據空格site:sina.com」,則在http://sina.com搜索有關大數據的一些資料信息,這個特別適用針對某些信息可能在哪些網站上出現的一個快速搜索方法,注意冒號也是英文的,網站名稱也不用加www。

(3)精確匹配搜索:使用「」,如在網路中鍵入「大數據行業」,表示搜索「大數據行業」五個必須聯在一起的,如果不加「」,搜到的為大數據及行業兩個詞並列顯示結果,沒有這么精確匹配。

(4)限制性的網頁搜索:使用intitle,如在網路鍵入「intitie:大數據」,限定於搜索標題中含有「大數據」網頁,如果輸入「intitie:大數據市場規模」限定於搜索標題中含有「大數據」和「市場規模」的網頁。

3、搜索引擎推薦

1)http://scholar.google.com/ 雖然還是Beta版,但個人已覺得現在已經是很好很強大了,Google學術搜索濾掉了普通搜索結果中大量的垃圾信息,排列出文章的不同版本以及被其它文章的引用次數。略顯不足的是,它搜索出來的結果沒有按照權威度(譬如影響因子、引用次數)依次排列,在中國搜索出來的,前幾頁可能大部分為中文的一些期刊的文章。

2)http://www.scirus.com Scirus 是目前互聯網上最全面、綜合性最強的科技文獻搜索引擎之一,由Elsevier科學出版社開發,用於搜索期刊和專利,效果很不錯!Scirus覆蓋的學科 范圍包括:農業與生物學,天文學,生物科學,化學與化工,計算機科學,地球與行星科學,經濟、金融與管理科學,工程、能源與技術,環境科學,語言學,法 學,生命科學,材料科學,數學,醫學,神經系統科學,葯理學,物理學,心理學,社會與行為科學,社會學等。

3)http://www.base-search.net/ BASE是德國比勒費爾德(Bielefeld)大學圖書館開發的一個多學科的學術搜索引擎,提供對全球異構學術資源的集成檢索服務。它整合了德國比勒費爾德大學圖書館的圖書館目錄和大約160個開放資源(超過200 萬個文檔)的數據。

4)http://www.vascoda.de/ Vascoda是一個交叉學科門戶網站的原型,它注重特定主題的聚合,集成了圖書館的收藏、文獻資料庫和附加的學術內容。

5)http://www.goole.com/ 與google比較了一下發現,能搜索到一些google搜索不到的好東東 。它界面簡潔,功能強大,速度快,YAHOO、網易都採用了它的搜索技術。各位可以一試。

6)http://www.a9.com Google在同一水平的搜索引擎。是Amazon.com推出的,Webresult部分是基於Google的,所以保證和Google在同一水平,另外增加了Amazon的在書本內搜索的功能和個性化功能:主要是可以記錄你的搜索歷史。現在還是Beta,不過試用後感覺很好,向大家推薦一試 ,不過缺憾是現在書本內搜索沒有中文內容。

7)http://www.ixquick.com 嚴格意義上講不是搜索引擎,是連接搜索引擎和網路用戶的信息立交橋。新一代的搜索引擎應運而生,Ixquick meta-search正是目前最具光芒的新星。但是對於大多數國內用戶來說,Ixquick還很陌生。Ixquick眾多獨特的功能我不一一介紹了,只介紹我們最關心的,搜索資料庫密碼。使用方法:先進入Ixquick,以「Proquest」資料庫為例。填入Proquest Username Password History Online後點擊search,看看出來的結果,第一頁中第6個,proquest的username和password赫然在目,別急,再看第4個結 果「HB Thompson Subscription Online Databases」,即http://homework.syosset.k12.ny.us/onlinedbs/HBTDatabases/,進入 後發現這是一個密碼頁,選擇Magazines& Journals欄,就有 EBSCO、Electric Library Elementary、Electric LibraryElementary、ProQuest Platinum (in school)、ProQuest Platinum(remote)等眾多資料庫的密碼,都有uesrname和password,隨便試一下EBSCO,OK,成功登陸。

8)http://vivisimo.com/ cmu的作品,對搜索的內容進行分類,這樣可以有效地做出選擇,比較有特色。可實現分類檢索,檢索速度也很好,如EBSCO 密碼幾分鍾就可找一大堆 .http://search.epnet.com/,User ID:mountain,Password: ridge,這個密碼可以試試。

9)http://www.findarticles.com/ 一個檢索免費paper的好工具。進入網頁以後,可以看到他有三個功能,driectory web article,其中article對我們很有幫助,你可以嘗試輸入你要找的文章,會有很多發現的!

10)http://www.chmoogle.com 現點擊後或跳轉到http://www.emolecules.com ,在此搜索引擎里可以搜索到超過千萬種化學品信息或相應的供應商,與Chemblink有點相似,但提供的化學品理化信息沒有Chemblink詳細,與其不同的是該搜索引擎可提供化學品結構式搜索(主頁上有在線繪制化學結構式的搜索框)。

11)http://www.ojose.com/ OJOSE (Online JournalSearch Engine,在線期刊搜索引擎)是一個強大的免費科學搜索引擎,通過OJOSE,你能查找、下載或購買到近60個資料庫的資源。但是感覺操作比較復雜。

12)http://citeseer.ist.psu.e/ 一個關於計算機和信息科學的搜索引擎。

13)http://hpsearch.uni-trier.de/ 專家個人主頁搜索引擎。

14)www.aol.com 裡面的搜索引擎功能由google提供,搜索結果與google一樣,如果google無法登陸,可以用這個網站代替。

二、資料庫

資料庫是研究人員重要的數據來源之一,目前券商、基金研究研究機構都購買有商業資料庫,目前研究用的資料庫主要分為兩大類,一是商業資料庫,二是學術資料庫。

1、商業資料庫

商業資料庫大多為金融投資所用,主要分為國內與國外資料庫兩大類。1)國內商業資料庫國內資料庫主要有如萬德、恆生聚源、銳思資料庫、CSMAR資料庫、巨潮資料庫等。目前萬德資料庫主要定位於國內高端客戶,市場佔有率較高,80%左右,當然其售價較高。恆生聚源也定位為機構客戶,性價比較高,售價要比萬德便宜的多。CSMAR資料庫定位於學術與高校,其中金融數據比較全,強大。銳思資料庫定位於學術,質量一般。巨潮資料庫為深交所旗下資料庫,有一定的特殊優勢。

2)國外商業資料庫

國外資料庫主要有彭博、路透社、CEIC、OECD、Haver Database、Thomson Financial One Banker等,國外資料庫中彭博是比較全也大的,在國內銷售也較好,但是售價奇貴。一般不做國際市場研究,大多用不到國外資料庫,畢竟國外資料庫公司對國內的行業數據及公司數據不如本土資料庫公司的做得好。

2、學術資料庫

學術資料庫基本為高校、研究機構所用,也分為國內與國外兩大類,學術資料庫中一些學術論文、行業數據、統計年鑒還是有用的,缺點就是其中有些數據的相對較舊,無法做到實時更新。

1)國內學術資料庫

中國知網:國內最大學術資料庫,包括期刊、學位論文、統計年鑒等。

萬方數據:僅次於中國知網,包括期刊、學位論文等。

人大復印資料:期刊、論文等。

維普:期刊、論文等。

中經網:有較多行業研究報告,宏觀數據較全。

國研網:數據較為權威,有些報告可以一看。

上海公共研發平台:可以注冊,人工審核,內包含較多資料庫。

2)國外學術資料庫

EBSCO:較全的一個資料庫,內包含較多的商業數據,好用

Elsevier:學術文章全,更新速度快。

以上大致介紹了國內的商業及學術資料庫,但這些資料庫都是通過收費或學校賬號才能使用,對於平時臨時研究用的一些人,沒有必要去購買,下面介紹一些免費可用的資料庫。

3)免費可用的資料庫

數據匯:http://www.shujuhui.com/database/ 國內的宏觀數據,國外的也有一部分,可以導出來,免費好用。

數據圈:http://www.shujuquan.com.cn/ 免費共享平台,行業研究報告,統計年鑒等

8. 大數據怎麼收集

通過數據抓取和數據監測,整合成一個巨大的資料庫——產業經濟數據監測、預測與政策模擬平台

閱讀全文

與怎麼找想要的大數據相關的資料

熱點內容
static在java 瀏覽:184
加工中心銑斜邊32度怎麼編程 瀏覽:947
網路技術選擇 瀏覽:529
怎麼視頻去水印APP 瀏覽:479
win10不自動更新 瀏覽:234
蘋果手機微信視頻怎麼有雜音 瀏覽:317
滁州數控編程培訓怎麼樣 瀏覽:656
微信紅包下面有個盾牌 瀏覽:767
win10智能家居 瀏覽:620
qq飛車雞字怎麼獲得 瀏覽:618
評論區給一星保護的app是什麼 瀏覽:356
設置怎麼沒有網路模式 瀏覽:711
什麼app可以借5000 瀏覽:304
iqoo如何關閉一張卡的數據流量 瀏覽:212
人物建模教程 瀏覽:271
有什麼ppt免費的網站 瀏覽:74
聲音文件擴展名分別有哪些 瀏覽:476
復興號叫外賣用什麼App 瀏覽:478
網上醫生app 瀏覽:307
java創建一個list 瀏覽:866

友情鏈接