導航:首頁 > 網路數據 > 大數據架構書籍推薦

大數據架構書籍推薦

發布時間:2023-01-25 23:43:33

『壹』 架構方面的書籍

一、大型網站架構系列
第一本:《大型網站技術架構:核心原理與案例分析》

這是本算是國內大型網站架構的經典之作,由阿里人李智慧創作,聽名字就知道本書很有智慧。主要從大型網站架構的特點,架構目標(高性能,高可用,可伸縮等)基本理論講起,並介紹了幾個很有特色的案例。

之前群內分享的大型網站架構系列的基礎理論大部分出自此書。

第二本:《大型網站系統java中間件實踐》

同樣出自阿里的技術牛人。此書對分布式系統的演進做了較好的介紹。對常用中間件(服務框架,數據訪問層,消息中間件)做了比較深入的講解。(原理到實踐都有了)

第三本:《大型分布式網站架構設計與實踐》,很抱歉本書也出自阿里系。

對面向服務的架構,分布式基礎設施(緩存,持久化,消息系統,搜索引擎(lucence,solr)),互聯網安全架構,系統穩定性,數據分析等做了較好的講解。

以上三本書,都出自阿里系,有理論有實踐,如果要學到知識,還需要多讀,多想,多實踐。比如第一本,個人看了至少5遍以上。其他兩天也在三遍左右。

第四本:《Web信息架構——設計大型網站》

可以較系統的建立網站信息架構設計的思想。對思考如何設計一個大型網站比較有幫助。

信息架構,注意這幾個詞所涉及的知識。

第五本:《高性能網站建設》,對web前端架構做了非常好的講解。

注意此處的前端不只是 JS,CSS,HTML,是指業務邏輯層之前的部分。包括緩存,DNS等。

第六本:《實用負載均衡技術:網站性能優化攻略》,本書較詳細的介紹了負載均衡,緩存代理等知識,對系統了解負載均衡技術有幫助。

第七本:《高性能電子商務平台構建:架構、設計與開發》,本書可以作為功能架構參考,因為他講的是國內一個開源商城的架構。一方面作者可能是為了推廣他的開源商城,因此建議初學者或者想了解此開源系統的人學習

『貳』 大神,關於大數據處理方面的書籍有推薦嗎

《大數據處理之來道》作者:自何金池
分析比較了當下流行的大數據處理技術的優劣及適用場景,包括Hadoop、Spark、Storm、Dremel、Drill等,詳細分析了各種技術的應用場景和優缺點;同時闡述了大數據下的日誌分析系統,重點講解了ELK日誌處理方案;最後分析了大數據處理技術的發展趨勢,重點從各種技術的起源、設計思想、架構等方面闡述大數據處理之道。

『叄』 《大數據架構詳解豆瓣》pdf下載在線閱讀全文,求百度網盤雲資源

《大數據架構詳解豆瓣》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1V6tvS7Br__-Ljd8IZ3j5rw

?pwd=pp9q 提取碼: pp9q
簡介:本書從架構、業務、技術三個維度深入淺出地介紹了大數據處理領域端到端的知識。主要內容包括三部分:第一部分從數據的產生、採集、計算、存儲、消費端到端的角度介紹大數據技術的起源、發展、關鍵技術點和未來趨勢,結合生動的業界新產品,以及學術界新的研究方向和成果,讓深奧的技術淺顯易懂;第二部分從業務和技術角度介紹實際案例,讓讀者理解大數據的用途及技術的本質;第三部分介紹大數據技術不是孤立的,講解如何與前沿的雲技術、深度學習、機器學習等相結合。

『肆』 《大數據架構商業之路從業務需求到技術方案》pdf下載在線閱讀,求百度網盤雲資源

《大數據架構商業之路》(黃申)電子書網盤下載免費在線閱讀

資源鏈接:

鏈接:https://pan..com/s/1Ahj1q_4uqyK9H3AiHMd-Ug 提取碼:skjj

書名:大數據架構商業之路

作者:黃申

豆瓣評分:7.9

出版社:機械工業出版社

出版年份:2016-5-1

頁數:298

內容簡介:

目前大數據技術已經日趨成熟,但是業界發現與大數據相關的產品設計和研發仍然非常困難,技術、產品和商業的結合度還遠遠不夠。這主要是因為大數據涉及范圍廣、技術含量高、更新換代快,門檻也比其他大多數IT行業更高。人們要麼使用昂貴的商業解決方案,要麼花費巨大的精力摸索。本書通過一個虛擬的互聯網O2O創業故事,來逐步展開介紹創業各個階段可能遇到的大數據課題、業務需求,以及相對應的技術方案,甚至是實踐解析;讓讀者身臨其境,一起來探尋大數據的奧秘。書中會覆蓋較廣泛的技術點,並提供相應的背景知識介紹,對於想進一步深入研究細節的讀者,也可輕松獲得繼續閱讀的方向和指導性建議。

作者簡介:

黃申,博士,畢業於上海交通大學計算機科學與工程專業,師從俞勇教授。微軟學者,IBMExtremeBlue天才計劃成員。長期專注於大數據相關的搜索、推薦、廣告以及用戶精準化領域。曾在微軟亞洲研究院、eBay中國、沃爾瑪1號店和大潤發飛牛網擔任要職,帶隊完成了若干公司級的戰略項目。同時著有20多篇國際論文和10多項國際專利,兼任《計算機工程》期刊特邀審稿專家。因其對業界的卓越貢獻,2015年獲得美國政府頒發的「美國傑出人才」稱號。

『伍』 有什麼比較好的大數據入門的書推薦

1. 《大數據分析:點「數」成金》
你現在正坐在一座金礦上,這些金子或被埋於備份,或正藏在你眼前的數據集里,他們是提升公司效益、拓展新的商業關系、制定更直觀決策的秘訣所在,足以使你的企業更上一層樓。你將明白如何利用、分析和駕馭數據來獲得豐厚回報。作者Frank Ohlhorst厚積數十年的技術經驗寫了此書。該書介紹了如何將大數據應用於各行各業,你將了解到如何對數據進行挖掘,怎樣從數據中揭示趨勢並轉化為競爭策略及提取價值的方法。這些更有意思也是更有效的方法能夠提升企業的智能化水平,將有助於企業解決實際問題,提升利潤空間,提高生產率並發現更多的商業機會。
2.《大數據時代》
《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托被譽為」大數據商業應用第一人」,擁有再哈佛大學、牛津大學和新加坡國立大學等多個互聯網研究重鎮任教經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。該書主要講了大數據時代的變革、商業變革和管理變革。《大數據時代》認為大數據的核心就是預測。大數據為人類的生活創造了前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。
3.《雲端時代殺手級應用:大數據分析》
《雲端時代殺手級應用:大數據分析》分析了什麼是大數據、大數據大商機、技術與前瞻三個部分。第一個部分介紹大數據分析的概念,以及企業、政府部門可應用的范疇。什麼是大數據分析?與個人與企業有什麼關系?將對全球產業造成什麼樣的沖擊?第二部分完整介紹了大數據在各產業的應用實況,為企業及政府部門提供應用的方向。提供了全球各地的實際應用案例,涵蓋了零售、金融、政府部門、能源、製造、娛樂等各個行業,充分展示了大數據分析產生的效益。第三部分則簡單介紹了大數據分析所需要的技術及未來的發展趨勢,為讀者提供了應用與研究的方向。
4.《大數據》
本書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例奧巴馬建設」前所未有的開放政府「的雄心、公開財務透明的曲折。《數據質量法》背後隱情,全國醫改法案的波瀾、統一身份證的百年糾結以及雲計算、Facebook和推特等社交媒體等等,為您一一講解數據創新給社會帶來的種種變革和挑戰。
5.《大數據互聯網大規模數據挖掘與分布式處理》。
該書主要講的是海量數集數據挖掘常用的演算法。書中分析了海量數據集數據挖掘常用的演算法,介紹了目前WEB端應用的許多重要話題等。

『陸』 推薦一本關於大數據,數據分析類似的書籍

1、《Hadoop權威指南》
現在3.1版本剛剛發布,但官方並不推薦在生產環境使用。作為hadoop的入門書籍,從2.x版本開始也不失為良策。
本書從Hadoop的緣起開始,由淺入深,結合理論和實踐,全方位地介紹Hadoop這一高性能處理海量數據集的理想工具。剛剛更新的版本中,相比之前的版本增加了介紹YARN , Parquet , Flume, Crunch , Spark的章節,非常適合於Hadoop 初學者。
2、《Learning Spark》
《Spark 快速大數據分析》是一本為Spark 初學者准備的書,它沒有過多深入實現細節,而是更多關註上層用戶的具體用法。不過,本書絕不僅僅限於Spark 的用法,它對Spark 的核心概念和基本原理也有較為全面的介紹,讓讀者能夠知其然且知其所以然。
3、《Spark機器學習:核心技術與實踐》
以實踐方式助你掌握Spark機器學習技術。本書採用理論與大量實例相結合的方式幫助開發人員掌握使用Spark進行分析和實現機器學習演算法。通過這些示例和Spark在各種企業級系統中的應用,幫助讀者解鎖Spark機器學習演算法的復雜性,通過數據分析產生有價值的數據洞察力。

『柒』 大數據入門書籍有哪些

當年互聯網瘋狂發展的時候,很多人在觀望和猶豫中錯過了這班順風車(沒有盡早開個淘寶店,腸子都悔青了好幾遍呢)。如今,同樣的橋段上演,大數據時代,堅決不能再無動於衷!
於是,你著急,你迷茫,你很方……除了平時要加班加點的搬磚,牙縫里擠出來的的閑碎時間都貢獻給度娘了,「小白如何學習大數據」,「大數據入門書籍有哪些」……
1:<大數據時代>
這是學習大數據必讀的一本書,也是最系統的關於大數據概念的一本書,由維克托·邁爾-舍恩伯格和肯尼斯·庫克耶編寫,主要介紹了大數據理念和生活工作及思維變革的關系。
它被包括寬頻資本董事長田朔寧、知名IT評論人謝文等專業讀者鑒定為「大數據領域最好的著作沒有之一,一本頂一萬本」。有這么好嗎?看完自己評價吧。這本書對這個大規模產生、分享和應用數據的新的大時代進行了闡述和釐清,作者圍繞「要全體不要抽樣、要效率不要絕對精確、要相關不要因果」三大理念,通過數十個商業和學術案例,剖析了萬事萬物數據化和數據復用挖掘的巨大價值。
2:<爆發>
由巴拉巴西編寫,主要講了在一個歷史故事的連續講述中,了解大數據的概念實質。從大數據的歷史開始,能更深入的了解大數據的發展歷程。
巴拉巴西整本書講述的大數據根本目的,是預測。他甚至有零有整地判斷,人類行為93%是可以預測的。打個比方,千百年前人類無法如今天般准確預測天氣,以致某些大致預測的行為都被認為是「通神」,其實核心在於對天氣數據的海量佔有和分析能力。但假如全人類的所有基礎及行為數據全部被佔有全部能分析呢?比如通過智能終端LBS功能採集全部運動軌跡、通過金融系統採集所有支付記錄、通過SNS採集所有社會關系和通過郵件、文檔、社會視頻監控和自我視頻監測採集所有言行記錄,24小時,每分每秒,一生,全地球70億人,那會如何?
3:<大數據>
由徐子沛編寫,看美國政府在大數據開放上的進程與反復,算是個案。如果能夠基本了解這三本的觀點,出門有底氣,見人腰桿直,不再被忽悠。
全書講述的,是大數據在美國政府管理中的應用,以及美國政府運行方式大數據變革的歷史與斗爭,其實也是故事性的。從奧巴馬上台就頒布《信息公開法案》,到設立第一個美國政府首席信息官開始,講述美國政府與民間在社會數據公開的斗爭史,以及美國社會管理向大數據思維轉變的過程。首先,這算是一個最詳實的案例;其次,這代表的不是某種管理方式變革,深處是對民主運行機制的變革與進步。說好了,這本書用心良苦,遠遠超越科普技術領域;說壞了,其心可誅。有一段,民間斗爭,逼迫奧巴馬公布所有每日白宮全部日程,包括接見了誰、談話的全部內容,這不就是個人大數據全公開在公眾人物上的應用嗎?這可比現在所謂官員公開財產的要求高了幾十倍——這要求政府全部行為、全部數據、全部公開,全體公眾隨時可查——技術和成本上其實已經可以做到或至少努力接近——如果不這么做,不止是落後問題而是真正的其心可誅了。
4:<大數據基礎與應用>
由陳明編寫。看名字就知道,入門級別拯救小白的書。這本書共17章,第1章是對大數據的簡單概述,第2章介紹大數據研究的方法論,第3、8、9、14章介紹大數據的生態環境,第17章介紹數據科學的內容,剩下的章節是本書重點,介紹大數據技術及應用方法。
身處大數據大環境下,身邊的人經常討論資料庫、數據可視化、大數據預處理等等。這些詞聽得多了會讓人產生錯覺——自己已經知道裡面的門道了。但事實上還是個「門外漢」。
舉個例子,沒有人肯在上千人規模的講座上專門花半個小時教你怎樣進行數據清洗。本書專門列了一章,詳細介紹大數據預處理技術,包括數據清洗的實現方式,從步驟到檢驗,都做了用心的闡述。諸如此類,數據挖掘、大數據流式計算、Hadoop、NoSQL等等都從最基礎的點做了詳細介紹。耐心看完這些,再往深處進階就不會那麼吃力了。
5:<一本書讀懂大數據>
進入大數據時代,讓數據開口說話將成為司空見慣的事情,本書將從大數據時代的前因後果講起,全面分析大數據時代的特徵、企業實踐的案例、大數據的發展方向、未來的機遇和挑戰等內容,展現一個客觀立體、自由開放的大數據時代。
5:<集體智慧編程>
入門,淺顯易懂,裡面每一章都是一個案例,但是很方便,有具體的代碼,用來入門最好。
6:<社交網路的數據挖掘>
專門做社交網路的數據挖掘,案例很豐富,有代碼。
7:<數據可視化之美>
致力於介紹各種可視化方案。
8:<鮮活的數據>
比較簡單的可視化,不過內容豐富,有代碼。
9:<數據挖掘導論完整版>
看完上述的書,對大數據產生很大的興趣,已經初步入門了,現在開始理論方面的學習,數據挖掘入門教程,個人覺得寫的很好,目前正在研究這本書,努力。。。
10:<統計學習方法>
這本書比較深,剛開始看的就是這一本,不過太深,看到一半,准備在導論看完之後,在看這本書提升一下自己。
11:<鳥哥私房菜—基礎篇>
作為一個計算機專業linux那是必學的,而且Hadoop是建立在Linux基礎上的,不求多麼的精通,但是基礎的操作要學會。
如果是沒有任何編程語言基礎的想入行大數據的話,是必須要學習java基礎的,雖然大數據支持很多開發語言,但是企業用的最多的還是java,接下來學習數據結構,關系型資料庫,linux系統操作,有了基礎之後,在進入大數據學習,可以給小白學習的體系。
第一階段
COREJAVA(加**的需重點熟練掌握,其他掌握)
Java基礎**
數據類型
運算符、循環
演算法
順序結構程序設計
程序結構
數組及多維數組
面向對象**
構造方法、控制符、封裝
繼承**
多態**
抽象類、介面**
常用類
集合Collection、list**
HashSet、TreeSet、Collection
集合類Map**
異常
File
文件/流**
數據流和對象流**
線程(理解即可)
網路通信(理解即可)
第二階段
數據結構
關系型資料庫
Linux系統操作
Linux操作系統概述
安裝Linux操作系統
圖形界面操作基礎
Linux字元界面基礎
字元界面操作進階
用戶、組群和許可權管理
文件系統管理
軟體包管理與系統備份
Linux網路配置
(主要掌握Linux操作系統的理論基礎和伺服器配置實踐知識,同時通過大量實驗,著重培養學生的動手能力。使學生了解Linux操作系統在行業中的重要地位和廣泛的使用范圍。在學習Linux的基礎上,加深對伺服器操作系統的認識和實踐配置能力。加深對計算機網路基礎知識的理解,並在實踐中加以應用。掌握Linux操作系統的安裝、命令行操作、用戶管理、磁碟管理、文件系統管理、軟體包管理、進程管理、系統監測和系統故障排除。掌握Linux操作系統的網路配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服務的配置與管理。為更深一步學習其它網路操作系統和軟體系統開發奠定堅實的基礎。與此同時,如果大家有時間把javaweb及框架學習一番,會讓你的大數據學習更自由一些)
重點掌握:
常見演算法
資料庫表設計
SQL語句
Linux常見命令
第三階段
Hadoop階段
離線分析階段
實時計算階段
重點掌握:
Hadoop基礎
HDFS
MapRece
分布式集群
Hive
Hbase
Sqoop
Pig
Storm實時數據處理平台
Spark平台
若之前沒有項目經驗或JAVA基礎,掌握了第一階段進入企業,不足以立即上手做項目,企業需再花時間與成本培養;
第二階段掌握扎實以後,進入企業就可以跟著做項目了,跟著一大幫人做項目倒也不用太擔心自己能不能應付的來,當然薪資不能有太高的要求;
前兩個階段都服務於第三階段的學習,除了熟練掌握這些知識以外,重點需要找些相應的項目去做,不管項目大小做過與沒有相差很多的哦!掌握扎實後可直接面對企業就業,薪資待遇較高!

『捌』 有什麼好的大數據書籍推薦嗎

1、舍恩伯格的《大數據時代》;
2、巴拉巴西的《爆發》;
3、塗子沛的《大數據》
這幾本書都不錯,可以看看!

『玖』 市面上大數據的書不少,如果只挑一本,哪本值得推薦

市場上大數據的說不少,但是你要挑一本的話,其實我還是覺得你在網路上選擇一些自己可以公開的數據。因為每個人需要的每個程度的書是不一樣的,你可以選擇購買一些書的電子版本。電子版本反而比書籍會更好一點。

『拾』 有哪些關於雲計算,大數據,物聯網的書籍值得推薦

關於大數據書籍有以下基本了參考看:
1.大數據預測
2.大數據時代
3.大數據分析:決勝互聯網金融時代
4.為數據而生:大數據創新實踐
5.爆發:大數據時代預見未來的新思維

閱讀全文

與大數據架構書籍推薦相關的資料

熱點內容
華道數據交付是什麼 瀏覽:861
系統網路有什麼 瀏覽:320
有什麼可以幫忙p圖的app 瀏覽:121
美食教程視頻軟體 瀏覽:549
2017win7與win10 瀏覽:43
iphone電腦定位追蹤 瀏覽:620
如何判斷文件是否存在 瀏覽:291
怎麼搞移動數據密碼 瀏覽:97
編程中如何開始學習 瀏覽:494
資訊理論編碼與密碼學電驢 瀏覽:200
ps打開文件的方式是什麼 瀏覽:604
西軟x5教程 瀏覽:693
國企虛報財務數據給什麼處分 瀏覽:300
prt源文件下載 瀏覽:64
java指定欄位排序規則 瀏覽:325
win7文件圖標顯示 瀏覽:833
class文件有多少個 瀏覽:820
qq對話框無法輸入中文 瀏覽:528
港版iphone5s設置呼叫轉移 瀏覽:534
d盤文件全部跑到桌面 瀏覽:173

友情鏈接