導航:首頁 > 網路數據 > 大數據數據來源渠道的合法性

大數據數據來源渠道的合法性

發布時間:2023-01-24 02:11:08

⑴ 聯通大數據合法嗎

應該不靠譜吧。
大數據牽涉很多個人信息,即使再不信任聯通,也該相信有部門管著這個事,不能隨意泄露的。

⑵ 大數據主要來源於什麼

來源:從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

(2)大數據數據來源渠道的合法性擴展閱讀:

大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

⑶ 大數據的基本特點有哪些

大數據的基本特點為:

1、容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。

2、種類(Variety):數據類型的多樣性。

3、速度(Velocity):指獲得數據的速度。

4、可變性(Variability):妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):數據的質量。

6、復雜性(Complexity):數據量巨大,來源多渠道。

7、價值(value):合理運用大數據,以低成本創造高價值。




(3)大數據數據來源渠道的合法性擴展閱讀:

大數據分析的六個基本方面:

1、Analytic Visualizations(可視化分析)

不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。

2、Data Mining Algorithms(數據挖掘演算法)

可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。

4、Data Quality and Master Data Management(數據質量和數據管理)

數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。

5、數據存儲,數據倉庫

數據倉庫是為了便於多維分析和多角度展示數據按特定模式進行存儲所建立起來的關系型資料庫。在商業智能系統的設計中,數據倉庫的構建是關鍵,是商業智能系統的基礎,承擔對業務系統數據整合的任務,為商業智能系統提供數據抽取、轉換和載入(ETL),並按主題對數據進行查詢和訪問,為聯機數據分析和數據挖掘提供數據平台。


參考資料來源:網路-大數據

⑷ 大數據的中的數據是從哪裡來的

大數據應用中的關鍵點有三個,首要的就是大數據的數據來源,我們在分析大數據的時候需要重視大數據中的數據來源,只有這樣我們才能夠做好大數據的具體分析內容。那麼大家知不知道大數據的數據來源都是通過什麼渠道獲得的?下面就由小編為大家解答一下這個問題。
對於數據的來源很多人認為是互聯網和物聯網產生的,其實這句話是對的,這是因為互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。而物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據的數據來源,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,是我們常用的數據來源。
而數據的來源是我們評價大數據應用的第一個關注點。首先需要我們看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是好數據還是壞數據,能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,只有我們找到了好的數據來源,我們就能夠做好大數據的工作。這句需要我們去尋找數據比較密集的領域。
一般來說,我們獲取數據的時候需要數據密集的行業中挖掘數據,主要就是金融、電信、服務行業等等,而金融是一個特別重要的數據密集領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。
我們在這篇文章中為大家介紹了大數據的數據來源以及數據密集的領域,希望這篇文章能夠給大家帶來幫助,最後感謝大家的閱讀。

⑸ 大數據公司拿公共數據運作是否合法

在大數據領域,根據獲取是否需要審批,公共數據大致可以分為兩類:一種是不回需要審批即可獲取的數答據,比如公共場合的wifi數據、地圖公司採集的公共交通網線數據、公共場合監控視頻數據、爬蟲抓取的網路內容等;另一種是需要某個部門審批才能得到的數據,比如部分戶籍信息、部分銀行信用數據、部分電信運營商提供的數據等。

在公共數據獲取環節,對於不需要審批即可獲取的數據,大數據公司可以直接採集獲取;對於需要審批才能獲取的數據,必須按照各部門的規定走審批程序,不能非法採集獲取。
在獲得公共數據之後,運作是否合法要看具體的運作方式。最基本的原則包括:不對社會或個人產生危害、不泄露個人隱私、不泄露其他部門或組織的信息、不侵犯版權等。一般來說,在滿足基本原則的情況下,使用公共數據加工之後生成的二次產品更加安全合法。生成的二次產品是原始公共數據加工融合之後的產品,完全看不到數據來源,大數據公司的智力和勞動產生了增值,這個產品是可以作為公司資產為社會接受。

⑹ 大數據合法么

是犯法的,嚴重侵犯個人隱私,但是資本控制的社會,法律對資本沒有效力,資本需要海量的個人隱私謀取利益。

⑺ 大數據的特點包括哪些

1、容量():

數據的大小決定所考慮的數據的價值和潛在的信息。

2、種類(Variety):

數據類型的多樣性。

3、速度(Velocity):

指獲得數據的速度。

4、可變性(Variability):

妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):

數據的質量。

6、復雜性(Complexity):

數據量巨大,來源多渠道。

7、價值(value):

合理運用大數據,以低成本創造高價值。

大數據,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

(7)大數據數據來源渠道的合法性擴展閱讀:

一、結構

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

二、意義

現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。

阿里巴巴創辦人馬雲來台演講中就提到,未來的時代將不是IT時代,而是DT的時代,DT就是Data Technology數據科技,顯示大數據對於阿里巴巴集團來說舉足輕重。

有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。

與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是贏得競爭的關鍵。

大數據的價值體現在以下幾個方面:

1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷

2) 做小而美模式的中小微企業可以利用大數據做服務轉型

3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值

⑻ 什麼是大數據要簡單通俗點的解釋

這是一個非常好的問題,作為一名大數據從業者,我來回答一下。

在當前的大數據時代,不僅IT(互聯網)行業的人需要了解大數據相關知識,傳統行業的從業者和普通大學生也都應該了解一定的大數據知識,在產業互聯網和新基建計劃的推動下,未來大數據技術將全面開始落地應用,大數據也將重塑整個產業結構。

了解大數據首先要從大數據的概念開始,不同於人工智慧概念,大數據概念還是相對比較明確的,而且大數據的技術體系也已經趨於成熟了。解釋大數據概念,可以從數據自身的特點入手,然後進一步從場景、應用和行業來逐漸展開。

大數據自身的特點往往集中在五個方面,分別是數據量、數據結構多樣性、數據價值密度、數據增長速度和可信度,對於這五個維度的理解和認知,是了解大數據概念的關鍵。當然,隨著大數據技術的發展和在行業領域的應用,關於數據自身的維度也有了一定程度的擴展,這些擴展本身也是對大數據概念的一種豐富和完善。

數據量大是大數據的一個重要特徵,但是數據量本身是一個匯集的概念,並不是只有很大的數據才稱為大數據,傳統信息系統所產生的「小數據」也是大數據的一個重要組成部分,這一點一定要有清晰的認知。當前從大數據的數據來源來看,主要集中在三個渠道,包括互聯網、物聯網和傳統信息系統,物聯網數據當前占據的比例比較大,相信在5G時代,物聯網將依然是大數據的主要數據來源。

數據結構多樣性是大數據的另一個重要特點,不同於創新信息系統(ERP)當中的數據,大數據的數據類型是非常復雜的,既有結構化數據,也有非結構化數據和半結構化數據,這對於傳統的數據處理技術提出了巨大的挑戰,這也是推動大數據技術產生的一個重要原因。在工業互聯網時代,大數據的數據結構多樣性會進一步得到體現,這對於數據價值化過程也提出了新的挑戰。

數據價值密度往往是衡量數據價值的重要基礎,相對於傳統的信息系統來說,大數據當中的數據價值密度是比較低的,這就需要有更快速和便捷的方式,來完成數據的價值化提取過程,而這也正是當前大數據平台所關注的核心能力之一。實際上,早期的Hadoop、Spark平台之所以能夠脫穎而出,一個重要的原因就是其數據處理(排序)速度比較快。

數據增長速度快是大數據的另一個重要表現,通常傳統信息系統的數據增量是可以預測的,或者說增長速度是可控的,但是在大數據時代,數據增長速度已經大大突破了傳統數據處理所能承載的極限。數據增長是一個相對的概念,相對於消費互聯網來說,產業互聯網所帶來的數據增量可能會更加客觀,因此產業互聯網時代會進一步打開大數據的價值空間。

最後,大數據還有一個特點就是數據本身的真實性,大數據時代所帶來的一個重要副作用就是數據真假難辨,這也是當前大數據技術所要重點解決的問題之一。從當前大型互聯網平台所採用的方法來看,通常是技術和管理相結合的方式,比如通過為用戶認證就能夠解決一部分數據的真實性(專業性)問題。

如果有互聯網、大數據、人工智慧等方面的問題,或者是考研方面的問題,都可以在評論區留言,或者私信我!

博士時候就是做大數據。

最通俗一點就是很多條數據。

我們做大數據研究呢,就是高效的處理數據,對未來做一些預測,建議等。

例如,全中國人大多數都是10點睡覺。睡覺前看一看手機。那我們做推廣時候,就可以選擇9點半的時間。

大數據沒有什麼特別神秘的地方,就是數據多一點。

大數據這個詞其實流行了很久了,與我們的生活息息相關,並不陌生,現在我們生活中的大平台基本上都用到大數據,淘寶,拼多多,美團,滴滴等都用到大數據,如今大數據基本上無處不在。

一、大數據是什麼意思

大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

二、大數據特徵

容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;

種類(Variety):數據類型的多樣性;

速度(Velocity):指獲得數據的速度;

可變性(Variability):妨礙了處理和有效地管理數據的過程。

真實性(Veracity):數據的質量。

復雜性(Complexity):數據量巨大,來源多渠道。

價值(value):合理運用大數據,以低成本創造高價值。

三、大數據的 歷史 發展

人類誕生以來,數據就開始膨脹,時代交替,工業革命,互聯網時代,5G時代,人工智慧時代,都是數據的一次次發展,數據的不斷精準,加快了人類的新陳代謝,大數據推動 歷史 發展。

四、大數據意義

大數據的價值體現在以下幾個方面:

1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;

2、做小而美模式的中小微企業可以利用大數據做服務轉型;

3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

4、各大領域的科研需要大數據,加快技術變革和換代如醫療,環保,公共政府服務

5、航空航天,軍事領域因為大數據也會得到突飛猛進的提升。

生活工作中所有的流水賬信息就是大數據,在信息化時代,它通過特定模式的整合、分析,使人得到對自己有用的、有指導性的結論。參加工作時講台塑數字化、表單化、信息化,一晃二十年了,應該就是大數據的雛形,但那會信息化能力不足,沒人這么稱呼。管理是千變萬幻,主線未變,大數據也僅僅是一種方法,只是更符合形勢,更有效。小名流水賬,大名大數據。

舉個例子,大數據記錄了一個愛抽煙的男人。晚上一般是先抽煙以後刷牙。有一天男士刷了牙以後抽煙。第二天app開始推送了tt。根據兩天的記錄了刷牙到抽煙的時間,第三天app推送了加厚版的tt。一個半月後某天記錄到男人一直抽煙,便推送了某家專科醫院。再過了一個月,發現男人再無抽煙,推送了鉑爵旅拍。

從前有個大爺,在證券公司車庫上班,給證券公司大戶、老闆看守車,這么一個工作。

這位大爺特別喜歡炒股,他也不會技術分析,什麼基本面分析!每當呢,車庫裡面的車停的非常少的時候,這位大爺就買進股票,這大爺也不知道什麼股票好,什麼股票不好,就隨便買,等車庫裡面的車停的越來越多了,每次都停滿了的時候,這位大爺就買出股票。每次都能賺到錢!!!

這就是非常簡單的大數據,大爺利用車庫里車的多少來判斷市場的火熱程度,人棄我取,等到全民炒股的時候,市場就會出現泡沫,這時候離「崩盤」也就不遠了

大數據通俗的解釋就是海量的數據,顧名思義,大就是多、廣的意思,而數據就是信息、技術以及數據資料,合起來就是多而廣的信息、技術、以及數據資料。

大數據簡單的說就是市場調研的升級版。包括騰訊,阿里巴巴等這些具有大量用戶的公司,對其客戶在其平台的所有行為發布的所有內容進行採集分類和分析。而這些數據有分成共性和個性。從所有人中採集出共性有助於發覺商機,了解客戶痛點,更好地推出客戶滿意的產品,比如很多化妝品公司就會跟淘寶購買數據從而研發出更貼合市場需求的產品。而從你個人採集的數據屬於個性,系統會通過你個人的數據採集進行相對於的推薦和改變,也就是我們經常說的ai智能,例子像我們的淘寶現在都是千人千面,每人手機打開的淘寶推薦的東西都不一樣,這些就是大數據的效果。

大數據通俗來說就是有個機器,把你生活中的點點滴滴都記錄下來,形成一種特定的形式!

大數據簡單來說:就是海量的信息!不論用途,不論方向,就是簡單地信息收集,參數收集,所有這些匯總起來就是大數據。大數據,不是隨機樣本,而是所有數據!

而大數據分析,就是針對這些信息進行識別,再進行分類,將其有事件變為數據化,概率化,然後應用於各種商業用途。

以上是對大數據簡單地解讀。那麼大數據的意義何在呢?

隨著大數據的發展,企業的技術研發、應用和落地在前期就能獲得預期,能避免很多無所謂的浪費,以便於將有限的資源集中到開發更適合時代的企業產業。

商業決策可以通過數據分析來獲取更為准確的信息和方向,最終能幫助決策者能更為准確直觀的指導業務實踐。

人工智慧離不開數據。隨著人工智慧的發展,數據能模擬的更加人性化,也更個人化,也更適合於各種不同場景的應用。大數據的價值在於它是目前解決這個時代更新最有效的方法。

但對於我個人而言,比較抵觸過度的大數據和互聯網,原因如下:

一、當各類app通過我的使用習慣,推薦各種我搜索過一次的各種商業廣告時,我會有種隱私被人冒犯的憤怒;

二、當你在使用各類軟體時,都會被要求提供個人信息以便於獲得更好的用戶體驗,這無形中增加了個人數據泄露的風險;

三、當數據化盛行,似乎人性變得無處安放;

四、一旦行業固化,人們想要突破階層將變得不可能,擁有大量數據的將遙遙領先,後發的行人,將一輩子連望其項背的資格都沒有,可以預見 社會 將會成為一潭死水,毫無興趣和生機。

⑼ 什麼是大數據大數據有哪些特點、意義和缺陷

大數據(big data),是指在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
大數據的特點:
1、容量(Volume):數據的大小決定所考慮的數據的價值的和潛在的信息;
2、種類(Variety):數據類型的多樣性;
3、速度(Velocity):指獲得數據的速度;
4、可變性(Variability):妨礙了處理和有效地管理數據的過程。
5、真實性(Veracity):數據的質量
6、復雜性(Complexity):數據量巨大,來源多渠道
大數據的意義:
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的缺陷:
不過,「大數據」在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:「就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。」 這確實是需要警惕的。

閱讀全文

與大數據數據來源渠道的合法性相關的資料

熱點內容
有什麼可以幫忙p圖的app 瀏覽:121
美食教程視頻軟體 瀏覽:549
2017win7與win10 瀏覽:43
iphone電腦定位追蹤 瀏覽:620
如何判斷文件是否存在 瀏覽:291
怎麼搞移動數據密碼 瀏覽:97
編程中如何開始學習 瀏覽:494
資訊理論編碼與密碼學電驢 瀏覽:200
ps打開文件的方式是什麼 瀏覽:604
西軟x5教程 瀏覽:693
國企虛報財務數據給什麼處分 瀏覽:300
prt源文件下載 瀏覽:64
java指定欄位排序規則 瀏覽:325
win7文件圖標顯示 瀏覽:833
class文件有多少個 瀏覽:820
qq對話框無法輸入中文 瀏覽:528
港版iphone5s設置呼叫轉移 瀏覽:534
d盤文件全部跑到桌面 瀏覽:173
4g網路無伺服器 瀏覽:801
ofo單車網路連接異常 瀏覽:444

友情鏈接