導航:首頁 > 網路數據 > 考試成績大數據分析

考試成績大數據分析

發布時間:2023-01-21 14:57:05

大數據如何影響課堂教學

「大數據」(BIG DATA)這個詞,是2008年在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》這本書中首次提出的。「大數據」指不用隨機分析法(抽樣調查)這樣的捷徑,而是對所有的數據(近似於全樣本)進行分析處理的一種方法。

1.什麼是我們身邊的大數據?

「大數據」已經滲透到我們生活中的方方面面。比如我們打開手機淘寶,呈現在我們面前的界面是不一樣的。它推送給我們的商品是不同的,而且這些商品往往真的能夠抓住我們的需求和心理,這是為什麼呢?

其實這就是大數據分析出的結論。

淘寶這個平台,對每一個瀏覽過商品的人,購買過商品的人,都進行了全數據分析,可以輕松獲取我們的很多信息。

例如我們的性別、年齡、家庭成員、喜好、是否結婚、是否有孩子、孩子的性別,甚至可以細致到你是愛穿休閑類的服飾,還是喜歡小清新類的服飾,或者是職業裝類的服飾等等。通過你的每一次操作,收集到了這些數據之後,它經過分析和處理,進一步推測出了你可能會訂購的商品,從而推送給你,讓你花更少的時間檢索而要花更多的錢進行消費。

例如你購買了一些孕婦類產品,可能在不久之後,它就會推送相關聯的一些嬰兒用品給你。

而我們消費後的評價與反饋,又使得他們不斷改進自己,例如不同賣家的鑽石星級,或者清退一些不合格的賣家等等這些行為,就是淘寶對自身的調整。

這種互利互惠的雙迴路的運轉模式,可以看作是賣家與買家間的一種良性的互動方式,而這種互動方式在傳統的賣場裡面是不可想像,也難以實現的。

2.什麼是課堂教學互動方式?

課堂教學互動方式,則是指在課堂上,教師與學生之間的一種信息交流方式。

在傳統的課堂中,師生之間的互動交流方式比較單一,上課就是教師在講,學生在聽,一種單方向的傳導過程。

有人說,教師就是知識的搬運工,課堂上很少有師生之間的交流。

還有一種觀念是,教師對學生提問,學生回答,就是師生互動。

顯然,這種認識是膚淺的,這將使師生互動流於形式。師生互動的根本目的是要引導和培養學生的高階思維。

因此,真正的師生互動應該定義為思維的碰撞、智慧火花的生發之源。

近些年來一直被提及的可汗學院的教學與學習方式,之所以受到關注的原因,恰恰就是它基於大數據分析,解決了課堂教學互動這個難題。

大數據之所以能實現課堂教學互動,是因為它具有三個主要特徵:反饋、個性化和概率預測。

我們傳統的課堂教學是一種單迴路的學習,即教師給予,學生接受。我們對學生進行考核,然後對他們進行評價。

我們不會或者沒有條件來通過學生的成績來反思自己的教學內容或者方式是否是恰當的。

我們不能從學生身上獲得真正有用的反饋信息來改變自己的教學內容和行為。

所以說,傳統的課堂教學是一種單迴路的方式,根本沒有實現師生間的良性互動。

此外我們的教學內容在編排上,考慮的是處於平均水平的學生,而這種水平的學生其實在現實中可能根本是不存在的。

換句話說,我們的教學沒有照顧到「好」學生,也忽略掉了那些「差」學生,甚至連我們認為的中等水平的學生,也是不存在的,因為他們是平均後虛構出來的群體。

所以,我們的教學根本沒有針對學生做出個性化的設計,這是教育普及大眾化不得不做出的取捨。

傳統的教學是沒有反饋或反饋較少(沒有時間或實在照顧不到,分身乏術),沒有個性化,從而更談不上有概率預測的一種教學。

而大數據下的新的課堂教學互動方式,卻可以改變這種狀況。

1.參考案例

維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《與大數據同行——學習和教育的未來》一書,舉了可汗學院的例子。

2004年,可汗是一個剛從哈佛商學院畢業一年的基金分析師,給自己的表妹輔導數學。

由於他們生活在不同的城市,因此,他在互聯網上為她進行輔導,從此永遠地改變了教育的世界。

他編寫了若干程序來協助教學,這些程序能生成數學習題,並顯示孩子們提交的答案是否正確。

同時,也收集數據,程序可以追蹤每個學生的答對和答錯的習題數量,以及他們每天用於作業的時間等等。

後來在此基礎上創建的可汗學院,之所以可以聞名於世,就是因為它收集有關學生行為的數據,從中獲取有用的信息來改變教學內容的設計,為每個學生定製個性化的學習方案。

可以說數據就是可汗學院運作的核心所在,大數據的支撐,互聯網技術的飛速發展,使得相隔千里的師生之間形成了有效的課堂教學互動。

它改變了我們對面對面才能達成互動的傳統認識。

此外,還有一個關於斯坦福大學吳恩達與他的機器學習課程的例子。

吳教授將課程放到了網上,他追蹤學生與視頻互動的行為。

在什麼地方按了暫停鍵,什麼地位按了重復鍵,在什麼地方放棄了繼續聽課,他的目的不是督促學生學習,而是反思學生卡在了什麼問題上,哪些教學內容難以理解,從而對課程進行調整。

例如,他發現學生本來都是正常的按順序進行網上學習,但是很多學生在學習第7課時,都會去回看第3課的一個關於數學知識的復習課。

於是他發現,原來是因為第7課解決某個問題時,需要用到第3課復習到的一個數學公式,而很多學生並沒有記住,因此他就對第7課時的教學視頻做了改變,會自動彈出一個彈窗幫助學生來復習數學公式。

還有一次,他發現學生在學習第75課到第80課時,正常的學習秩序被打亂了,學生以各種各樣的順序反復觀看這幾節課。

他通過反復分析,發現學生的行為是在反復理解概念,於是他將這部分的教學內容製作的更加精細,更有助於幫助學生理解概念。

【 評價】

這是一個典型的大數據分析下,課堂教學互動變革實現了教學反饋的例子。

覺得我們傳統的教學,只是通過每天判一判學生的作業,看一看他們的考試成績,是無法得到這些動態的數據的,更無法得到改變我們教學內容與方式的有價值的信息。

於是我們的教學可能幾年甚至幾十年都在重復相同的內容和動作。因為我們不知道學生究竟是如何進行學習的。

2.參考案例

還有一個例子是關於「半島大學」的暑期班項目,他們使用可汗學院的數學課程教授來自舊金山灣區貧困社區的中學生。

在課程一開始,一個七年級的女生的成績在班裡一直墊底,在整個暑期的大部分時間中,她一直是學得最慢的一個學生,但是在課程結束後,她的成績是班上的第二名。

可汗對此感到好奇,於是調取了她完整的學習記錄,查看她每一道習題和解題的時間,系統創建的圖表對她學習進行的描繪,發現他很長時間都徘徊在班級的底部,直到在某個事件點上突然直線上升,超過了幾乎所有的學生。

這充分說明,當學生以自己最適合的步調和順序進行學習時,即使一個被看似沒有能力的「差生」也是可以變為優等生的。

【 評價】

這是一個典型的大數據分析下,課堂教學互動變革實現了個性化教學的例子。

如果這個女孩放在我們傳統的基於小數據的教學課堂上,幾次考試的成績都不理想,可能她就會被我們歸類為「差生」,於是各種補習加各種輔導,完全打擊了她的自信心,成績的陰影甚至會影響到她的一生。

而可汗學院的課程,利用數據監控了她的所有的學習過程,時間是一個連續的變數,針對她的特點設計了適合她的習題,循序漸進,激發出了她最大的能量。

她完全根據這種個性化的定製,按照自己的學習節奏進行學習,不用去關注到其他人的學習進度與成績。細思極恐,我在想我們的教育究竟扼殺掉了多少這樣的人才?

我們真的應該好好認清大數據帶給我們的課堂教學互動的變革,這種變革很多時候甚至不是技術上的,而是理念上的。

在反饋與個性化的基礎上,大數據的更大的優勢就體現在了概率預測這方面了。

例如我們可以對學生個體為提高其學業成績需要實施的行為作出預測。比如選擇最有效的教材、教學風格、反饋機制等等。

其實,在小數據時代,我們跟學生家長所說的某些建議,比如您的孩子應該加強數學這方面的學習,您的孩子適合去學文科等等這些建議,其實也不是肯定的事實,也只是概率性的干預。

因為可能根據老師所謂的經驗,這個學生選擇學習文科,將來考上一本的可能性更高。而大數據與過去最大的區別是,我們是通過對事物加以測量和量化,以更高的精確度說話。它的預測准確率更高。

比如,大學的選課方面,可以根據你以往的學習基礎以及學習行為,預測出你選哪門課的通過率會更高,你未來的職業規劃怎樣進行會更加順利等等。

大數據所實現的這種概率預測,似乎與課堂教學互動方式的變革沒有直接的關系。

但是仔細分析不難發現,這種預測其實是師生間互動的一種延續,我們對學生的影響不只局限於課堂上,而是延續到了未來選擇的層面上,使得互動交流更上了一個台階。

1.利用數據反饋信息調整課堂教學策略

以高考備考為例:

上圖是追蹤某高中四年所有學生高考數學各知識點得分率的情況,我們可以看出對其中一部分知識點的得分率維持在高位。

這就說明學校一貫的培養策略與日常教學方法是正確的,只需要保持即可,無論教師還是學生不需要過於焦慮,因為大數據反饋的結果對未來教學效果有一定的預測功能。

2.關注學生的個性化發展

大數據不僅對規模龐大的數據進行全樣本分析,得到一般規律,更重要的是很能體現出個性,它可以記錄下每一個學生的變化,方便教師針對每一個學生調整課堂教學方式。

上圖是大數據分析系統給出的某一個學生在一次考試中的情況,從圖中可以看出,數學與物理是這個學生的優勢學科,英語是這個學生最薄弱的學科,那麼在進行改進策略制定時,要多聽取英語老師的建議。

大數據可以幫助教師的課堂教學行為不像傳統課堂那樣,針對的是所謂的「平均水平」的學生授課,而是能照顧到每一名學生。

例如,利用信息技術監控學生的課堂測試與課堂練習情況,隨時調取任意學生的過程進行點評,統計每一名學生過程中出現的問題,這樣教師對課堂進程的判斷不是根據經驗,而是根據實際情況隨時調整。

總之,課堂教學互動方式的變革,不應該只是技術層面上的變革,媒體技術,網路平台的建設已經非常的成熟了,我們需要的變革是組織變革,是思想的變革。

現在流行的微課、慕課(MOOCs)其實就是大數據滲透到教學互動領域冰山的一角,形式並不重要,重要的是隱藏在這些形式下的數據所反映出來的學生行為,以及反饋給教師的教學信息,從而引起他們的思考和改變,形成雙向的迴路,實現真正的「互動」,這才是大數據真正的價值。

大數據下的教師要成為「數據脫盲者」,我們需要通過讀取數據來追蹤學生的進步,通過概率預測解釋什麼是對學生最有效的學習。

我想這應該意味著我們需要建立一套完善的系統,在這個系統中,有數據處理的專家,有解讀數據分析數據的分析師,有利用數據改善教學的教師。

只有在這個良性循環的系統中,才能真正實現課堂教學互動,呈現個性化的教學,讓教育針對每一個孩子。

希望我們的教育和教學可以因為大數據而發生真正的變革。

㈡ 如何對學生考試成績進行數據分析

是老師么?這個學校的話一般都是使用的Excel吧,給你推薦了免費的數據分專析工具,國內的,雲平屬台的是永久免費的,名字叫做大數據魔鏡,免費版的支持Excel和mysql的資料庫,你只需要導入Excel,選擇需要分析的對應的數據,最後選擇你想要展示的圖表的類型就好了,希望對你有幫助。

㈢ 大數據分析成績好處

大數據分析成績的好處是可以大大提高效率。在短時間內得出想要的結果。同時大數據分析成績更加精確和准確,犯錯的幾率更小。也即是說大數據分析成績得出的結果會更加真實。

大數據分析是指對規模巨大的數據進行分析。大數據可以概括為5個V, 數據量大(Volume)、速度快(Velocity)、類型多(Variety)、價值(Value)、真實性(Veracity)。

大數據作為時下最火熱的IT行業的詞彙,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等等圍繞大數據的商業價值的利用逐漸成為行業人士爭相追捧的利潤焦點。隨著大數據時代的來臨,大數據分析也應運而生。

大數據分析的六個基本方面

可視化分析

不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。

數據挖掘演算法

可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。

預測性分析能力

數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。

語義引擎

我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。

數據質量和數據管理

數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

數據存儲,數據倉庫

數據倉庫是為了便於多維分析和多角度展示數據按特定模式進行存儲所建立起來的關系型資料庫。

以上內容參考:網路-大數據分析

㈣ 大數據對教育教學的作用

數據(data),一般而言是指通過科學實驗、檢驗、統計等方式所獲得的,用於科學研究、技術設計、查證、決策等目的的數值。通過全面、准確、 系統地測量、收集、記錄、分類、存儲這些數據,再經過嚴格地統計、分析、檢驗這些數據,就能得出一些很有說服力的結論。大規模、長期地測量、記錄、存儲、 統計、分析這些數據,所獲得的海量數據就是大數據(big data)。在製作大數據時,需要嚴格的方案設計、變數控制和統計檢驗等,不然所獲得的大數據就是不全面、不準確、無價值或價值不大的。

在教育特別是在學校教育中,數據成為教學改進最為顯著的指標。通常,這些數據主要是指考試成績。當然,也可以包括入學率、出勤率、輟學率、升學 率等。對於具體的課堂教學來說,數據應該是能說明教學效果的,比如學生識字的准確率、作業的正確率、多方面發展的表現率——積極參與課堂科學的舉手次數, 回答問題的次數、時長與正確率,師生互動的頻率與時長。進一步具體來說,例如每個學生回答一個問題所用的時間是多長,不同學生在同一問題上所用時長的區別 有多大,整體回答的正確率是多少,這些具體的數據經過專門的收集、分類、整理、統計、分析就成為大數據。

分析大數據助力教學改革

近年來,隨著大數據成為互聯網信息技術行業的流行詞彙,教育逐漸被認為是大數據可以大有作為的一個重要應用領域,有人大膽地預測大數據將給教育帶來革命性的變化。

大數據技術允許中小學和大學分析從學生的學習行為、考試分數到職業規劃等所有重要的信息。許多這樣的數據已經被諸如美國國家教育統計中心之類的政府機構儲存起來用於統計和分析。

而近年來越來越多的網路在線教育和大規模開放式網路課程橫空出世,也使教育領域中的大數據獲得了更為廣闊的應用空間。專家指出,大數據將掀起新的教育革命,比如革新學生的學習、教師的教學、教育政策制定的方式與方法。

教育領域中的大數據分析最終目的是為了改善學生的學習成績。成績優異的學生對學校、對社會、以及對國家來說都是好事。學生的作業和考試中有一系 列重要的信息往往被我們常規的研究所忽視。而通過分析大數據,我們就能發現這些重要信息,並利用它們為改善學生的成績提供個性化的服務。與此同時,它還能 改善學生期末考試的成績、平時的出勤率、輟學率、升學率等。

㈤ 如何對學生考試成績進行數據分析

為了體現信息技術課考試成績的公正公平性,更好地為教學服務,提高教師的工作積極性和教學的針對性,我們需要對學生的考試成績進行認真的分析,按照常規數據統計,按照平均分、分數段對各班進行分析評價,這樣的質量分析不能把信息技術教學中存在的問題具體的分析出來,只能表面地評價哪個班成績好或不好,不能起到教學質量分析的真正作用。因此要採取隨機抽取各班部分學生的考試分數,利用EXCEL進行相應的統計分析,特別是分析那些知識點掌握的好,那些知識點還應繼續加強,今後應該怎樣教,讓學生聽得懂,掌握牢,相應地就提高了學生的學習成績。

閱讀全文

與考試成績大數據分析相關的資料

熱點內容
epg文件格式 瀏覽:699
wordpress分類描述 瀏覽:177
python用代碼轉文件xy格式 瀏覽:802
教育門戶網站模板 瀏覽:331
四光感巡線程序樂高 瀏覽:989
怎麼標記文件 瀏覽:972
為什麼副卡數據打不開 瀏覽:109
蘋果voiceover永久關閉 瀏覽:749
夢幻西遊新版本普陀山 瀏覽:453
win10選擇其他系統文件類型 瀏覽:980
pythonjson數組 瀏覽:227
樂翻兒歌歷史版本 瀏覽:216
為什麼刪除文件很慢 瀏覽:527
壓縮包裡面的cad文件保存去哪裡了 瀏覽:735
聚合產業促升級 瀏覽:207
魅藍系統升級50 瀏覽:92
xp支持文件名路徑 瀏覽:330
兩融最新數據什麼時候更新 瀏覽:462
pe模式win10桌面文件在哪 瀏覽:388
產品ooba文件是什麼 瀏覽:68

友情鏈接