導航:首頁 > 網路數據 > 大數據挖掘知識

大數據挖掘知識

發布時間:2023-01-20 22:11:18

A. 大數據挖掘需要學習哪些技術大數據的工作

首先
我由各種編程語言的背景——matlab,R,java,C/C++,python,網路編程等
我又一定的數學基礎——高數,線代,概率論,統計學等
我又一定的演算法基礎——經典演算法,神經網路,部分預測演算法,群智能演算法等
但這些目前來講都不那麼重要,但慢慢要用到

Step 1:大數據理論,方法和技術

B. python大數據挖掘系列之基礎知識入門 知識整理(入門教程含源碼)

Python在大數據行業非常火爆近兩年,as a pythonic,所以也得涉足下大數據分析,下面就聊聊它們。

Python數據分析與挖掘技術概述

所謂數據分析,即對已知的數據進行分析,然後提取出一些有價值的信息,比如統計平均數,標准差等信息,數據分析的數據量可能不會太大,而數據挖掘,是指對大量的數據進行分析與挖倔,得到一些未知的,有價值的信息等,比如從網站的用戶和用戶行為中挖掘出用戶的潛在需求信息,從而對網站進行改善等。
數據分析與數據挖掘密不可分,數據挖掘是對數據分析的提升。數據挖掘技術可以幫助我們更好的發現事物之間的規律。所以我們可以利用數據挖掘技術可以幫助我們更好的發現事物之間的規律。比如發掘用戶潛在需求,實現信息的個性化推送,發現疾病與病狀甚至病與葯物之間的規律等。

預先善其事必先利其器

我們首先聊聊數據分析的模塊有哪些:

下面就說說這些模塊的基礎使用。

numpy模塊安裝與使用

安裝:
下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我這里下載的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下載好後,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安裝的numpy版本一定要是帶mkl版本的,這樣能夠更好支持numpy

numpy簡單使用

生成隨機數

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代碼
下面看看pandas輸出的結果, 這一行的數字第幾列,第一列的數字是行數,定位一個通過第一行,第幾列來定位:

常用方法如下:

下面看看pandas對數據的統計,下面就說說每一行的信息

轉置功能:把行數轉換為列數,把列數轉換為行數,如下所示:

通過pandas導入數據

pandas支持多種輸入格式,我這里就簡單羅列日常生活最常用的幾種,對於更多的輸入方式可以查看源碼後者官網。

CSV文件

csv文件導入後顯示輸出的話,是按照csv文件默認的行輸出的,有多少列就輸出多少列,比如我有五列數據,那麼它就在prinit輸出結果的時候,就顯示五列

excel表格

依賴於xlrd模塊,請安裝它。
老樣子,原滋原味的輸出顯示excel本來的結果,只不過在每一行的開頭加上了一個行數

讀取SQL

依賴於PyMySQL,所以需要安裝它。pandas把sql作為輸入的時候,需要制定兩個參數,第一個是sql語句,第二個是sql連接實例。

讀取HTML

依賴於lxml模塊,請安裝它。
對於HTTPS的網頁,依賴於BeautifulSoup4,html5lib模塊。
讀取HTML只會讀取HTML里的表格,也就是只讀取

顯示的是時候是通過python的列表展示,同時添加了行與列的標識

讀取txt文件

輸出顯示的時候同時添加了行與列的標識

scipy

安裝方法是先下載whl格式文件,然後通過pip install 「包名」 安裝。whl包下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 數據可視化分析

我們安裝這個模塊直接使用pip install即可。不需要提前下載whl後通過 pip install安裝。

下面請看代碼:

下面說說修改圖的樣式

關於圖形類型,有下面幾種:

關於顏色,有下面幾種:

關於形狀,有下面幾種:

我們還可以對圖稍作修改,添加一些樣式,下面修改圓點圖為紅色的點,代碼如下:

我們還可以畫虛線圖,代碼如下所示:

還可以給圖添加上標題,x,y軸的標簽,代碼如下所示

直方圖

利用直方圖能夠很好的顯示每一段的數據。下面使用隨機數做一個直方圖。

Y軸為出現的次數,X軸為這個數的值(或者是范圍)

還可以指定直方圖類型通過histtype參數:

圖形區別語言無法描述很詳細,大家可以自信嘗試。

舉個例子:

子圖功能

什麼是子圖功能呢?子圖就是在一個大的畫板裡面能夠顯示多張小圖,每個一小圖為大畫板的子圖。
我們知道生成一個圖是使用plot功能,子圖就是subplog。代碼操作如下:

我們現在可以通過一堆數據來繪圖,根據圖能夠很容易的發現異常。下面我們就通過一個csv文件來實踐下,這個csv文件是某個網站的文章閱讀數與評論數。


先說說這個csv的文件結構,第一列是序號,第二列是每篇文章的URL,第三列每篇文章的閱讀數,第四列是每篇評論數。


我們的需求就是把評論數作為Y軸,閱讀數作為X軸,所以我們需要獲取第三列和第四列的數據。我們知道獲取數據的方法是通過pandas的values方法來獲取某一行的值,在對這一行的值做切片處理,獲取下標為3(閱讀數)和4(評論數)的值,但是,這里只是一行的值,我們需要是這個csv文件下的所有評論數和閱讀數,那怎麼辦?聰明的你會說,我自定義2個列表,我遍歷下這個csv文件,把閱讀數和評論數分別添加到對應的列表裡,這不就行了嘛。呵呵,其實有一個更快捷的方法,那麼就是使用T轉置方法,這樣再通過values方法,就能直接獲取這一評論數和閱讀數了,此時在交給你matplotlib里的pylab方法來作圖,那麼就OK了。了解思路後,那麼就寫吧。

下面看看代碼:

C. 大數據挖掘技術涉及哪些內容

大數據挖掘技術涉及的主要內容有:模式跟蹤,數據清理和准備,基於分類的數據挖掘技術,異常值檢測,關聯,聚類。
基於大環境下的數據特點,挖掘技術與對應:
1.數據來源多, 大數據挖掘的研究對象往往不只涉及一個業務系統, 肯定是多個系統的融合分析, 因此,需要強大的ETL技術, 將多個系統的數據整合到一起, 並且, 多個系統的數據可能標准不同, 需要清洗。
2.數據的維度高, 整合起來的數據就不只傳統數據挖掘的那一些維度了, 可能成百上千維, 這需要降維技術了。
3.大數據量的計算, 在單台伺服器上是計算不了的, 這就需要用分布式計算, 所以要掌握各種分布式計算框架, 像hadoop, spark之類, 需要掌握機器學習演算法的分布式實現。
數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。

想了解更多大數據挖掘技術,請關注CDA數據分析課程。CDA(Certified Data Analyst),即「CDA 數據分析」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。國家發展戰略的要求,崗位人才的缺口以及市場規模的帶動,都從不同方面體現了數據分析師職業的重要性。大數據挖掘技術的學習,有利於提高人在職場的信譽度,增加職場競爭力,提高自己的經濟地位。點擊預約免費試聽課。

D. 數據挖掘需要學習哪些知識

1.統計知識


在做數據分析,統計的知識肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。如果我們做數據挖掘的話,就要重視數學知識,數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等。


2.概率知識


而樸素貝葉斯演算法需要概率方面的知識,SKM演算法需要高等代數或者區間論方面的知識。當然,我們可以直接套模型,R、Python這些工具有現成的演算法包,可以直接套用。但如果我們想深入學習這些演算法,最好去學習一些數學知識,也會讓我們以後的路走得更順暢。我們經常會用到的語言包括Python、Java、C或者C++,我自己用Python或者Java比較多。有時用MapRece寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合。


3.數據挖掘的數據類型


那麼可以挖掘的數據類型都有什麼呢?關系資料庫、數據倉庫、事務資料庫、空間資料庫、時間序列資料庫、文本資料庫和多媒體資料庫。關系資料庫就是表的集合,每個表都賦予一個唯一的名字。每個表包含一組屬性列或欄位,並通常存放大量元組,比如記錄或行。關系中的每個元組代表一個被唯一關鍵字標識的對象,並被一組屬性值描述。


4.數據倉庫


什麼是數據倉庫呢?數據倉庫就是通過數據清理、數據變換、數據集成、數據裝入和定期數據刷新構造 。數據挖掘的工作內容是什麼呢?數據分析更偏向統計分析,出圖,作報告比較多,做一些展示。數據挖掘更偏向於建模型。比如,我們做一個電商的數據分析。萬達電商的數據非常大,具體要做什麼需要項目組自己來定。電商數據能給我們的業務什麼樣的推進,我們從這一點入手去思考。我們從中挑出一部分進行用戶分群。


關於數據挖掘需要學習哪些知識,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

E. 大數據挖掘方法有哪些

謝邀。

大數據挖掘的方法:

神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。


遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。


決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。


粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。


它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。


在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。


即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。

F. 大數據挖掘都有哪些方面的應用

1、大數據挖掘可以使混亂且無規則的數據變得清晰且具有高可用性



大數據具有兩個典型特徵,一個是大量數據,另一個是復雜的計算。與傳統資料庫相比,大數據的結構化程度,可用性,數據提取和數據清理都是一項繁重的工作。



典型的典型生產和銷售企業的業務系統數據是隔離,拆分,銷售,生產,財務,客戶等的,不同方面實際上是為自己的業務目標和輸出構建自己的IT系統甚至被外包給不同的IT集成商或軟體開發人員,因此系統相對獨立。



2、讓數據與數據之間的關系,這種關系可能產生化學反應



啤酒和尿布,口香糖和避孕套的著名例子可以發現典型數據之間的隱含關系。通過對消費者行為的數據進行建模和分析,可以發現理論上這兩個原本不相關的事物,當用戶購買某商品時產生了關聯,針對此發現優化貨架商品可以增加銷售額。



3、監視數據生成過程以發現異常,並作出預警和錯誤糾正



通過時間對系統生成的數據進行建模,可以記錄平均值以及每個時間點和時間段的上下間隔。如果某個節點發生異常情況,則系統可以快速找到問題並進行預警和故障排除。當然,這只是技術系統的價值。



在業務系統中,這種數據異常會給您業務狀況的警告,幫助您比較歷史時間維度,確定事物發生變化的原因,並為您提供必要的時間,數據和相關信息參考用於決策分析。



4、通過數據挖掘建立知識模型以提供決策支持信息



IT系統正在發揮更大的價值,因為它可以幫助您通過信息集成來提供決策參考信息。過去,有一個術語稱為KDD(知識發現)。隨著互聯網信息內容的豐富和以及各大例如億信華辰BI軟體等公司的發展,網路信息的價值和有效性也在增加。



關於大數據挖掘都有哪些方面的應用,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。


以上是小編為大家分享的關於大數據挖掘都有哪些方面的應用?的相關內容,更多信息可以關注環球青藤分享更多干貨

G. 大數據挖掘是指什麼

大數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的,但又是潛在有用的信息和知識的過程。數據挖掘通常與計算機科學有關,並經過統計分析、線上解析解決、情報檢索、機器學習演算法、專家系統和模式識別等諸多方式來實現上述目標。

H. 大數據挖掘主要涉及哪些技術

1、數據科學與大數據技術
本科專業,簡稱數據科學或大數據。
2、大數據技術與應用回
高職院校專業。
相關專業名答稱:大數據管理與應用、大數據採集與應用等。
大數據專業強調交叉學科特點,以大數據分析為核心,以統計學、計算機科學和數學為三大基礎支撐性學科,培養面向多層次應用需求的復合型人才。

閱讀全文

與大數據挖掘知識相關的資料

熱點內容
epg文件格式 瀏覽:699
wordpress分類描述 瀏覽:177
python用代碼轉文件xy格式 瀏覽:802
教育門戶網站模板 瀏覽:331
四光感巡線程序樂高 瀏覽:989
怎麼標記文件 瀏覽:972
為什麼副卡數據打不開 瀏覽:109
蘋果voiceover永久關閉 瀏覽:749
夢幻西遊新版本普陀山 瀏覽:453
win10選擇其他系統文件類型 瀏覽:980
pythonjson數組 瀏覽:227
樂翻兒歌歷史版本 瀏覽:216
為什麼刪除文件很慢 瀏覽:527
壓縮包裡面的cad文件保存去哪裡了 瀏覽:735
聚合產業促升級 瀏覽:207
魅藍系統升級50 瀏覽:92
xp支持文件名路徑 瀏覽:330
兩融最新數據什麼時候更新 瀏覽:462
pe模式win10桌面文件在哪 瀏覽:388
產品ooba文件是什麼 瀏覽:68

友情鏈接