導航:首頁 > 網路數據 > 大數據分析模型構建

大數據分析模型構建

發布時間:2023-01-18 12:53:40

㈠ 創建有效的大數據模型的6個技巧

創建有效的大數據模型的6個技巧
數據建模是一門復雜的科學,涉及組織企業的數據以適應業務流程的需求。它需要設計邏輯關系,以便數據可以相互關聯,並支持業務。然後將邏輯設計轉換成物理模型,該物理模型由存儲數據的存儲設備、資料庫文件組成。
歷史上,企業已經使用像SQL這樣的關系資料庫技術來開發數據模型,因為它非常適合將數據集密鑰和數據類型靈活地鏈接在一起,以支持業務流程的信息需求。
不幸的是,大數據現在包含了很大比例的管理數據,並不能在關系資料庫上運行。它運行在像NoSQL這樣的非關系資料庫上。這導致人們認為可能不需要大數據模型。
問題是,企業確實需要對大數據進行數據建模。
以下是大數據建模的六個提示:
1.不要試圖將傳統的建模技術強加於大數據
傳統的固定記錄數據在其增長中穩定且可預測的,這使得建模相對容易。相比之下,大數據的指數增長是不可預測的,其無數形式和來源也是如此。當網站考慮建模大數據時,建模工作應該集中在構建開放和彈性數據介面上,因為人們永遠不知道何時會出現新的數據源或數據形式。這在傳統的固定記錄數據世界中並不是一個優先事項。
2.設計一個系統,而不是一個模式
在傳統的數據領域中,關系資料庫模式可以涵蓋業務對其信息支持所需的數據之間的大多數關系和鏈接。大數據並非如此,它可能沒有資料庫,或者可能使用像NoSQL這樣的資料庫,它不需要資料庫模式。
正因為如此,大數據模型應該建立在系統上,而不是資料庫上。大數據模型應包含的系統組件包括業務信息需求、企業治理和安全、用於數據的物理存儲、所有類型數據的集成、開放介面,以及處理各種不同數據類型的能力。
3.尋找大數據建模工具
有商業數據建模工具可以支持Hadoop以及像Tableau這樣的大數據報告軟體。在考慮大數據工具和方法時,IT決策者應該包括為大數據構建數據模型的能力,這是要求之一。
4.關注對企業的業務至關重要的數據
企業每天都會輸入大量的數據,而這些大數據大部分是無關緊要的。創建包含所有數據的模型是沒有意義的。更好的方法是確定對企業來說至關重要的大數據,並對這些數據進行建模。
5.提供高質量的數據
如果組織專注於開發數據的正確定義和完整的元數據來描述數據來自何處、其目的是什麼等等,那麼可以對大數據模型產生更好的數據模型和關系。可以更好地支持支持業務的數據模型。
6.尋找數據的關鍵切入點
當今最常用的大數據載體之一就是地理位置,這取決於企業的業務和行業,還
有其他用戶需要的大數據常用密鑰。企業越能夠識別數據中的這些常用入口點,就越能夠設計出支持企業關鍵信息訪問路徑的數據模型。

㈡ 怎麼搭建大數據分析平台

未至科技魔方是一款大數據模型平台,是一款基於服務匯流排與分布式雲計算兩大技術架構的一款數據分析、挖掘的工具平台,其採用分布式文件系統對數據進行存儲,支持海量數據的處理。採用多種的數據採集技術,支持結構化數據及非結構化數據的採集。通過圖形化的模型搭建工具,支持流程化的模型配置。通過第三方插件技術,很容易將其他工具及服務集成到平台中去。數據分析研判平台就是海量信息的採集,數據模型的搭建,數據的挖掘、分析最後形成知識服務於實戰、服務於決策的過程,平台主要包括數據採集部分,模型配置部分,模型執行部分及成果展示部分等。

㈢ 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

㈣ 大數據分析基礎——維度模型

維度模型的概念出自於數據倉庫領域,是數據倉庫建設中的一種數據建模方法。維度模型主要由事實表和維度表這兩個基本要素構成。

維度是度量的環境,用來反映業務的一類屬性 , 這類屬性的集合構成一個維度 , 也可以稱為實體對象。 維度屬於一個數據域,如地理維度(其中包括國家、地區、 省以及城市等級別的內容)、時間維度(其中包括年、季、月、周、日等級別的內容)。

維度是維度建模的基礎和靈魂。在維度建模中,將度量稱為「事實」 , 將環境描述為「維度」,維度是用於分析事實所需要的多樣環境。例如, 在分析交易過程時,可以通過買家、賣家、商品和時間等維度描述交易發生的環境。

維度所包含的表示維度的列,稱為維度屬性。維度屬性是查詢約束條件、分組和報表標簽生成的基本來源,是數據易用性的關鍵。

事實表是維度模型的基本表,每個數據倉庫都包含一個或者多個事實數據表。事實數據表可能包含業務銷售數據,如銷售商品所產生的數據,與軟體中實際表概念一樣。

事實表作為數據倉庫維度建模的核心,緊緊圍繞著業務過程來設計,通過獲取描述業務過程的度量來表達業務過程,包含了引用的維度和與業務過程有關的度量。

事實表中一條記錄所表達的業務細節程度被稱為粒度。通常粒度可以通過兩種方式來表述:一種是維度屬性組合所表示的細節程度:一種是所表示的具體業務含義。

作為度量業務過程的事實,一般為整型或浮點型的十進制數值,有可加性、半可加性和不可加性三種類型。

相對維度來說,通常事實表要細長,行的增加速度也比維度錶快的多,維度表正好相反。

事實表有三種類型 :

原子指標和度量含義相同,基於某一業務事件行為下的度量,是業務定義中不可 再拆分的指標,具有明確業務含義的名詞 ,如支付金額。

事實表和維度交叉匯聚的點,度量和維度構成OLAP的主要概念,這裡面對於在事實表或者一個多維立方體裡面存放的數值型的、連續的欄位,就是度量。

維度表是事實表不可分割的部分。維度表是進入事實表的入口。豐富的維度屬性給出了豐富的分析切割能力。維度給用戶提供了使用數據倉庫的介面。最好的屬性是文本的和離散的。屬性應該是真正的文字而不應是一些編碼簡寫符號。應該通過用更為詳細的文本屬性取代編碼,力求最大限度地減少編碼在維度表中的使用。

維度表和事實表二者的融合也就是「維度模型」,「維度模型」一般採用「星型模式」或者「雪花模式」,「雪花模式」可以看作是「星型模式」的拓展,表現為在維度表中,某個維度屬性可能還存在更細粒度的屬性描述,即維度表的層級關系。

維度屬性也可以存儲到事實表中,這種存儲到事實表中的維度列被稱為「退化維度」。與其他存儲在維表中的維度一樣 ,退化維度也可以用來進行事實表的過濾查詢、實現聚合操作等。

下表顯示的是一個維度(「城市」)和兩個指標(「會話數」和「每次會話瀏覽頁數」)。

維度中的一些描述屬性以層次方式或一對多的方式相互關聯,可以被理解為包含連續主從關系的屬性層次。比如商品類目的最低級別是葉子類目,葉子類目屬於二級類目,二級類目屬於一級類目。在屬性的層次結構中進行鑽取是數據鑽取的方法之一。

當屬性層次被實例化為一系列維度,而不是單一的維度時,被稱為雪花模式。

大多數聯機事務處理系統( OLTP)的底層數據結構在設計時採用此種規范化技術,通過規范化處理將重復屬性移至其自身所屬的表中,刪除冗餘數據。

將維度的屬性層次合並到單個維度中的操作稱為反規范化。分析系 統的主要目的是用於數據分析和統計,如何更方便用戶進行統計分析決 定了分析系統的優劣。採用雪花模式,用戶在統計分析的過程中需要 大 量的關聯操作,使用復雜度高,同時查詢性能很差;而採用反規范化處 理,則方便、易用且性能好。

數據倉庫匯流排架構的重要基石之一就是一致性維度。在針對不同數 據域進行迭代構建或並行構建時,存在很多需求是對於不同數據域的業 務過程或者同 一數據域的不同業務過程合並在 一起觀察。比如對於日誌數據域,統計了商品維度的最近一天的 PV 和 UV; 對於交易數據域, 統計了商品維度的最近一天的下單MV。現在將不同數據域的商品的 事實合並在一起進行數據探查 ,如計算轉化率等,稱為交叉探查。

我們先來看數據倉庫的定義:數據倉庫是一個面向主題的、 集成的 、 非易失的且隨時間變化的數據集合,用來支持管理人員的決策。

數據由面向應用的操作型環境進人數據倉庫後,需要進行數據 集成。將面向應用的數據轉換為面向主題的數據倉庫數據,本身就是一種集成。

具體體現在如下幾個方面:

表級別的整合,有兩種表現形式。

水平拆分
維度通常可以按照類別或類型進行細分。由於維度分類的不同而存在特殊的維度屬性,可以通過水平拆分的方式解決此問題。

在設計過程中需要重點考慮以下三個原則。

根據數據模型設計思想,在對維度進行水平拆分時,主要考慮如下兩個依據。

垂直拆分
在維度設計內容中,我們提到維度是維度建模的基礎和靈魂,維度 屬性的豐富程度直接決定了數據倉庫的能力。在進行維度設計時,依據 維度設計的原則,盡可能豐富維度屬性,同時進行反規范化處理。

某些維度屬性的來源表產出時間較早,而某些維度屬性的來 源 表產出時間較晚;或者某些維度屬性的熱度高、使用頻繁,而某些維度屬性的熱度低、較少使用 ; 或者某些維度屬性經常變化,而某些維度屬性比較穩定。在「水平拆分」中提到的模型設計的三個原則同樣適合解決此問題。

出於擴展性、產出時間、易用性等方面的考慮,設計 主從維度。主 維表存放穩定 、 產出時間早、熱度高的屬性;從維表存放變化較快、產 出時間晚、熱度低的屬性。

參考
《The Data Warehouse Toolkit-The Complete Guide to Dimensional Modeling》
《Google Analytics》
《大數據之路》

歡迎關注 高廣超的博客 與 收藏文章 !
歡迎關注 頭條號:互聯網技術棧 !

㈤ 大數據分析模型成功關鍵因素之我見

大數據分析模型成功關鍵因素之我見
無論在報紙、雜志、機場媒體,還是在酒吧的閑談中,大數據都成了一個熱門話題。每個人都在談論這個時尚的話題,但迄今為止只有極少數企業真正成功的運用這一技術!導致這一情況的重要原因就是企業對建立可操作的大數據分析模型成功關鍵因素缺乏深刻的認識。結合多年來與多家全球性公司合作經驗,我們認為:為了取得成功,大數據分析模型需要滿足如下幾種要求: (1)業務相關性。業務相關性是對分析模型的第一個關鍵要求。分析模型必須能夠解決特定的商業問題。那些性能優越,卻不能解決商業問題的模型是毫無意義的。顯然,在模型開發前,對商業背景和業務問題有全面的理解必不可少。例如,在保險欺詐檢測問題中,必須在一開始對如何定義、衡量和管理欺詐有清晰的界定。(2)統計性能。影響模型成功的另一個重要關鍵因素是模型性能表現。換句話說,從統計意義的角度,分析模型應該顯著提高預測或描述的性能。根據分析問題的類型不同,常常採用不同類型的性能評價指標。在客戶細分,統計評價指標主要評價對比簇內的相似性與簇間的差異性;在客戶流失預測中,主要評價模型是否賦予了潛在流失客戶的較高得分。(3)解釋性和合理性。解釋性是指分析模型容易為決策者所理解,合理性是指模型與專家的預期和業務知識相一致。解釋能力和合理性都是主觀判斷,取決於決策者的知識和經驗。這兩個因素與統計性能分析之間常常是矛盾的,譬如:復雜神經網路和隨機森林模型預測性能較好,但是解釋性較差。所以,決策者需要在兩者之間尋找平衡點。在信用風險分析等應用場景中,解釋性和合理性是非常重要的因素,而在欺詐檢測和營銷響應建模中,這一因素就不是那麼重要了。(4)運行效率。運行效率涉及模型評估、監測、檢驗及重建過程中所需投入的時間。從這個因素來看,很明顯的神經網路或隨機森林效率較低,而回歸模型和決策樹等更有效率。在信用卡欺詐檢測等業務場景中,運行效率是非常重要的,因為所有的決策必須在信用卡交易開始後幾秒鍾內完成。(5)經濟成本。經濟成本是收集模型所需數據、運行模型以及分析模型結果的過程中所投入的成本,此外還包括引入外部數據和模型的成本。在分析模型的經濟回報時,所有的這些成本都必須考慮在內,通常不是能簡單直接計算出來的。(6)合規性。在很多行業中,合規性變得越來越重要。合規性是指模型對現有制度和法律的遵從程度。在信用風險領域,分析模型符合巴塞爾協議II和III的規定尤其重要。而在保險行業中,模型則必須遵從歐盟償付能力協議(Solvency II) 。總結以上,我們簡要論述了成功構建數據分析模型的關鍵因素。如我們所指出的那樣,每個因素的重要性取決於模型應用場景。

㈥ 怎麼搭建大數據分析平台

未至科技數據中心解決方案是以組織價值鏈分析模型為理論指導,結合組織戰略規版劃和面向對象權的方法論,對組織信息化戰略進行規劃重造立足數據,以數據為基礎建立組織信息化標准,提供面向數據採集、處理、挖掘、分析、服務為組織提供一整套的基礎解決方案。未至數據中心解決方案採用了當前先進的大數據技術,基於Hadoop架構,利用HDFS、Hive、Impala等大數據技術架構組件和公司自有ETL工具等中間件產品,建立了組織內部高性能、高效率的信息資源大數據服務平台,實現組織內數億條以上數據的秒級實時查詢、更新、調用、分析等信息資源服務。未至數據中心解決方案將,為公安、教育、旅遊、住建等各行業業務數據中心、城市公共基礎資料庫平台、行業部門信息資源基礎資料庫建設和數據資源規劃、管理等業務提供了一體化的解決方案。

㈦ 故障案例的大數據分析模型該從哪些方面入手

1、SQL資料庫的基本操作,會基本的數據管理
2、會用Excel/SQL做基本的數據提取、分析和版展示
3、會用腳本語權言進行數據分析,Python or R
4、有獲取外部數據的能力加分,如爬蟲或熟悉公開數據集
5、會基本的數據可視化技能,能撰寫數據報告
6、熟悉常用的數據挖掘演算法:回歸分析、決策樹、分類、聚類方法

㈧ 大數據分析方法與模型有哪些

1、分類分析數據分析法


在數據分析中,如果將數據進行分類就能夠更好的分析。分類分析是將一些未知類別的部分放進我們已經分好類別中的其中某一類;或者將對一些數據進行分析,把這些數據歸納到接近這一程度的類別,並按接近這一程度對觀測對象給出合理的分類。這樣才能夠更好的進行分析數據。


2、對比分析數據分析方法


很多數據分析也是經常使用對比分析數據分析方法。對比分析法通常是把兩個相互有聯系的數據進行比較,從數量上展示和說明研究對象在某一標準的數量進行比較,從中發現其他的差異,以及各種關系是否協調。


3、相關分析數據分析法


相關分析數據分析法也是一種比較常見數據分析方法,相關分析是指研究變數之間相互關系的一類分析方法。按是否區別自變數和因變數為標准一般分為兩類:一類是明確自變數和因變數的關系;另一類是不區分因果關系,只研究變數之間是否相關,相關方向和密切程度的分析方法。


4、綜合分析數據分析法


層次分析法,是一種實用的多目標或多方案的決策方法。由於他在處理復雜的決策問題上的實用性和有效性,而層次分析數據分析法在世界范圍得到廣泛的應用。它的應用已遍及經濟計劃和管理,能源政策和分配,行為科學、軍事指揮、運輸、農業、教育、醫療和環境等多領域。

㈨ 大數據分析中,有哪些常見的大數據分析模型

很多朋友還沒有接觸過大數據分析方案,認為其僅僅算是個願景而非現實——畢竟能夠證明其可行性與實際效果的案例確實相對有限。但可以肯定的是,實時數據流中包含著大量重要價值,足以幫助企業及人員在未來的工作中達成更為理想的結果。那麼,那些領域需要實時的數據分析呢?

1、醫療衛生與生命科學

2、保險業

3、電信運營商

4、能源行業

5、電子商務

6、運輸行業

7、投機市場

8、執法領域

9、技術領域

常見數據分析模型有哪些呢?

1、行為事件分析:行為事件分析法具有強大的篩選、分組和聚合能力,邏輯清晰且使用簡單,已被廣泛應用。

2、漏斗分析模型:漏斗分析是一套流程分析,它能夠科學反映用戶行為狀態以及從起點到終點各階段用戶轉化率情況的重要分析模型。

3、留存分析模型留存分析是一種用來分析用戶參與情況/活躍程度的分析模型,考察進行初始化行為的用戶中,有多少人會進行後續行為。這是用來衡量產品對用戶價值高低的重要方法。

4、分布分析模型分布分析是用戶在特定指標下的頻次、總額等的歸類展現。

5、點擊分析模型即應用一種特殊亮度的顏色形式,顯示頁面或頁面組區域中不同元素點點擊密度的圖標。

6、用戶行為路徑分析模型用戶路徑分析,顧名思義,用戶在APP或網站中的訪問行為路徑。為了衡量網站優化的效果或營銷推廣的效果,以及了解用戶行為偏好,時常要對訪問路徑的轉換數據進行分析。

7、用戶分群分析模型用戶分群即用戶信息標簽化,通過用戶的歷史行為路徑、行為特徵、偏好等屬性,將具有相同屬性的用戶劃分為一個群體,並進行後續分析。

8、屬性分析模型根據用戶自身屬性對用戶進行分類與統計分析,比如查看用戶數量在注冊時間上的變化趨勢、省份等分布情況。

模型再多,選擇一種適合自己的就行,如何利益最大化才是我們追求的目標

㈩ 企業構建大數據分析平台,分為哪幾步

操作系統的選擇操作系統一般使用開源版的RedHat、Centos或者Debian作為底層的構建平台,要根據大數據平台所要搭建的數據分析工具可以支持的系統,正確的選擇操作系統的版本



搭建Hadoop集群Hadoop作為一個開發和運行處理大規模數據的軟體平台,實現了在大量的廉價計算機組成的集群中對海量數據進行分布式計算。Hadoop框架中最核心的設計是HDFS和MapRece,HDFS是一個高度容錯性的系統,適合部署在廉價的機器上,能夠提供高吞吐量的數據訪問,適用於那些有著超大數據集的應用程序;MapRece是一套可以從海量的數據中提取數據最後返回結果集的編程模型。



選擇數據接入和預處理工具面對各種來源的數據,數據接入就是將這些零散的數據整合在一起,綜合起來進行分析。數據接入主要包括文件日誌的接入、資料庫日誌的接入、關系型資料庫的接入和應用程序等的接入,數據接入常用的工具有Flume,Logstash,NDC(網易數據運河系統),sqoop等。



關於企業構建大數據分析平台,分為哪幾步,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。


以上是小編為大家分享的關於企業構建大數據分析平台,分為哪幾步?的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與大數據分析模型構建相關的資料

熱點內容
pdf文件無法列印其他正常 瀏覽:126
拍照文件掃描轉換word 瀏覽:724
電腦啟動後桌面文件不見了 瀏覽:535
圖文游戲編程作品說明如何寫 瀏覽:197
qq瀏覽器wifi不安全衛士 瀏覽:449
文件在用戶卻不顯示在桌面 瀏覽:124
delphi獲取操作系統版本 瀏覽:722
linux定時任務執行腳本 瀏覽:787
招商銀行app怎麼查電費 瀏覽:739
手機代碼文檔翻譯軟體 瀏覽:676
青華模具學院和ug編程哪個好 瀏覽:736
怎麼改網站關鍵詞 瀏覽:581
怎麼把ps圖片保存成雕刻文件 瀏覽:771
java字元串賦空值不賦值null 瀏覽:556
什麼是文件hash 瀏覽:345
文件碎片微信小程序 瀏覽:878
蘋果手機怎麼升級運營商版本 瀏覽:100
什麼是菜鳥網路服務協議 瀏覽:260
11月份的銷售數據是什麼 瀏覽:439
三個數據如何列表格 瀏覽:92

友情鏈接