導航:首頁 > 網路數據 > ryanbaker大數據

ryanbaker大數據

發布時間:2023-01-15 09:45:47

❶ 「人工智慧」,「大數據」+教育如何驅動教育的未來

近日,由論答公司主辦的教育大數據研討會在北京舉行,討論會主題為「大數據+教育,有哪些可能性?」。本次研討會主要關注數據在教育領域的應用,具體包括自適應學習、學習數據分析和教育數據挖掘。來自賓夕法尼亞大學、人民大學、華中師范大學的專家和企業界代表,共同探討了教育大數據和自適應學習領域的技術趨勢和產業機會
Ryan Baker是國際教育數據挖掘協會(International Ecational Data Mining Society)的創始人、《教育數據挖掘》雜志(Journal Ecational Data Mining)主編,在各類期刊和會議發表了260餘篇學術論文,先後主持了美國科學基金會(National Science Foundation)、蓋茨基金會(Gates Foundation)等研究基金的多項重大項目,累計獲得研究經費超過1600萬美元。
他也在哥倫比亞大學教育學院和愛丁堡大學同時擔任教職,他在Coursera和edX上開設的「Big Data in Ecation(教育大數據)」課程,有來自100多個國家和地區的學生注冊。
研討會現場,Ryan Baker通過遠程視頻,分享了他對教育大數據的體驗和應用。據他介紹,目前在教育大數據領域主要有四大研究組織,分別研究人工智慧與教育、教育數據挖掘、學習數據分析和大規模學習。
Ryan Baker表示,在教育領域廣泛應用大數據的時代正在到來。教育數據挖掘有很多的應用方向,包括:預測學生是會輟學,還是會成功完成學業;自動檢測學生的學習投入程度、情感、學習策略,以更好地達到個性化;給教師和其他相關人員提供更好的報告;教育科學的基礎研究和發現。
他認為,個性化教育至少要做到三件事情:
1、確定學生的有關數據;
2、了解對於學生的學習來說什麼是真正重要的;
3、有針對性地為學生提供合適的教學。
而通過教育數據挖掘,我們可以推斷很多事情:
學生的元認知和求助。比如,這個學生有多自信?當他需要幫助時,有沒有在尋求幫助?他有沒有在給自己解釋問題,有沒有思考這個答案是正確的還是錯誤的?最重要的,當他面臨挑戰時,能否堅持下去?
沒有投入學習的行為。比如,「玩弄」系統,為了找到正確的答案,有的學生會試各種不同的答案,從「1」試到「38」。粗心,本身會做,但是不用心,最後給出的答案是錯的。有些孩子會做非常難以解釋的行為,比如不用方程符號,而是畫了一個笑臉。
學生情感。Baker的研究團隊和其他研究團隊,已經創造了研究模型,可以根據數據推斷,學生是否感到厭倦、沮喪、困惑、好奇、興奮、快樂,是否投入,等等。
長期的學習結果。比如,學生能夠記住剛才他學的東西嗎?學生准備好學習下一個主題、下一個知識沒有?中學生能上大學嗎?他會從大學畢業還是輟學?
Ryan Baker表示,要獲得這樣的推斷,只需要學生與系統交互的數據,不需要學生戴上頭盔檢測器。目前,這些模型已經開始大規模應用於自適應學習,應用於幾十萬的美國學生。Ryan Baker列舉了一些自適應學習系統的案例。
Knewton
通過系統決定學生下一個要學習的問題是什麼,已在全球的多個領域多個學科中運用。
ALEKS-ALEKS
用的是先行知識結構和知識點模型,來選擇最適合學生的學習材料。比如,一個學生在學習上出現了問題,系統能夠檢測出來,是以前學的知識點出了問題,然後讓學生回到以前的知識點上去學習。ALEKS系統應用於美國高中、大學的數學、科學學科。
Cognitive Tutor
系統能自動檢測學生的知識,直到學生掌握為止。比如,系統不會讓學生學習下一步的知識,直到他展示出他已經學好了他現在正在學習的知識。系統能夠給學校提供數據報告,學校根據報告能夠更好地讓學生投入到學習中去。每年大約被50萬的美國初高中生用於數學學習。
論答
論答公司的系統與ALEKS的系統有些類似,也是用先行結構和知識點模型,選擇合適的學習材料。同時也是自動檢測學生的知識狀態直到學生掌握為止。應用領域目前包括數學和英語,完全針對中國學生開發。
Reasoning Mind
用各種自動檢測的模型來檢測老師的教學是否有效。通過數據生成報告給每個地區的教學管理員,讓他們找到方法幫助老師提高教學。主要是用於美國的小學數學。
Duolingo
自動檢測學生記憶,來決定什麼時候回顧已經學過的知識。在全世界范圍內應用於外語詞彙的學習。
其他的像Civitas,Course Signals,Zogotech都是地區供應商,運用風險預測模型提供行動信息預測。它們會對學生做出預測,可能學不好、會失敗,把報告提供給老師。已在世界范圍內的大學應用。
Ryan Baker指出,在這些系統中,有足夠的證據證明,至少以下兩個系統是非常好的。
1、胡祥恩教授在美國做了大量實證研究,證明ALEKS系統對於幫助學生學習是有效的。他的研究證明,ALEKS系統對於不同人群的學生是同樣有效的;特別值得提出的是,ALEKS可以幫助少數人群群體提高學習成績。
2、Ryan Baker本人領導的研究團隊與論答公司合作的研究表明,學生通過論答系統學習,比通過傳統的在線學習系統學習,效果更好。他們在中國3個不同的地區做的3次實證研究,都證明了論答系統的有效性。
Ryan Baker分析了教育大數據演算法模型的潛在發展方向。他認為,這些模型的長期潛力是,通過學生的知識和學習模型來確認,學生什麼時候需要更多的支持:
首先是「mastery learning」,學生在掌握一個知識前,不會讓他去學習下一個知識。當學生需要支持的時候,自動介入;同時告訴老師和父母,這個學生什麼時候需要支持。
通過學習投入程度模型判斷,學生什麼時候開始變得厭倦、沮喪了,並調整學習活動,讓厭倦的學生不再厭倦,讓沮喪的學生的學習變得更容易一些。
學習投入程度模型還可以檢測,在線學習中,什麼樣的學習活動,能讓學生更容易地投入進去,並最終發現,什麼樣的學習活動對學生更好、對什麼樣的學生更好。
這樣的模型也能告訴老師和父母,學生什麼時候開始變得不再投入學習了。
還可以運用學習模型確認,學生什麼時候沒有真正學會,需要更多支持。
最後,Ryan Baker指出,下一步的目標是優化之前已經驗證的經驗和方法,然後把它們運用到系統中,最終讓中國和世界上的數十億學生受益。
討論:「因材施教」的千年理想該如何照進現實?
王楓博士,論答公司(Learnta Inc.)創始人兼CEO
胡飛芳博士,美國喬治華盛頓大學(George Washington University)統計學終身教授,中國人民大學統計與大數據研究院的教授
胡祥恩博士,美國孟菲斯大學(University of Memphis)心理系、計算機科學系、計算機工程系終身教授,華中師范大學心理學院院長
馬鎮筠博士,論答公司聯合創始人兼首席數據科學家
辛濤博士,北京師范大學中國基礎教育質量監測協同創新中心常務副主任、博士生導師,兼任國家督學、教育部基礎教育課程教材專家工作委員會委員、中國教育學會學術委員會委員。
技術發展到今天,「因材施教」如何實現?
王楓:因材施教,我首先到的是,每位學生學習的內容都不一樣。如果有新的技術或者系統,系統應該像一個好老師一樣,不會頭疼醫頭腳疼醫腳。比如說,一元二次方程做錯了,好老師不會簡單說一元二次方程做錯了,你繼續再做十道一元二次方程的題目,這其實是很差的老師,他沒有真正去全面評判學生,到底是哪些掌握好、哪些掌握不好。
一個好的老師可能會說,我全面地看了你整個學習,可能你的問題不是出在一元二次方程上面,老師看了你做的題目,一元一次方程沒有掌握好、因式分解也沒有掌握好,你繼續做一元二次方程是浪費時間。這就是從系統角度來說,系統做到了根據每個學生最基礎的先行知識點的結構,給你提供最適合你當前學習的知識點,題目也好、視頻也好、還有其他各種各樣的學習內容。
胡飛芳:因材施教是我們教育的理想狀態。孔子很早提出因材施教,在他當時的歷史環境裡面,因材施教可能更多是個體性的,因為那時學生少、老師也少,因材施教相對比較容易做到。
隨著歷史的發展,我們有更多的人需要教育時,我們做的一件事情是什麼呢?就是做了一個標准化。標准化做的是什麼?課堂教育。課堂教育從某種意義上來講是標准化。現在這個歷史階段,教育大數據可能真正要做到的就是因材施教,自適應學習本身想做的也是這個。
胡祥恩:因材施教事實上在學習理論里有兩個:一個是outerloop「學什麼」,一個是innerloop「怎麼學」。用技術來細化因材施教是教育產業走向成熟的一個標志。但是這個路非常非常難,因為「怎麼學」那個層次非常非常難。
馬鎮筠:「因材」代表認識到學生的個體化差異,「施教」指進行差異化教學,這是根本思想。但如果考慮到時代背景,孔夫子時代專注的是學生的職業發展方向,也就是說,把適合當政治家的培養成政治家,把適合當學者的培養成學者。現在再提因材施教,我們其實能做得更多、更精細化。
比如,「因材」,對「材」的分類不僅是職業方向,還會考慮到學生的學習狀態、學習目標、潛在能力、興趣偏好等。而且,傳統意義上的因材施教考慮的是學生個體間的差異,沒有重視學生本身狀態是在發生變化的,學生在不斷學習,狀態甚至興趣各方面都可能發生變化。
但這些是自適應學習能夠做到,甚至比傳統的因材施教做得更好的地方。再說到「施教」,現在我們能做的幾件事,包括學習路徑推薦,給不同的學生匹配他最合適的學習內容,這種非常精細化的層面,我們已經有了一定的技術積累。
怎麼判斷一個產品做到了真正的自適應?
馬鎮筠:大多數產品的學習過程可以分為測、學、練,可以從這三個環節去看這個產品做到什麼程度。
測,各種學習機構都有測評。但是國內只有論答團隊第一個做出來能夠在幾十道題內,精準判斷你一百個知識點,哪21個沒掌握,哪79個掌握了。市場上大部分競品,只會告訴你,知識點掌握率或者分數,79分或者知識掌握率達到79%;或者一些其他維度的總結,比如邏輯思維能力比較強、閱讀的磨煉技巧比較好、學習動力哪方面稀缺。他們做了降維,本來很復雜的學習狀態這樣說出來,相對比較容易實現。但如果要做到具體告訴你,哪些知識點掌握、哪些知識點沒掌握,這個難度就高很多了。
關於學習路徑推薦的話,很多題庫類的軟體,知識點學完之後,會給一些題目推薦,但真正實現路徑推薦的很少很少。路徑推薦也是很核心的,有20個知識點沒掌握,先學哪個知識點,後學哪個知識點,學習順序是非常關鍵的,必須遵循循序漸進的原則,哪些知識點是前提知識點,哪些知識點是後續知識點,隨機給你知識點去學習的話不能起到最好效果。真正到了練或學的環節,推薦什麼樣的視頻,先推視頻還是先推文字講義,推簡單題、中等難度題還是復雜題目,都需要根據學生實際情況來決定。
剛才只是舉了幾個例子,具體涉及到背後的演算法、整個系統跟學習內容的結合以及整個教學流程的實現,中間很多環節必須要打通,形成一個閉環,才能對最終的結果負責。
辛濤:我的研究領域是教育和心理學的測量和評價。我個人的學術觀察,基本上在現代這領域是兩個類型。一個是心理測量領域,有一套成熟的方法,包括早期的IRT(Item Response Theory)和現在的ADT。另外一個是人工智慧檢測。心理測量系統,是一小群人在做;人工智慧化是大的方向,現在是顯學,給大家提供了明顯的可能性。重要的是,那些背後的演算法,能夠在企業里真正實現出來。現在可能很多演算法已經在那兒了,大體上路徑是通的。
自適應學習基本上是把學習和評價聯動起來了。因為,要自適應學習,必須有一個系統隨時看到學生學到什麼程度,這個完全是評價。但是,評價完了之後有一個新的呈現。這一塊現在已經有一些很成熟的一些東西了,但不是一時半時可以說得特別具體的。
我做教育的測量和心理測量,人工智慧那塊我不熟。但是,從教育測量角度來說,在自適應學習和新技術結合之前,很大一塊還是自適應考試,CAT(computer adaptive test)。系列化產生一個CAT變成了一個自適應學習的過程。總的來說,使用最簡單、最機械化的方法,連續的CAT實際上是可以破解一個學習過程的。
測評本身經歷了好幾個階段,通常用三個應用介詞表示。
accessment to learning and teaching;
現在國家倡導的,accessment for learning and teaching,測評要對學習和教學有幫助;
跟信息化結合,accessment as learning and teaching,它是學習提供的完全融合的一個環節。
王楓:什麼樣的自適應學習系統才是真正的高級自適應學習系統?在中國的落地到底是怎麼樣才能真正落地?我在馬博士的基礎上想補充一點。
自適應系統如果一定要分級,也可以簡單分一下。一種最基礎的系統是基於規則的,比如說埋點。一個學生做10道一元二次方程題目,我預先埋好了,你做錯了,立馬給你推五道一元一次方程題目、五道因式分解題目。這個是埋點埋好了,這是規則,預先由老師或公式設置好了。
但這個規則有用性是非常有限的,因為每個學生不一樣,A學生是因為一元一次方程不會,B學生可能是因式分解不會,C學生可能連小學的乘法快速運算都不會,這個沒法預先直接埋點准備好。
所以自適應系統真正到了更高級一點的話,一定是真正通過大數據、根據演算法模型來分析學生的學習數據,匹配下一步應該學什麼。
在中國,自適應學習有效應用於教學有三個前提條件。做到這三點,自適應學習在中國的教育裡面前途無限。
好的產品。必須要有針對中國本土化的自適應學習產品,把它開發出來。像ALEKS系統的確演算法不錯,但裡面連一套國內的高考題都沒有,家長不會讓小孩子用這樣的系統,因為直接影響應試目標。真正本土化開發的話,沒有一成不變的演算法,世界上最好演算法就是沒有開發出來的。教育非常復雜,每個學科不一樣。比如數學後台有強大的關系,先行後續關系;英語沒達到數學這么強的相關性,但演算法是一樣可以應用的。
好的學生、家長、老師。有了好的產品,首先學生應該真正投入進去學習。像Ryan Baker教授講的,學生如果隨便學一下,再好的系統也沒用。第二,家長得督促孩子學習。第三,老師非常重要。老師應該做有價值的事情,比如給學生做個性化的輔導答疑,給學生針對性的講解,組織學習活動小組,鼓勵學生發揮創造能力,領導能力的培養。
學校以點帶面。學生大部分時間都在學校裡面學習。如果學校里最基本的、有效的在線教學產品都不應用的話,其實是有問題的。但是改變絕對不是簡單的行政命令可以解決的。一個好的產品,一定是從點到面,逐步推廣。自適應學習,更適合有明確目的的學習,像應試教育這塊可以做得更好。所以學校可以應用進去。
胡祥恩:我覺得大家做自適應也好、因材施教也好,比較好的例子大家可以看一看。教育這個領域有多大,自適應概念就該有多寬。所以說,實驗室裡面有很多小的做得非常非常好的東西,只是沒有到市場上面去,有很多非常非常巧妙的演算法、一些東西。你會發現很多歐洲的、美國的實驗室做的system,我每次看了都有種,自己是坐井觀天的感覺。
怎麼看待人工智慧在教育中的應用?
胡飛芳:AlphaGo跟master,谷歌做了一個非常好的廣告,人工智慧在某些方面可以做得非常好。但是,我現在給你們講另外一個谷歌自己不會去說的例子,但這也是事實。2008年、2009年的時候,谷歌推出一個免費產品,用各種搜集到的數據,預測美國的流感發展趨勢。開始時很成功,預測跟實際發生的情況很相似。但到2015年,他自動撤回去了,不再提供預測。因為在2012跟2013年預測的時候,預測結果跟實際情況相差非常遠。
這說明像這種不確定性的問題,人工智慧還有非常大的局限性。一旦有不確定的數據,就有噪音。數據量很大時,大數據可能產生大噪音。怎樣使噪音下降?2015年一個哈佛教授的研究團隊在谷歌的基礎上,用谷歌的數據去做同樣的預測。他用了什麼呢?就是用了模型,實際上模型在很多時候降噪是很有用的,用模型去預測,而不完全是人工智慧的方式去預測。結果,他做出來的預測基本都比較准。
人工智慧相對比較成功的,是比較確定的問題,所謂的確定是不管有多少種可能性,還是一個確定的東西。而流感很多時候是完全不確定的因素。
教育其實很多時候也是不確定的。同樣一個人,現在讓他回答這個問題,他可能思路清楚地回答出來;過了一個小時後,即使是同樣類型的問題,按道理他應該回答出來,結果他回答不出來。這是說,實際上有很多因素在干擾的時候,人工智慧的功能是不是會減少一點。把模型跟人工智慧加在一起,會彌補人工智慧在某些方面的弱點,這樣會更好。
怎樣促進商界和學界的交流,更好地把學界已經有的一些成果,運用到市場上來?
胡祥恩:教育產業應該是一個最大的產業,教育產業事實上是一個知識產業鏈。到目前為止,很多人認為自己要做一整套系統而在美國汽車業,最賺錢的是供應商,是做輪胎、做玻璃的。一旦標准化之後,一個人如果螺絲釘生產得最好,他就能夠養活幾家人、幾代人。
到目前為止,美國推的就是教育標准化,教育內容的標准化、教育技術的標准化。比如說97年的時候,就說怎麼樣把內容標准化,你做的東西我可以用。我只是做整個教育知識產業鏈裡面一個小塊,做得很好。教育整個的產業鏈,有可能發揮特別特別技巧的那些小的公司,就能夠在這個產業鏈裡面生存、可以做得很好。第一個是要標准化,第二個要理解整個教育是一個產業鏈。

❷ 站在「大數據」的台風口,石油行業能起飛嗎三分鍾帶你全面了解

加大油氣勘探開發力度、保障國家能源安全是當前面臨的迫切任務。但隨著優質資源的不斷開發,剩餘資源開采難度越來越大,成本越來越高,迫切需要創新技術提升油氣勘探開發效率和效益。在大數據、人工智慧( artificial intelligence,AI)、5G、雲計算、物聯網等技術推動下,油氣田的智能化水平將會越來越高,這既是油田降本提質增效的有效途徑,也是油氣技術發展規律的必然趨勢。

1、大數據技術定義

2012年興起的「大數據」潮流,讓「Big Data」這個IT圈子裡的名詞一下風靡了各個行業。雖然大數據的重要性得到了大家的一致認同,但是對大數據的理解卻眾說紛紜。大數據是一個抽象的概念,除去數據量龐大這一特徵,大數據還有一些其他的特徵,這些特徵決定了大數據與「海量數據」和「非常大的數據」這些概念之間的不同。

高德納分析員Doug Laney曾於2001年在一次演講中指出,數據增長有3個方向的挑戰:數量(volume),即數據多少;速度(velocity),即資料輸入、輸出的速度;種類(variety),即多樣性,這3方面的特徵即大數據最先提出的3V模型。2011年,在國際數據公司(IDC)發布的報告中,大數據被定義為:「大數據技術描述了新一代的技術和架構體系,通過高速採集、發現或分析,提取各種各樣的大量數據的經濟價值。」大數據的特點可以總結為4個V,即volume(體量浩大)、variety(模態繁多)、velocity(生成快速)和value(價值巨大但密度很低)。這種4V定義得到了更廣泛的認同,指出了大數據最為核心的問題,就是如何從規模巨大、種類繁多、生成快速的數據集中挖掘價值。

2、大數據技術的發展

大數據是人工智慧的血液,當前大數據、雲計算、人工智慧以及區塊鏈技術之間的關系密不可分,也被稱作數據智能。比如,先進的工業互聯網,其中既有區塊鏈技術也有大數據技術,還有雲計算技術,三者合成一體,又衍生出了人工智慧和物聯網的概念。

在大數據基礎上的人工智慧,目前已進入數據智能的深度學習時代,其快速發展引起了 社會 和產業的顛覆性變化。從大數據和人工智慧技術全行業的發展來看,目前美國仍處於領先地位,中國緊隨其後,且具有趕超趨勢。中國在人工智慧相關的論文發表總數和高引論文數量實現對美國的超越,但在人工智慧理論發展和技術方向的引領方面美國還占據支配地位。

3、大數據技術流程

大數據處理的關鍵技術流程主要包括:數據採集、數據預處理(數據清理、數據集成、數據變換等)、海量數據存儲、數據分析及挖掘、數據的呈現與應用(數據可視化、數據安全與隱私等)。

4、大數據的核心演算法

大數據的核心演算法可以分為監督學習(有標簽)和無監督學習(無標簽)兩大類,其中:

監督學習分為回歸和分類:即給定一個樣本特徵,希望預測其對應的屬性值,如果是離散的,那麼這就是一個分類問題,反之,如果是連續的實數,這就是一個回歸問題。無論是分類還是回歸,都是想建立一個預測模型,給定一個輸入,可以得到一個輸出。不同的只是在分類問題中,是離散的;而在回歸問題中是連續的。

無監督學習分為聚類和降維:即如果給定一組樣本特徵,我們沒有對應的屬性值,而是想發掘這組樣本在維空間的分布,比如分析哪些樣本靠的更近,哪些樣本之間離得很遠,這就是屬於聚類問題。如果我們想用維數更低的子空間來表示原來高維的特徵空間,那麼這就是降維問題。聚類也是分析樣本的屬性,事先不知道樣本的屬性范圍,只能憑借樣本在特徵空間的分布來分析樣本的屬性。這種問題一般更復雜。而常用的演算法包括 k-means (K-均值),GMM(高斯混合模型)等。

5、大數據在油氣勘探開發領域的應用

目前大數據技術在地質分析、測井解釋、地震解釋、甜點預測、地質建模、油藏模擬、鑽井、壓裂、採油、產能預測等方面均開展了大量 探索 性研究,收到了良好的效果。但是目前,大數據與油氣行業相關領域的融合還處於起步階段,面臨來自數據、演算法和地下未知因素的諸多挑戰。未來在大數據、人工智慧、5G、雲計算、物聯網等技術推動下,油氣田的智能化水平將會快速發展,這既是油氣技術發展規律的必然趨勢,也是油田降本提質增效的有效途徑。在發展的過程中,智能油氣田建設需要油氣勘探開發與大數據、人工智慧、雲計算以及區塊鏈等技術的深度融合,進而催生一批油氣田領域的顛覆性技術,解決油氣勘探開發的技術需求,提升油氣田勘探開發的經濟和 社會 效益。

下期將向您詳細解讀大數據在油氣行業的具體應用 )。

註:本文部分參考資料來源如下:

李陽,廉培慶,薛兆傑,等.大數據及人工智慧在油氣田開發中的應用現狀及展望[J].中國石油大學學報(自然科學版),2020,44(4):1-11

Gantz J,Reinsel D.Extracting Value from Chaos. IDC iView Report,2011

Team O R. Big Data Now:Current Perspectives from O』Reilly Radar.Sebastopol:O』Reilly Media,2014

Grobelnik M. Big data tutorial. http://videolectures.net/eswc2015grobelnik big data/,2012

Walters, R. J., Zoback, M. D., Baker, J. W. 2015. Characterizing and Responding to Seismic Risk Associated With Earthquakes Potentially Triggered by Fluid Disposal and Hydraulic Fracturing. Seismol. Res. Lett. 86 (4): 1–9. https:// doi.org/10.1785/0220150048.

周松蘭.中美歐日韓人工智慧技術差距測度與比較研究[J].華南理工大學學報 ( 社會 科學版),2020,22(2):10-22.

HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2016,18: 1527-1554.

LECUN Y,BOTTOU L,BENGIO Y,et al.Gradientbased learning applied to document recognition[J].Proceedings of IEEE,1988,86( 11) : 2278-2324.

BENGIO Y, SIMARD P,FRASCONI P.Learning longterm dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2) :157-166

❸ 你所不知道的Learning Analytics

在介紹Learning Analytics之前,我先簡單介紹一下我自己,以及開這個專欄在初衷。

我是哥倫比亞大學教育學院人類發展系學習分析專業的在讀研究生,這是我在這個項目的第三個學期,眼下正值期末,按常理說是大家最繁忙的階段。然而對我來說,整個學期都處於繁忙狀態,於是也就對期末這種敏感字眼麻木了。寫這篇文章,倒像是給自己一個放鬆的機會。

這周二上午,我跑到學校的學生組織事務部(簡稱OSA)去尋求一次與部門負責人Ade(此處為化名)見面的機會,為了這次會面,我等了四個多月。我跟Ade是認識的,因為我正在為另一個社團工作,所以定期匯報工作的時候會跟她有交流,而且平日里見了面都會寒暄幾句。但是我們都心知肚明,有一個話題,是我們之間必須面談的。導火索追溯到今年八月初,我收到了另一個社團的錄取信,這個社團是偏向人文的社團,順利的拿到了學校的認證和撥款。我在這個社團中擔任宣傳部長,也是主幹成員之一。而我自己苦心經營的學習分析社團(Teachers College Learning Analytics,之後簡稱TCLA),卻拿到了一封拒信。按照規定,每個官方社團中有三位主幹成員是官方工作人員,而擔任官方的社團工作人員的學生,只能任職於一個社團。由於TCLA未獲得認可,所以我開始擔任另一個社團的主幹成員。

收到拒信,是整個TCLA的成員沒有想到的,因為我們有整個專業的導師和學生做支撐,擔任我們社團的指導老師不僅是我們專業的導師,也是學院圖書館的主管,身兼多職,是一位非常有分量老師。外加我們專業與大數據接軌,緊跟高新技術潮流,這些都讓我們覺得,被學校認證是理所應當對事兒。然而就是這種理所應當,讓我們無法接受這樣的拒信。我發郵件給OSA,希望獲得一次面談的機會,一方面詢問一下被拒的原因,另一方面也抱著一線生機,爭取能夠說服他們認可TCLA。然而,我一次次的發郵件約時間,一次次的被推遲。八月份發郵件的時候,OSA說十月後再受理。十月份發郵件的時候,OSA說十一月。一而再再而三,眼看著這學期要結束了,我跑到了OSA的辦公室,要求當天必須與Ade見面面談關於TCLA的相關事宜。終於,讓我等到了。

雖然見面了,但是情況並不樂觀。Ade再次拒絕認可TCLA,還提出了兩個主要原因。第一,Learning Analytics這個專業太新,而且群體很小,看不到可持續性,所以並不看好。第二,TCLA設計的活動主要是Workshop和Seminar,相當於是授課形式,這會與學院的正課產生競爭關系。Ade說,如果想要得到認可,那麼TCLA需要在下學期繼續以非正式社團的名義舉辦活動,證明給OSA看,這是可持續的,那到明年秋季開學,或許可以拿到認證。就這樣,我一心想要在畢業前看著TCLA拿到認可的願望,就這么破滅了。

這個專業不被看好,Ade絕不是第一個這樣表示的。而我們專業的每一個人,都在為這個專業的未來發展努力著。我們是這個專業的第二屆學生,第一屆的畢業生,大部分的畢業動態是不錯的。有的去了高盛,有的在為聯合國做相關項目,有的繼續留校讀博。我們這個專業,每一屆只有十來個人,也是這個學院最小的專業,最小的學生群體。然而我們從來沒有因為我們的渺小,而把夢想變得渺小。我們一直希望,能有更多人,了解我們專業,學習我們專業,傳播我們專業。這一直是我們專業每個人的使命,也是我創建這個專欄的初衷。因為我始終堅信,這個專業,會在未來發展中,發揮著很重要的作用,是推動人類學習能力的重要基石。

說到這里,你大概對這個項目的目前狀況有了了解,接下來,我就要向你介紹一下,什麼是Learning Analytics。

The world's first graate program in Learning Analytics

Data about learning and learners are being generated today on an unprecedented scale. The fields of learning analytics (LA) and ecational data mining (EDM) have emerged with the aim of transforming this data into new insights that can benefit students, teachers, and administrators. As one of world's leading teaching and research institutions in ecation, psychology, and health, we are proud to offer an innovative graate curriculum dedicated to improving ecation through technology and data analysis.

上圖是來自哥倫比亞大學教育學院學習分析項目的官方介紹,簡言之,學習分析就是通過教育大數據對學習者的學習行為和學習能力進行分析,以幫助學習者獲得更加個性化的學習方式。廣義來講,學習分析是將大數據、統計、機器學習、教育理論、心理學、認知科學、人工智慧等融合在一起的一種研究方式。

維基網路給出的定義是:

Learning analytics  is the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs. A related field is ecational data mining.

哥倫比亞大學教育學院是世界上第一個創建Learning Analytics專業的學校,當然,隨著大數據的崛起,其他學校也陸續開展了這方面研究。比如,Learning Analytics專業的創始人 Ryan S. Baker 在現任學校賓夕法尼亞大學也創建了相似的專業,叫Learning Science & Technologies。此外,還有美國東北大學、波士頓大學、卡內基梅隆大學、加州大學伯克利分校、喬治城大學、悉尼大學、愛丁堡大學、薩斯喀徹溫大學等。馬里蘭大學還專門開設了Learning Analytics Research Group。

不難發現,這個專業是一個實打實的跨學科的教育專業,要將各個領域的知識融合在一起,才能修煉成合格的教育數據科學家。Frederick Hartwig曾在他的著作Exploratory Data Analysis中說過,一個合格的研究人員應該學習盡可能多的知識和方法來協助他探索數據中各種變數的深刻含義,並與理論和社會科學緊密結合起來。

這是一個由跨學科主宰社會的時代,跨學科研究可以在一定程度上是研究更具說服力和可信度。我曾經與一位在亞馬遜的教育研究員有過交流,她明確指出,做教育方向的數據分析,如果沒有教育背景和實踐經驗,單憑數據分析的結果說話,是非常可怕的,因為有的時候,數據結果並不合情合理。跟她對話後,更讓我堅信學習分析的重要性,也在一定程度上認識到跨學科的重要性。

試想,一門課上,教授用一種教學方式來教三十個學生,有的學生可以很快吸收知識,有的學生卻學的非常吃力。期末考試,有的學生拿了滿分,有的學生剛剛及格。拿滿分的學生就是優秀的學生嗎?剛及格的學生就是學渣嗎?答案是否定的。因為在個性化學習中,每個學生的學習能力、學習方式、學術背景及接受程度是不同的,如果單單通過考試成績來評價一個學生,是對學生的不公正。那麼,如何來發掘學生的學習能力,以最有效的方式幫助學生達到最佳學習效果呢?這就是學習分析專業所探索的事情。具體問題具體分析,才是教育的本質。

數據挖掘和數據分析的成果是為研究人員在分析學習者的學習能力時提供最有效的參考,但是,數據的結果並不一定是真正的結果。

以上,是對Learning Analytics 專業的簡單介紹,如果你對此專業感興趣,歡迎留言進行交流。文中僅代表個人觀點,歡迎指正與溝通。

本專欄不定期更新,由於本身日常課程和工作比較多,所以長期不更新也是有可能的。

閱讀全文

與ryanbaker大數據相關的資料

熱點內容
大創項目文件大小不能超過多少 瀏覽:558
胎兒8周b超多少數據正常 瀏覽:492
mac1085版本qq下載 瀏覽:586
java下載壓縮文件 瀏覽:107
如何獲得文件夾里所有的文件名 瀏覽:944
廣州阿拉伯語文件翻譯多少錢 瀏覽:828
數據亂飛怎麼辦 瀏覽:540
360隱藏u盤文件 瀏覽:869
pdf文件無法列印其他正常 瀏覽:126
拍照文件掃描轉換word 瀏覽:724
電腦啟動後桌面文件不見了 瀏覽:535
圖文游戲編程作品說明如何寫 瀏覽:197
qq瀏覽器wifi不安全衛士 瀏覽:449
文件在用戶卻不顯示在桌面 瀏覽:124
delphi獲取操作系統版本 瀏覽:722
linux定時任務執行腳本 瀏覽:787
招商銀行app怎麼查電費 瀏覽:739
手機代碼文檔翻譯軟體 瀏覽:676
青華模具學院和ug編程哪個好 瀏覽:736
怎麼改網站關鍵詞 瀏覽:581

友情鏈接