① 大數據分析與金融,有哪些結合點
大數據分析讓銀行更准確知道誰是自己的用戶,大數據分析讓證券市場更容易得到想要的信息,大數據分析也會放保險從業者更容易去找到客戶。
大數據分析與金融的結合,就是與銀行、證券、保險等行業的結合應用,現階段就是找到最需要有效幫助的人,同樣大數據分析能夠獲得對未來布局的信息,讓公司決策准確有效。
② 大數據技術在金融行業有哪些應用前景
經過多年的發展與積累,金融領域已具備海量數據,正在步入大數據時代的初級階段版,因權此金融大數據正受到銀行、保險、證券企業的追捧。隨著大數據技術的完善,大數據在金融領域發揮的作用將越來越大,在應用廣度和深度上還有很大的進步空間,金融大數據發展勢頭強勁。
金融領域具備海量數據,非常適合與大數據技術相結合,因此金融大數據正受到銀行、保險、證券企業的追捧。通過互聯網、雲計算等信息技術來處理海量數據,從而更好地了解客戶、創新服務。
目前,金融行業主要如信用卡、防欺詐、電子支付業務等,對大數據有比較大的需求。因此,隨著金融行業大數據應用的加強已經深入,前瞻產業研究院預計,到2017-2022年,金融行業大數據應用市場規模年均復合增長率為55.21%,到2022年,中國金融行業大數據應用市場規模為497億元。
不過,金融大數據還面臨著不少阻礙,如內部各業務間存在信息孤島現象、外部大數據整合難度大等。相信在大數據起到更大效果時,金融大數據的推進不會太大問題,未來前景廣闊。
③ 大數據金融專業就業前景怎麼樣
就目前的市場發展趨勢,和熱度來看,建議你可以學習一下大數據。我們可以從兩個方面來看一下大數據的發展趨勢。
④ 大數據技術在金融行業有哪些應用前景
具體來說,比如說實時欺詐檢測,大數據徵信,社交媒體的輿情分析等等。就個人經驗來說,用機器學習去檢測用戶的信用記錄,監管貸款的風險,增強風險控制等方面都很有可行性。其他因為不太了解金融這里指的是什麼,如果說指商業,bus之類的,那應用前景簡直太多了。最後聽說一個CS PhD學長,被我認識的一個長輩忽悠去金融領域做量化交易模型,寫了一個模型一個小時賺數十萬,現在已經移民英國。大數據的意義是什麼。有一個觀點,就是如果我能掌握這個世界上每一個粒子的狀態,我能夠預測未來。其實萬事萬物都是有跡可循的,只不過影響因素太多,人類的認知能力有限,所以就要提煉特徵,提取主要的影響因素。
⑤ 大數據金融就業前景
如果你是合格的大數據開發技術人員,那當然有高薪的工作,並不是說你學完了之後就一定有高薪工作的,那需要看你學習怎麼樣。
目前大數據培訓相對其他培訓項目要好就業,
因為其他語言還是技能培訓都是有一定的市場基礎的,
而大數據在最近兩年才大力發展,並且在各領域蔓延,
因此所產生的人才缺口巨大,而在企業中真正對大數據技能比較強力的技術人才,又特別的少;
應用越來越廣,技術人才卻產生較慢,剛培訓的人員,只能適應基本的軟體操作和理論基礎;
還達不到企業要完成復雜業務的技術需求;
所以培訓入門快,拿薪資快,但只是一時,進入企業,不努力學習是跟不上發展與用人需求的
未來3至5年,中國需要180萬數據人才,但截至目前,中國大數據從業人員只有約30萬人。同時,大數據行業選才的標准也在不斷變化。初期,大數據人才的需求主要集中在ETL研發、系統架構開發、數據倉庫研究等偏硬體領域,以IT、計算機背景的人才居多。隨著大數據往各垂直領域延伸發展,對統計學、數學專業的人才,數據分析、數據挖掘、人工智慧等偏軟體領域的需求加大。
大數據主要就業方向
印發《促進大數據發展行動綱要》,系統部署大數據發展工作。《綱要》明確提出了七方面政策機制,其中第六條就是加強專業人才培養,建立健全多層次、多類型的大數據人才培養體系。目前,大數據主要有三大就業方向:大數據系統研發類、大數據應用開發類和大數據分析類。具體崗位如:大數據分析師、大數據工程師等。
「大數據分析師是用適當的統計分析方法對收集來的大量數據進行分析,強調的是數據的應用,側重於統計層面內容會多一些。比如做產品經理,可以通過數據建立金融模型,來推出一些理財產品。而大數據工程師則側重於技術,主要是圍繞大數據平台系統級的研發,偏開發層面。」華迎教授介紹:「我們把大數據分析在業務中使用的流程總結起來,分為以下幾個步驟:數據獲取和預處理、數據存儲管理、數據分析建模、數據可視化。在這個應用流程中,畢業生可以根據自己的興趣和特長,在不同的環節選擇就業。
⑥ 大數據金融是什麼
大數據金融是指集合海量非結構化數據,通過對其進行實時分析,可以為互聯網金融機構提供客戶全方位信息,通過分析和挖掘客戶的交易和消費信息掌握客戶的消費習慣,並准確預測客戶行為,使金融機構和金融服務平台在營銷和風控方面有的放矢。
大數據金融的內容:基於大數據的金融服務平台主要指擁有海量數據的電子商務企業開展的金融服務。大數據的關鍵是從大量數據中快速獲取有用信息的能力,或者是從大數據資產中快速變現的能力,因此,大數據的信息處理往往以雲計算為基礎。
(6)大數據金融方向擴展閱讀:
大數據金融的弊端:
1、大數據對個人信息的大量獲取導致了隱私和安全問題。
隨著個人所在或行經位置、購買偏好、健康和財務情況的海量數據被收集,再加上金融交易習慣、持有資產分布、以及信用狀況以更細致的方式被儲存和分析,機構投資者和金融消費者能獲得更低的價格、更符合需要的金融服務,從而提高市場配置金融資源的能力。
但同時,金融市場乃至整個社會管理的信息基礎設施將變得越來越一體化和外向型,對隱私、數據安全和知識產權構成更大風險。就個人隱私而言,大數據的隱私問題遠遠超出了常規的身份確認風險的范疇。
2、大數據技術不能代替人類價值判斷和邏輯思考。
大數據是人類設計的產物,大數據的工具(如Hadoop軟體)並不能使人們擺脫曲解、隔閡和成見,數據之間相關性也不等同於因果關系,大數據還存在選擇性覆蓋問題。
例如,社交媒體是大數據分析的重要信息源,但其中年輕人和城市人的比例偏多,還存在大量由程序控制的「機器人」賬號或「半機器人」賬號。波
士頓的 StreetBump應用程序為統計城市路面坑窪情況,從駕駛員的智能手機上收集數據,可能少計年老和貧困市民較多區域的情況;「谷歌流感趨勢」曾高估了 2012年流感發病率。這說明依賴有缺陷的大數據可能給政府決策造成負面影響,還可能加劇社會不公。
3、基於大數據開發的金融產品和交易工具對金融監管提出挑戰。
大數據的使用正在改變金融市場,也需要改變監管市場的方式,以保證市場參與者負責地使用大數據。
例如,2010年5月的「閃電暴跌」(flashcrash)令道瓊斯工業平均指數 突然大跌,美國監管部門認為是高頻交易造成了快速拋售引發的更多拋售。大數據中的一個數據點出錯就能導致「無厘頭暴跌」。
監管機構限制大數據技術的使用,或是對其使用進行直接干預,其潛在風險是巨大的,應鼓勵業界對更復雜的技術乃至更大數據的利用。
⑦ 大數據技術在金融行業有哪些應用前景
雖然大數據的概念已經熱炒了數年,但我國依然處於市場的早期階段。近年來,全國各地積極發展大數據產業,相關政策明確提出推動大數據發展和應用。預計未來5到10年,金融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《中國大數據金融行業市場前瞻與投資戰略規劃分析報告》顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
⑧ 大數據金融前景
一、大數據金融的含義
大數據金融指的是將巨量非結構化數據通過互聯網和雲計算等方式進行挖掘和處理後與傳統金融服務相結合的一種新的金融模式,它是一種相比於傳統金融更加透明、參與度更加廣泛、體驗更好、效率更高的新興金融模式。
廣義的大數據金融包括整個互聯網金融在內的所有需要依靠發掘和處理海量信息的線上金融服務。也就是說,我們所提到的不管是P2P還是眾籌等互聯網金融行為,其核心都是大數據金融,因為互聯網金融如果沒有大數據的支撐,就成了一個單純意義上的平台。而互聯網金融得以在互聯網誕生之日起,到今天人類社會進入「PB(1024TB)」時代,歷年來數據信息的記錄與積累,以及雲計算技術的不斷成熟,使得大數據金融在互聯網誕生數十年後終於可以一展風采。持續高增長的電子交易數量和網路零售服務,使得依賴於商務需求的金融體系能夠在線上尋求到數據支撐。
狹義上的大數據金融指的是依靠對商家和企業在網路上歷史數據的分析,對其進行線上資金融通和信用評估的行為。我們可以很直觀地看到,最初在互聯網平台上尋求到金融服務的商家和企業,一類是在互聯網平台上留下了一定數量的歷史信用信息的商家或企業,另一類是在相關產業之內積累了相當程度的歷史信用的商家或企業。而從未在線上或實際交易中產生過信息的全新商家和企業在沒有建立足夠的交易基礎之前是不太容易通過單純的信用方式進行這種融資的。無論是廣義還是狹義的定義,大數據金融的核心內容都是對商家和客戶的海量數據進行收集、儲存、發掘和整理歸納,使得互聯網金融機構能夠得到客戶的全方位信息,掌握客戶的消費習慣並准確預測客戶行為。這樣的做法不管是作為評級認定標准,還是作為目標客戶進行營銷宣傳的理由,都能夠使互聯網金融機構對自己的風險進行控制,對自己的發展策略進行更詳盡的規劃。作為大數據的使用者,互聯網金融機構必須為數據的採集和使用付出成本,如果不是同時作為數據的收集方,進行原始數據的採集和整理,那就要向數據來源的第三方支付使用費用。
二、大數據金融的發展機遇
1.互聯網企業自身轉型需要。隨著電商競爭愈演愈烈,最初的零售領域與支付領域的競爭已逐漸延伸到了整個供應鏈的其他環節,包括物流、倉儲,自然也包含了最重要的金融服務。盡快發展自身原有業務引申出來的大數據金融服務,有利於建立用戶黏性。積極地進行專業化、個性化定製金融服務對未來電商領域的全方位競爭有著十分重要的意義。
2.實體產業需要大數據金融的支持。大數據金融通過各種方式給市場帶來了活性,整個產業鏈的效率提升、資源配置優化是有目共睹的,虛擬經濟與實體產業的下一步發展,必定都離不開大數據金融的支持。打通上下游環節,使資金更有效率,無論是對電商的未來發展還是對傳統金融的突破都大有益處。
三、大數據金融面臨的挑戰
大數據使得互聯網金融得到空前的發展,同時也帶來了一系列的問題。原來的互聯網非金融機構從事類金融服務,給傳統的金融體系帶來了一定的沖擊,如何協調和處理好這兩者之間的關系,成了未來大數據金融發展至關重要的環節。未來,大數據金融的發展必將基於傳統金融行業與互聯網大數據技術的進一步融入和整合,這就要求金融服務與互聯網及大數據的關聯程度必須不斷加強。
1.必須推進金融服務與社交網路的進一步融合。使金融業的數據來源能夠脫離早期呆板滯後的提交、審批、盡職調查等來源方式。要使金融信息的獲取渠道能夠直接深入金融服務本身,就要利用互聯網、社交媒體等新的數據來源,從多渠道獲取實時客戶信息和市場信息,充分了解自標客戶的需求和資質情況,建立更高效的客戶關系與更完整的客戶視圖,並利用社交網路對忠實客戶和潛在客戶進行精準營銷和定製化金融服務的方案。
2.傳統金融機構要進行互聯網、大數據金融的轉型,必須要處理好與數據服務商的競爭、合作關系。目(下轉80頁)(上接76頁)前,線上互聯網企業由於占據極大的平台優勢,壟斷從交易發生到交易結算的各個環節以及這其中產生的各項數據信息,使傳統金融企業想要介入十分困難。要想在實際過程中重新組建自己的數據平台,從時間方面來看,已經處於劣勢。因此,傳統金融機構與數據服務商開展戰略合作是比較現實的選擇。
四、大數據金融的發展趨勢
大數據技術還遠未成熟,而大數據金融帶給我們的變化已足以讓人驚訝,大數據金融的未來也是一片光明。未來,隨著大數據技術的不斷成熟,大數據金融的發展也必將進一步改變人們的生活生產方式。
1.大數據金融跨界發展。由於互聯網技術的開放性,信息不對稱將顯著減少,金融在日後也許就不是少數傳統的金融從業者的專屬領域了。從供應鏈要求的技術來看,互聯網企業、軟體企業都紛紛加入大數據金融的開發中,大數據進入跨界發展的趨勢越來越明顯,金融業的競爭也將由於未來力量的沖擊變得更加激烈。這也可能導致將來金融業內部混業經營的進一步發展,銀行金融與非銀行金融的界限、證券公司與非證券公司之間的界限都可能變得非常模糊。
2.大數據金融服務多樣化。大數據金融從電商平台發展出來以後,不斷地整合發展傳統產業,從零售的日用百貨發展到電子產品,再到汽車,甚至是大宗商品交易,未來也會發展到房地產、醫療等方面,日常的金融服務也將不斷地擴展,綜合化、社會化、日常化。
3.大數據金融服務專業化。隨著涉足領域越來越廣泛,大數據金融必將產生專業化趨勢,產生更明確的產業鏈分工,根據不同的環節或者是不同的行業,其服務內容都將產生一系列的變化。同時隨著發展水平的提高,必定會有高要求的定製化服務、個性化服務要求,未來的大數據金融企業必將以客戶為中心,高度精準與定位客戶需求來制定專業的個性化服務。總而言之,大數據金融憑借高度數據化的管理和運作模式,在互聯網發展的今天有著不可替代的地位,將來大數據金融必將是金融業發展的中流砥柱,它將進一步滲透到各行各業的每一個角落,不斷地促進金融生態的發展。在不久的將來,每個人都將能夠切身體會到大數據金融帶來的變化,都能從大數據金融的發展中獲得益處。
⑨ 大數據在金融領域的應用
大數據在金融領域的應用如下:
1. 概述
近年來,隨著大數據、雲計算、區塊鏈、人工智慧等新技術的快速發展,這些新技術與金融業務深度融合,釋放出了金融創新活力和應用潛能,這大大推動了我國金融業轉型升級,助力金融更好地服務實體經濟,有效促進了金融業整體發展。
在這一發展過程中,又以大數據技術發展最為成熟、應用最為廣泛。
從發展特點和趨勢來看,「金融雲」快速建設落地奠定了金融大數據的應用基礎,金融數據與其他跨領域數據的融合應用不斷強化,人工智慧正在成為金融大數據應用的新方向,金融行業數據的整合、共享和開放正在成為趨勢,給金融行業帶來了新的發展機遇和巨大的發展動力。
2. 大數據技術在金融行業中的典型應用
大數據技術在金融行業中有著廣泛的應用, 下面將介紹大數據技術在銀行、證券、保險等金融細分領域中的應用。
3. 金融大數據應用面臨的挑戰及對策
大數據技術為金融行業帶來了裂變式的創新活力,其應用潛力有目共睹,但在數據應用管理、業務場景融合、標准統一、頂層設計等方面存在的瓶頸也有待突破。
⑩ 大數據技術在金融行業有哪些應用前景
大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到回10年,金答融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。