① 全球大數據產業現狀及投資前景預測
全球大數據產業現狀及投資前景預測
縱觀國內外,大數據已經形成產業規模,並上升到國家戰略層面,大數據技術和應用呈現縱深發展。面向大數據的雲計算技術、大數據計算框架等不斷推出,新型大數據挖掘方法和演算法大量出現,大數據新模式、新業態層出不窮,傳統產業開始利用大數據實現轉型升級。人工智慧、深度學習、工業物聯網、虛擬現實、智慧城市等領域的發展推動大數據的應用普及。新興行業、傳統行業圍繞數據服務體系,已經形成了傳統行業數據平台、互聯網數據平台及行業資訊類數據平台。以數據應用為基礎的新一代數據服務企業,在促進主體行業發展的同時,同樣促進了行業內中小企業的發展。
1
大數據發展的產業環境分析
美國政策層面發力推動大數據應用發展。政府推出了一系列的公開數據計劃,在健康、能源、氣候、教育、金融、公共安全等領域開放數據和信息,促進創新的突破,從而推動經濟發展。美國致力於擴大聯邦數據公開范圍和受用對象的范圍,尤其擴大高價值數據資產,探討如何進一步擴展收集和分析工業競爭和創新相關的數據。
為了進一步挖掘聯邦政府數據的應用潛力,促進創新與社會進步,2016年1月美商務部發起了一項旨在使政府數據更加容易使用的數據易用性計劃(CDUP)。5月,白宮發布《聯邦大數據研發戰略計劃》,為未來的大數據研發列出7條戰略計劃,旨在建立大數據創新生態系統,加強數據分析能力,從大量、多樣、實時的資料庫中提取有效信息,服務於科學研究、經濟增長與國家安全。2016年,美國應用大數據預測選舉也引起世界關注,大數據應用開始為廣大公眾所關注,數據的真實性及數據安全成為關注焦點。
英國以數據共享為根本積極推動大數據平台建設。新建哈璀(Hartree)大數據中心,投資1.13億英鎊。新建艾倫圖靈研究所,投資4200萬英鎊,開展大數據科學與技術的研究。投資1.5億英鎊建立第一個國家級老年痴呆症研究所。建立應對重大疾病新的數學研究中心。英國成立大數據戰略委員會,發布《開放數據戰略白皮書》,統一政府數字平台,開通政府部門開放數據通道,設立數據開放共享獎勵基金,2018年還將出台「數據保護通則」的專門法規,旨在開發利用數據資源產生更大的商業價值和經濟增長。
瑞典啟動國家重點科研計劃(NFP)大數據專項(Big Data, NFP75)。2017年正式啟動,計劃投入資金2.5億瑞士法郎,從2017年至2020年為期4年。該專項主要分為三個板快:大數據信息技術:大數據分析基礎性研究、大數據基礎設施構架、資料庫和計算中心;大數據相關社會及法律問題:大數據涉及對社會經濟發展的影響預測(如對貿易、商務模式、人員交通及物流的影響)、個人隱私及空間的保護及相關的社會倫理和法律問題及對策等;大數據應用:對大數據在交通、健康、災害及社會風險控制、能源轉型領域的應用展開基礎性研究。瑞士國家重點科研計劃由瑞士聯邦政府推出,目的是對關系瑞士社會經濟發展全局的重要領域展開基礎性研究並提出對策建議。
我國各地政府積極為大數據發展營造環境。2014年、2015年「大數據」首次寫入國家《政府工作報告》。在2015年3月5日舉行的兩會中,李總理在政府工作報告中提到,制定「互聯網+」行動計劃,推動移動互聯網、雲計算、大數據、物聯網等與現代製造業結合,促進電子商務、工業互聯網和互聯網金融健康發展,引導互聯網企業拓展國際市場。
當前,《國家大數據戰略及行動綱要(2015-2025)》徵求意見稿完成。國家自然基金委、科技部支持了大量大數據研究項目;北京市、上海市、天津市、重慶市、廣東省、貴州省等制定了大數據發展規劃,多地開始建數據產業基地,天津擬打造國家數據聚集區,與北京、河北聯合建「京津冀大數據走廊」;重慶計劃將大數據培育成重要戰略性新興產業,加快建設兩江雲計算產業園,陝西西咸新區、湖北武漢光谷、貴州貴安新區等地提出要設國家級大數據基地。
上海成立數據交易中心。2016年4月1日,上海數據交易中心掛牌成立,上海數據交易中心是經上海市人民政府批准,上海市經濟和信息化委、上海市商務委聯合批復成立的國有控股混合所有制企業,承擔著促進商業數據流通、跨區域的機構合作和數據互聯、公共數據與商業數據融合應用等工作職能。交易中心以國內領先的「技術+規則」雙重架構,創新結合IKVLTP 六要素技術,採用自主知識產權的虛擬標識技術和二次加密數據配送技術,結合面向應用場景的交易規則,將在全面保障個人隱私、數據安全前提下推動數據聚合流動。
上海將圍繞「資源、技術、產業、應用、安全」融合聯動這一條主線,聚焦「政府治理和公共服務能力提升、經濟發展方式轉變」兩個方面,創新「交易機構+創新基地+產業基金+發展聯盟+研究中心」五位一體大數據產業鏈生態發展布局,力爭打造國家數據科學中心、亞太數據交換中心和全球「數據經濟」中心,形成集數據貿易、應用服務、先進產業為一體的大數據戰略高地。
2
大數據產業的行業需求預測
企業需求
傳統企業的大數據轉型。隨著互聯網化進程的不斷推進,在改變了用戶消費習慣的同時,眾多傳統企業面臨了一系列必須面對的問題,其中一條核心主線就是基於已有數據的使用以及對於用戶數據的採集。對於有效利用數據,很多傳統企業開展了試探性的使用和分析,並逐步結合互聯網平台,使數據形成閉環。地產、製造、金融企業已經在逐步建立互聯網銷售平台,其實平台的本身並不是去加大產品銷售量,而是通過平台對傳統營業網點、銷售渠道的信息進行有效管理,從而建立可供判斷或分析的數據之用。
更好的吸納客戶的潛在需求,更快的適應市場變化,從而帶動新一輪研發的生成或變革。而此類企業的成長點,市場化性質,及企業性質將區別於傳統企業,而走上新業態、新模式的道路。包括車聯網、互聯網金融、汽車電商、房產電商,都已經出現了苗頭。對於大數據產業的發展,傳統企業轉型是區別於其他領域的卻又獨樹一幟的重要組成部分。
平台企業的大數據戰略。對於相對IT投入較少,IT基礎較為薄弱的領域,比如零售、餐飲、服裝、農業、出版等行業,企業不會去自建雲計算及大數據平台,更多的則是會依靠專業化的數據服務企業或是數據服務平台來滿足數據分析的需求。行業數據服務平台架構的初衷,主要是用雲服務方式解決上述行業的信息化建設及運維需求。
目前上海類似的行業數據平台不少,建築業的築想網、醫葯業的安捷力等都是在行業垂直領域專業度很高的企業,而且較之通用、普適性的平台,此類平台的發展更具有和行業發展的共存性和相通性,是大數據產業發展過程中一個非常重要的組成部分。
互聯網企業大數據規模化發展。互聯網傳媒是推動企業接觸大數據服務中一個相對快速的行業,傳媒由傳統的單向被動模式轉變成為雙向互動模式,在吸引了用戶群體的同時也通過定義用戶肖像,來推動精準營銷。精準營銷使企業享受了新媒體帶來的最實惠的成果,也為企業帶來了一份較之傳統傳媒更加具體的數據分析報告。
同樣在互聯網領域,無論是社交平台、團購還是移動應用,在其互聯網平台構建的過程中,收集、匯總、分析數據是非常重要的一個環節。通過甄別不同年齡段、性別、愛好的用戶群,來精準定位推送不同的消息,而在這些精準定位的背後,則是每天幾十甚至幾百TB的數據增長量和分析量,可以說,有了互聯網才推進了大數據產業的發展。
熱點關聯領域需求
金融大數據。中國金融信息服務產業存在產業鏈分布廣、市場空間巨大的特點,但與此同時,又表現出產業集中度非常低的現狀。因此,未來必將經歷大量的並購整合,最終出現幾家龐大的IT服務機構。傳統金融服務領域的人才資源、市場能力、技術及研發方面在全國范圍內都具有不可比擬的優勢,產業環境、配套資源都非常成熟。
在金融信息服務產業鏈中,已經擁有了證券、期貨、金融期貨、科技技術等交易所以及鋼鐵、有色金屬等各類生產物資交易所,擁有像安碩信息、萬得資訊、金仕達、銀聯、普蘭金融、春雨供應鏈等一大批具有行業代表性的龍頭企業,還有一批以經爾緯為代表的掌握大數據技術及具有資源整合能力的公司。金融領域的資料庫建設比較完善且都為結構化的數據,隨著人工智慧、深度學習等新興技術的介入,大數據將顯示出大有可為的趨勢,對基於大數據分析的成果的需求也將越加旺盛。
交通大數據。一是智能交通,在交通和環境信息的基礎上,實現交付跟蹤,工作流程監督,和人力資源管理。在智能交通系統中,如果車輛使用了該應用,就可以監測到相關數據。智慧城市首席信息官可以使用從物聯網信息庫中獲取運輸和交通過程的信息。這將大大改善交通運輸,建立服務型的支付方式,而不是簡單的付款程序,如時間收費制度。
智慧城市的核心價值是根據交通數據來建立對公民有益的基礎政策。智能交通也產生了很多新的商業創新。二是自動駕駛,目前GOOGLE藉助大數據及車載技術和感測器,以及高級輔助駕駛系統、軟體、地圖數據、GPS和無線通信數據等,實現了無人駕駛,可以預見,不久的將來,大數據在自動駕駛領域的應用越來越被看好。
新媒體大數據。大數據引領的新媒體已經顛覆了國外數個傳統媒體,比如停刊的美國《新聞周刊》以及德國出現戰後最大的紙媒倒閉潮等。以眼球經濟為基礎的傳統媒體展示型廣告已快速向以數據為基礎的網路媒體精準型廣告進行轉變。百視通和東方明珠的整合已經打造了全國最大的千億級別的傳媒上市公司。在電信、廣電及互聯網領域海量數據處理具有豐富的研發及應用經驗,所用技術涵蓋了分布式計算、海量數據處理、流計算、機器學習及神經網路等,重點關注於互聯網廣告投放技術、效果監測、目標受眾行為分析及精準細分、廣告智能匹配等。未來幾年,新媒體大數據將越來越受到業界的追捧。
製造業大數據。利用大數據推動信息化和工業化深度融合,研究推動大數據在研發設計、生產製造、經營管理、市場營銷、售後服務等產業鏈各環節的應用,研發面向不同行業、不同環節的大數據分析應用平台,選擇典型企業、重點行業、重點地區開展工業企業大數據應用項目試點,積極推動製造業網路化和智能化。最近幾年,從國家到地方政府,日益重視大數據在製造業特別是高端智能製造領域的應用,例如《中國製造2025》。從這個意義上來說,大數據在製造業應該發揮的潛力巨大,釋放空間和餘地很大。
3
大數據投資前景預判
人工智慧等新興領域價值潛力巨大
智能化領域及智慧城市建設。大數據與深度學習、人工智慧交叉的領域成為資本追逐的焦點。例如日本提出建成超智能社會,實現ICT技術在全社會的深度融合應用。日本第五期科技計劃提出建設SOCIETY 5.0(超智能社會),基於以人工智慧、物聯網、大數據為代表的ICT技術,研究開發先進機器人、超級計算機、感測器、高速通信等技術,實現網路空間與現實空間高度融合的信息物理系統,運用大數據促使社會生活各領域實現高度智能化,推進經濟發展與社會進步。日本超智能社會的提出,受到諸多大數據公司和風投的關注。類似,我國各地正在大力推進的智慧城市建設中的與新興技術交叉應用的環節,大數據將有著重要的一席之地。大數據與智慧交通、綠色環保、民生安全等領域的融合,在人工智慧、深度學習的帶動下,大數據應用商機無限。
支撐分享經濟智能平台被看好
分享經濟在短時間內崛起並成為全球現象,規模和影響力都呈現出指數增長。2014年12月,普華永道發布了預測報告指出全球分享經濟的規模將從2015年的150億美元增長到2025年的3350億美元。在全球經濟努力復甦的背景下,分享經濟模式的新穎性和巨大發展潛力受到各國政府的高度支持,甚至提升到了國家戰略的高度。大數據、雲計算、人工智慧將構建支撐分享經濟的智能平台,而這些平台將日益彰顯其經濟價值,從而能夠靈活、便利、及時、安全、經濟地連接不同需求的陌生人,從而在分享經濟的新模式中,大數據起到了核心作用,佔領核心的地位,其價值不言而喻。
② 國外大數據網站有哪些
國外大數據網站:來
1、The Internet map
全世源界各大網站的可視化,網站都用圓形表示,圓的大小表示網站的訪問量。
2、Kaspersky Cyberthreat real-time map
由防毒軟體提供,卡巴斯基製作的 Cybermap ,這個作品能實時展現現在世界上有多少起伺服器攻擊事件。
3、http://aworldoftweets.frogdesign.com/
③ 國外知名大數據分析平台
數據是一個很大概念,其中包含很多維度數值記錄,不是平常認為的數據那麼簡單,上網搜索億美的數據就會出現。
④ 大數據的產生與發展現狀研究
摘 要:大數據的產生給未來信息技術帶來新的機遇與挑戰。大數據對數據處理的有效性、實時性提出了更高要求,需要根據大數據的特點對當前數據處理技術實施變革,從而形成更有益於大數據採集、存儲、處理、管理、分析、共享的新興技術。本文從大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。
關鍵詞 :大數據 物聯網 信息處理 海量計算
一、大數據的產生與發展現狀
隨著物聯網、雲計算等信息技術的飛速發展,大數據技術(Big Data)也越發進入人們的視線。大數據是用傳統方法或工具很難處理或分析的數據信息。目前,人們對大數據的理解還不夠全面和深入,關於大數據的含義也沒有一個統一的定義。亞馬遜大數據科學家John Rauser認為:大數據是超過任何一台計算機處理能力的龐大數據量。Informatica 的中國區首席顧問但彬指出:大數據是海量數據與復雜類型的數據的結合。而維基網路則把大數據定義成諸多大而復雜的、難以用當前資料庫處理的數據集合。
大數據研究受到國內外學術界和工業界的廣泛關注,已成為當今信息時代全世界討論的熱點。2008年,Nature雜志就推出大數據專刊,計算社區聯盟也在同一年發表了報告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,報告闡述了解決大數據問題所需的關鍵技術以及所面臨的挑戰。美國奧x政府於2012年3月在白宮網站發布了《大數據研究和發展倡議》,提出了通過收集、處理海量、復雜的數據信息,從而提升能力,加快科學和工程領域的創新步伐,轉變學習教育模式,強化美國本土的安全」。2011年1月,微軟公司同惠普公司合作開發了一系列能夠提升生產力,同時提高決策速度的設備。此外,歐盟委員會也提出駕駁大數據浪潮的戰略思路,日本發布的《面向 2020 的 ICT綜合戰略》也提出需要構造大量豐富的數據基礎。
近年來,我國也積極開展對大數據的研究。2011年10月,工信部確認京滬深杭等 5 城市為「雲計算中心」試點城市。2012年6月,中國計算機學會青年計算機科技論壇也舉辦了「大數據時代,智謀未來」學術報告研討會。大數據及其科學研究方法涉及應用領域很廣,並將與國計民生密切相關的科學決策、金融工程以及知識經濟領域緊緊接合。
二、大數據的特點
目前,企業界和學術界都一致認為,大數據具有4個「V」特徵,即:容量(Volume)、種類(Variety)、速度(Velocity)和至關重要的`價值(Value)。
(1) 容量(Volume)巨大。海量的數據集從TB 級別提升到PB 級別。
(2) 種類(Variety)繁多。大數據數據源有多種,數據格式和種類不同於以前所規定的結構化數據范疇。
(3)價值(Value)密度低。如視頻的例子,在不間斷連續監控的過程中,可能有意義的數據僅有一兩秒。
(4)速度(Velocity)快。包含大量實時、在線數據處理分析的需求1秒鍾定律。
三、大數據應用的領域
大數據產業的發展將推動全球經濟由粗放型向集約型轉變,這將對提升企業整體競爭力和政府監管能力具有意義深遠的影響。
商業作為大數據的重要應用領域。沃爾瑪公司通過對消費者購物行為等一系列非結構化數據的分析,了解不同顧客的購物習慣,公司從所銷售的數據進行分析,從而選出適合在一起搭配出售的商品;淘寶也針對買家開設了大數據平台,為客戶量身打造了一整套完善的網購體驗產品。
大數據在金融業也起到了至關重要的作用。美國Equifax公司利用大數據技術,通過對其的資料庫中與財務有關的記錄海量信息進行索引處理和交叉分享,從而得到客戶的個人信用等級,以推斷出客戶的支付需求與能力。
隨著大數據在醫療與生命科學研究過程中的廣泛應用和不斷擴展。2010年,中國公布的《十二五規劃》指出:要重點建設國家級、省級和地市級三級醫療衛生信息平台,建設電子病歷和電子檔案兩個最為基礎的資料庫。各級醫院也將在醫療信息倉庫、數據中心等領域加大投入,醫療數據信息的存儲將愈加被關注,醫療信息中心的關注焦點也將由傳統的計算領域轉為存儲領域。
除此之外,大數據在製造業領域也有著廣闊的應用。製造業企業積累了廣泛的數據信息,在開展對業務數據進行技術管理的同時,企業需要通過大數據處理技術來幫助決策者從資料庫儲存的海量信息中找到有價值的信息,並且對其進行分析處理,從而增強決策的正確性、規避風險。
四、大數據所面臨的挑戰
大數據技術使人們能夠更好地利用之前不能使用的各個數據類型,找出被忽略的信息,促進企業組織更加高效、智能。但隨著對大數據研究的不斷深入,人們也更加意識到當大數據技術向人們敞開「方便之門」的同時,也帶來了眾多的挑戰:
(1)大數據需要更為專業化的管理技術人才。
(2) 大數據的合理利用需要解決容量大、類別多和時效性高的數據處理問題。
(3)大數據的利用對信息安全提出了更高要求。
(4)大數據的集成與管理問題。
這些挑戰已成為關繫到未來大數據發展的重要因素,同時也成為未來引領大數據發展的推動力。
五、結束語
大數據已經逐步滲透到人們工作生活的諸多領域中,對於大數據的研究也在不斷的深化。本文針對大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。大數據的發展還處於初級階段,還有更為廣闊的空間需要人們不斷開拓,如何合理地利用大數據、更加高效地處理大數據來為人們服務仍需要廣大研究者不斷地研究和探索。
參考文獻:
[1]劉智慧,張泉靈.大數據技術研究綜述[J].浙江大學學報,2014,46(6):957- 972.
[2]嚴霄鳳,張德馨.大數據研究[J].計算機技術與發展,2013,23(4):168-172.
[3]劉俊.基於大數據流的Multi-Agent系統模型研究[J].計算機技術與發展, 2007,17(5):166-169.
⑤ 大數據資料庫有哪些
問題一:大數據技術有哪些 非常多的,問答不能發link,不然我給你link了。有譬如Hadoop等開源大數據項目的,編程語言的,以下就大數據底層技術說下。
簡單以永洪科技的技術說下,有四方面,其實也代表了部分通用大數據底層技術:
Z-Suite具有高性能的大數據分析能力,她完全摒棄了向上升級(Scale-Up),全面支持橫向擴展(Scale-Out)。Z-Suite主要通過以下核心技術來支撐PB級的大數據:
跨粒度計算(In-Databaseputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP puting)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。
問題二:大數據使用的資料庫是什麼資料庫 ORACLE、DB2、SQL SERVER都可以,關鍵不是選什麼資料庫,而是資料庫如何優化! 需要看你日常如何操作,以查詢為主或是以存儲為主或2者,還要看你的數據結構,都要因地制宜的去優化!所以不是一句話說的清的!
問題三:什麼是大數據和大數據平台 大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據平台是為了計算,現今社會所產生的越來越大的數據量。以存儲、運算、展現作為目的的平台。
問題四:常用大型資料庫有哪些 FOXBASE
MYSQL
這倆可算不上大型資料庫管理系統
PB 是資料庫應用程序開發用的ide,根本就不是資料庫管理系統
Foxbase是dos時代的產品了,進入windows時代改叫foxpro,屬於桌面單機級別的小型資料庫系統,mysql是個中輕量級的,但是開源,大量使用於小型網站,真正重量級的是Oracle和DB2,銀行之類的關鍵行業用的多是這兩個,微軟的MS SQLServer相對DB2和Oracle規模小一些,多見於中小型企業單位使用,Sybase可以說是日薄西山,不行了
問題五:幾大資料庫的區別 最商業的是ORACLE,做的最專業,然後是微軟的SQL server,做的也很好,當然還有DB2等做得也不錯,這些都是大型的資料庫,,,如果掌握的全面的話,可以保證數據的安全. 然後就是些小的資料庫access,mysql等,適合於中小企業的資料庫100萬數據一下的數據.如有幫助請採納,謝!
問題六:全球最大的資料庫是什麼 應該是Oracle,第一,Oracle為商業界所廣泛採用。因為它規范、嚴謹而且服務到位,且安全性非常高。第二,如果你學習使用Oracle不是商用,也可以免費使用。這就為它的廣泛傳播奠定了在技術人員中的基礎。第三,Linux/Unix系統常常作為伺服器,伺服器對Oracle的使用簡直可以說極其多啊。建議樓梗多學習下這個強大的資料庫
問題七:什麼是大數據? 大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托・邁爾-舍恩伯格及肯尼斯・庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法[2])大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
說起大數據,就要說到商業智能:
商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。
商業智能作為一個工具,是用來處理企業中現有數據,並將其轉換成知識、分析和結論,輔助業務或者決策者做出正確且明智的決定。是幫助企業更好地利用數據提高決策質量的技術,包含了從數據倉庫到分析型系統等。
商務智能的產生發展
商業智能的概念經由Howard Dresner(1989年)的通俗化而被人們廣泛了解。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。
商務智能是20世紀90年代末首先在國外企業界出現的一個術語,其代表為提高企業運營性能而採用的一系列方法、技術和軟體。它把先進的信息技術應用到整個企業,不僅為企業提供信息獲取能力,而且通過對信息的開發,將其轉變為企業的競爭優勢,也有人稱之為混沌世界中的智能。因此,越來越多的企業提出他們對BI的需求,把BI作為一種幫助企業達到經營目標的一種有效手段。
目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。這里所談的數據包括來自企業業務系統的訂單、庫存、交易賬目、客戶和供應商資料及來自企業所處行業和競爭對手的數據,以及來自企業所處的其他外部環境中的各種數據。而商業智能能夠輔助的業務經營決策既可以是作業層的,也可以是管理層和策略層的決策。
為了將數據轉化為知識,需要利用數據倉庫、線上分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什麼新技術,它只是ETL、數據倉庫、OLAP、數據挖掘、數據展現等技術的綜合運用。
把商業智能看成是一種解決方案應該比較恰當。商業智能的關鍵是從許多來自不同的企業運作系統的數據中提取出有用的數據並進行清理,以保證數據的正確性,然後經過抽取(Extraction)、轉換(Transformation)和裝載(Load),即ETL過程,合並到一個企業級的數據倉庫里,從而得到企業數據的一個全局視圖,在此基礎上利用合適的查詢和分析工具、數據挖掘工具、OLAP工具等對其進行分析和處理(這時信息變為輔助決策的知識),最後將知識呈現給管理者,為管理者的決策過程提供支持。
企業導入BI的優點
1.隨機查詢動態報表
2.掌握指標管理
3.隨時線上分析處理
4.視覺化之企業儀表版
5.協助預測規劃
導入BI的目的
1.促進企業決策流程(Facilitate the Business Decision-Making Process):BIS增進企業的資訊整合與資訊分析的能力,匯總公司內、外部的資料,整合成有效的決策資訊,讓企業經理人大幅增進決策效率與改善決策品質。
......>>
問題八:資料庫有哪幾種? 常用的資料庫:oracle、sqlserver、mysql、access、sybase 2、特點。 -oracle: 1.資料庫安全性很高,很適合做大型資料庫。支持多種系統平台(HPUX、SUNOS、OSF/1、VMS、 WINDOWS、WINDOWS/NT、OS/2)。 2.支持客戶機/伺服器體系結構及混合的體系結構(集中式、分布式、 客戶機/伺服器)。 -sqlserver: 1.真正的客戶機/伺服器體系結構。 2.圖形化用戶界面,使系統管理和資料庫管理更加直觀、簡單。 3.具有很好的伸縮性,可跨越從運行Windows 95/98的膝上型電腦到運行Windows 2000的大型多處理器等多種平台使用。 -mysql: MySQL是一個開放源碼的小型關系型資料庫管理系統,開發者為瑞典MySQL AB公司,92HeZu網免費贈送MySQL。目前MySQL被廣泛地應用在Internet上的中小型網站中。提供由於其體積小、速度快、總體擁有成本低,尤其是開放源碼這一特點,許多中小型網站為了降低網站總體擁有成本而選擇了MySQL作為網站資料庫。 -access Access是一種桌面資料庫,只適合數據量少的應用,在處理少量數據和單機訪問的資料庫時是很好的,效率也很高。 但是它的同時訪問客戶端不能多於4個。 -
問題九:什麼是大數據 大數據是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 大數據首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機理解自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從大入手,大是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的......>>
問題十:國內真正的大數據分析產品有哪些 國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層――數據報表層――數據分析層――數據展現層
第二維度:用戶級――部門級――企業級――BI級
1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。
Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。
BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。
2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。
Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份――商業智能,所以在大數據處理方面的能力更勝一籌。
3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完......>>
⑥ 國內外有什麼好的數據平台
現在國內很多人,包括所謂的磚家和業內人士所講的大數據都是指「數據抓取」和「數據分析統計」,最後為「決策」作依據,其實這是對大數據錯誤的認識和思維。
大數據的難點不在於技術,而在於應用。這幫人完全把未來信息化社會想像的過於簡單,完全沒有想像力的人出來討論和定義大數據概念。真正的大數據其實是國家層面的戰略,大數據結構是扁平式(也稱分布式),這就決定了大數據主要的運用是國家化,社會化的特點。所以,大數據不僅僅是在生活、工作中簡單孤立的抓取、分析、統計或者決策依據,更是對接未來信息化社會物聯網,行政司法監管,軍事經濟等資源優化和集中管理、調配,這將有助於進一步解放生產力,節省地球有限的人類生命資源。建議你可以看一下陳龍劍的《互聯網+和大數據這樣實現偉大復興的中國夢》一文去看看。
另外,所謂的國內外好的數據平台目前來說也是不存在的,值得一提的是,國內即將啟動的ITM大數據平台,我個人認為是非常好的,這個平台就是中國未來的產業大數據平台。
⑦ 大數據分析工具
1、日誌管理工具Splunk(http://www.splunk.com/)
<img src="https://pic4.mg.com/_b.png" data-rawwidth="1894" data-rawheight="902" class="origin_image zh-lightbox-thumb" width="1894" data-original="https://pic4.mg.com/_r.png">
面向使用的人群主要有:
<img src="https://pic1.mg.com/_b.png" data-rawwidth="841" data-rawheight="366" class="origin_image zh-lightbox-thumb" width="841" data-original="https://pic1.mg.com/_r.png">
Splunk的功能組件主要有Forwarder、Serch Head、Indexer三種,然後支持了查詢搜索、儀表盤和報表(效果真不是吹的,很精緻呀),另外還支持SaaS服務模式。其中,Splunk支持的數據源也是多種類型的,基本上還是可以滿足客戶的需求。
<img src="https://pic1.mg.com/_b.png" data-rawwidth="554" data-rawheight="389" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic1.mg.com/_r.png">
目前支持Hadoop1.x(MRv1)、Hadoop2.x(MRv2)、Hadoop2.x(Yarn)三個版本的Hadoop集群的日誌數據源收集,在日誌管理運維方面還是處於一個國際領先的地位,目前國內有部分的數據驅動型公司也正在採用Splunk的日誌管理運維服務。
<img src="https://pic3.mg.com/_b.png" data-rawwidth="834" data-rawheight="396" class="origin_image zh-lightbox-thumb" width="834" data-original="https://pic3.mg.com/_r.png">
可視化部分效果也是很不錯的
<img src="https://pic2.mg.com/_b.png" data-rawwidth="554" data-rawheight="260" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic2.mg.com/_r.png"><img src="https://pic3.mg.com/_b.png" data-rawwidth="554" data-rawheight="259" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic3.mg.com/_r.png"><img src="https://pic4.mg.com/_b.png" data-rawwidth="554" data-rawheight="258" class="origin_image zh-lightbox-thumb" width="554" data-original="https://pic4.mg.com/_r.png">
2、EverString(Home - EverString)
<img src="https://pic1.mg.com/_b.png" data-rawwidth="479" data-rawheight="159" class="origin_image zh-lightbox-thumb" width="479" data-original="https://pic1.mg.com/_r.png">
everstring主要是通過大數據的預測分析建模為企業提供業務和客戶推薦的SaaS服務,獲取和積累了兩個數據信息資源庫,一個行業外部的資源庫(公有SaaS收費形式),一個行業自己內部的資源庫(私有),然後再通過機器學習和人工智慧的方法對數據進行相應行業或是領域的建模,最後得到一個比較不錯的結果,優化於人工可以得到的結果,而且Everstring也成為了初創大數據公司裡面估值很高的公司。
3、國外的Tableau(http://www.tableau.com/)
可視化界面還是做得不錯的
<img src="https://pic2.mg.com/_b.png" data-rawwidth="660" data-rawheight="407" class="origin_image zh-lightbox-thumb" width="660" data-original="https://pic2.mg.com/_r.png">
<img src="https://pic1.mg.com/_b.png" data-rawwidth="1272" data-rawheight="754" class="origin_image zh-lightbox-thumb" width="1272" data-original="https://pic1.mg.com/_r.png">
可是對於價格還是按需掏腰包吧。
<img src="https://pic3.mg.com/_b.png" data-rawwidth="1603" data-rawheight="847" class="origin_image zh-lightbox-thumb" width="1603" data-original="https://pic3.mg.com/_r.png">
4、國內的大數據魔鏡分析工具(魔鏡—行業領先的大數據可視化分析平台 6.0)
魔鏡的大數據平台主要提供的還是數據清洗和ETL、Hadoop數據倉庫以及一系列的數據分析服務,可提供的數據分析視圖工具類型豐富:
<img src="https://pic1.mg.com/_b.png" data-rawwidth="1256" data-rawheight="688" class="origin_image zh-lightbox-thumb" width="1256" data-original="https://pic1.mg.com/_r.png">
目前國外還時候有很多從事大數據業務的公司,像協助美國CIA找到本拉登的Panlatir,可以預測未來的Recorded Future和,6sence,ETL方向的Etleap,CRM系統方向的Salesforce等,如果說到可視化工具,它應該是大數據處理流程裡面的最後展現環節。
國內有個不錯的鏈接,實屬干貨呀。
盤點:55個最實用大數據可視化分析工具(http://tech.it168.com/a2015/0318/1712/000001712286.shtml)
就寫到這里吧,分析的不到位的地方,還請指出,謝謝。
補充
----------------------
剛有人問,哪些是目前國內可以用得到的一些數據科學家分析的工具,正好公司有同事是這方面的專家,請教了下,如下:
1、SPSS:主要用於數據建模工作,功能穩定且強大,能夠滿足中小企業在業務模型建立過程中的需求。
2、BitDeli
BitDeli是今年11月份在舊金山成立的一家初創公司。它能衡量出任何使用Python腳本的應用程序的指標,聯合創始人兼CEO Ville Tuulos告訴Derrick,腳本可以很簡單,也可以很復雜——甚至未來可以延伸到機器學習。不過和「重量級選手」Hadoop相比,BitDeli自認為是一個輕量級的Ruby。
3. Continuuity
Continuuity是前Yahoo首席雲架構師Todd Papaioannou和Facebook HBase的工程師Jonathan Gray的心血結晶,Continuuity想讓所有的公司都能像Yahoo、Facebook一樣運營。該團隊創建了一個大數據工具,它可以簡化Hadoop以及HBase集群的復雜性,而且包含一系列開發套件,旨在幫助程序員開發大數據應用,該平台採用Hadoop技術,允許開發者在防火牆內外對大數據應用軟體進行部署、擴展和管理。公司聯合創始人兼首席執行官Todd Papaioannou表示,作為一家初創企業,Continuuity正在試圖掀起下一波大數據應用軟體的浪潮,公司所提供的工具能夠大大提高處於開發狀態的軟體不同部分與階段的擴展性。
4. Flurry
Flurry是移動應用統計分析領域里的標桿,正因為在行業內獨特的優勢,它每年的營收高達一億美元。Flurry擁有非常全面的功能,不僅僅只是幫助開發者構建移動應用,它還幫助開發者分析所有的數據,進而產生更大的效益。其實數據也支撐了該公司的廣告網路,他們通過數據分析可以幫助開發者推送准確的廣告到需要的用戶面前。不過單純從移動應用的數據統計功能來看,Flurry絕對是處於領先地位。其功能模塊設置合理,分析維度全面,分析流程也易於理解。
⑧ 面對大數據中國和美國的數據中心有什麼不同
沒什麼不同,只能說應用的領域和接觸的長短不同吧。如果還想知道更多的大數據問題,ITjob網有大數據的相關介紹,博客和論壇也有大數據的討論和觀點,你可以去看看。下面給你粘貼下大數據在中國和美國的應用時間和領域。希望能幫到你。
大數據在中國的發展相對比較年輕。2012年,中國政府在美國提出《大數據研究和發展計劃》並且批復了「十二五國家政務信息化建設工程規劃」,總投資額估計在幾百億,專門有人口、法人、空間、宏觀經濟和文化等五大資源庫的五大建設工程。我國的開放、共享和智能的大數據的時代才真正大面積的開始。
而美國政府將大數據視為強化美國競爭力的關鍵因素之一,把大數據研究和生產計劃提高到國家戰略層面。2012年3月,美國奧巴馬政府宣布投資2億美元啟動「大數據研究和發展計劃」,這是繼1993年美國宣布「信息高速公路」計劃後的又一次重大科技發展部署。美國政府認為大數據是「未來的新石油與礦產」,將「大數據研究」上升為國家意志,對未來的科技與經濟發展必將帶來深遠影響。
Marketsand Markets公布的最新報告顯示,2013年至2018年,全球大數據市場的年復合增長率將為26%,從2013年的148.7億美元增長至463.4億美元。
⑨ 大數據技術的國內外現狀
大數據由於其異構性和異質性的特徵,提高大數據格式轉化的效率成為了增加回大數據答技術應用價值的必經途徑,而提升大數據計算能力的關鍵在於提高數據的轉移速率,這就要求技術人員要及時對大數據進行整合與處理。
在大數據的處理中,數據的重組與錯誤數據的再利用都是有效提高大數據應用價值的措施。在應用實踐研究方面,目前大數據在實際中的研究應用主要體現為數據管理、數據搜索分析和數據集成。其中,數據管理主要用於大型互聯網資料庫和新型數據儲存模型與集成系統中,而數據搜索分析則多用於模型社交網路中,數據集成則通過將不同來源不同作用的數據進行整合從而開發出整體資料庫新的功能,目前正處於研究發展的起始階段。
⑩ 大數據室如何應用的有什麼大數據平台的推薦呢
大數據如何應用到各個行業,需要根據企業需求進行定製化互聯網解決方案。應用的行業也非常的廣泛的,有工程機械行業、紡織行業等等。工業大數據平台可以選徐工信息漢雲這類有硬實力和方案定製軟實力的品牌。隨著5G快速普及,徐工信息漢雲也將幫助更多企業釋放物聯網大數據的潛能,帶領行業一起跨入5G時代。