導航:首頁 > 網路數據 > 大數據品牌運營

大數據品牌運營

發布時間:2023-01-13 11:53:50

Ⅰ 什麼的大數據運營

兩年大數據行業新提出了一個概念,叫大數據運營,所謂的BigData Operation,目前在各個行業中均處在蓬勃發展的階段,就筆者來看,BDO代表了一種大數據的未來方向,以筆者所從事的網路游戲行業來看,具有比較大的發展空間,下面科多大數據來給

Ⅱ 大數據對於當前企業的運營有哪些幫助

進入新的歷史時期以來,收集更加豐富的數據是擺在各個企業面前的主要任務,一旦企業不能收集范圍更廣的信息,那麼企業管理決策則極易出現更多的失誤。企業要重視內部數據信息管理工作,保證當前數據管理與大數據時代特點相一致。第一,進入大數據時代以來,由於涌現出數不勝數的數據信息,因此如果傳統數據信息管理技術不能及時改變則極有可能影響大數據的應用,所以要求當前企業必須及時引進先進的軟體與硬體,才能推動大數據的普遍應用。第二,由於數據信息的海量出現,因此企業還需不斷提高數據信息的管理能力,要保證及時處理與加工得到的各種數據信息,要及時掌握當前最新數據。很多企業已經意識到信息數據的重要性,但因為不擁有先進的技術措施,各種數據信息還不能發揮應有的作用。第三,在企業管理決策過程中,雖然大數據發揮著不可替代的作用,但同時也需重視數據碎片的作用,一個企業要想取得成功則必須重視二種數據的應用,才能使二種數據相互協調,保證數據分析具有更高的科學性,進一步簡化分析過程,減輕工作人員的勞動強度。企業還需及時創新內部知識管理,要盡快引入新型知識管理模式。在實際運行中,知識管理其實就是數據的管理。企業在做出管理決策時,知識提取是一個不可缺少的過程,只有大力應用各種知識才能制訂最為合理的決策。當前由於大數據技術的影響,人們日益意識到知識的重要性,很多企業當前將建設現代化的知識管理模式放在重要位置,高度重視知識管理工作。同時企業也不能過分依賴大數據的應用,而忽略了主觀決策的重要性,要保證二者相互協調、相互促進,才能幫助企業做出正確。

Ⅲ 大數據對品牌營銷究竟有什麼用

九一數榜認為:對品牌數字資產的全面掌控能力

在數據驅動營銷的時代企業品牌應重新定義為「消費者意識中的感知與互聯網活躍內容的集合,而企業品牌在互聯網上活躍內容的集合就是企業品牌互聯網數字資產」。對任何一個企業品牌來說,它的域名、官方網站、logo、搜索引擎的品牌專區、網路新聞、網路圖片、官方微博、公眾號、直達號、貼吧、APP、小程序、H5、微視頻、網店等等,甚至是獎勵給用戶的積分,都屬於企業品牌互聯網數字資產的范疇。廣義上講,企業品牌互聯網數字資產則是企業在數字化經濟時代所擁有的核心競爭力資源,即是否能支撐企業持續發展、促進企業快速創新、實現企業品牌永續的能力。 品牌經理人能否全面掌握這些數據並能分析數據顯得尤為重要,全世界所有的資產,只有一個資產越用越有價值,它就是數據資產。因為它的產生和業務之間是若即若離的關系,你不用數據它就變成了一堆數字,如果你用,這個數字越多,對應的數字資產就越有價值。

在對品牌營銷數據的積累上,上市公司經過多年的品牌積累已經形成了品牌互聯網數字資產,它有賴於兩個維度的拓展:一是垂直縱深數據的收集,二是更為廣泛的全域數據的收集。企業需要把「泛數據」進行過濾、篩選、洗滌,從而才能找到最核心有效的數據進行運用,這就需要上市公司品牌經理人學會利用已有的品牌大數據資產(九一數榜)。

Ⅳ 電商企業是如何依靠大數據進行精準營銷的

信息大數據時代,電商企業採用信息技術來收集和儲存大量的消費者信息資源,並對其進行分析處理,來進行精準的市場定位,以及確定目標消費群體,為實施精準營銷做第一手准備。之後利用大數據平台對目標消費群體進行屬性分析、篩選、分類標記,建立用戶個性標簽,針對用戶的不同個性需求,提供精準的個性化產品和服務,實現線上廣告的精準投放。

電商企業想要做全局性和系統性的決策,不能僅憑大量的數據,還要加上商業分析,大數據與商業分析的結合才能稱得上是大數據精準營銷。在商業分析里,必須先了解市場,了解某個領域的消費者真正的需求;其次要了解行業,包括行業的特徵、要求和規則;最後才是懂企業的運營,把多個模塊和資源有序地整合起來,從而共同創造價值。這些具備後,用大數據進行適度輔佐,在商業的主導下,真正發揮大數據的作用。下面我們將用一個例子來說明:電商企業是如何依靠大數據進行精準營銷的。

項目背景:

年中大促期間,電商平台的護膚品各類品牌競爭激烈,某護膚品品牌想藉助大數據營銷平台完成兩款面膜的線上推廣。利用大數據平台的精準定向方式,針對全國18歲以上的女性進行線上廣告的推送,為活動網站引入高質量客流,促進消費者和品牌的深度互動。

投放方案

1、優選投放媒體

優選幾個國內主流媒體和與產品相關性高的高質量媒體,分別採用Banner、信息流和視頻貼片的廣告形式進行投放。通過平台一站式操作對這些媒體進行競價廣告投放。當用戶點擊廣告後對其進行標記。

2、MOB數據定向

通過MOB大數據,智能分析移動設備擁有者的屬性以及設備中的APP構成,鎖定女性用戶且安裝有美妝類APP的移動設備,針對這對這類設備進行全媒體廣告投放,對用戶進行廣告包圍,加深用戶印象,增加用戶購買意向。

3、重定向

標記活動落地頁到訪人群,當他們瀏覽有可競價廣告位的媒體時,發起追蹤投放,吸引對本廣告內容感興趣的訪客重新返回活動落地頁。

4、投放優化

通過投放反饋的數據,我們從這幾方面進行優化:

1、媒體平台優化,篩選出高點擊率媒體平台,排除低點擊率平台;

2、投放時段優化,排除低點擊率時段,集中投放在高點擊率時段;

3、素材優化,篩選出高點擊率素材並替換掉低點擊率素材。

投放效果

在本次的線上推廣中,小蜜蜂數據平台全程實時監測投放數據,其中18~24歲的女性訪客量佔比為50%;25~29歲的女性訪客量佔比為32%;30~34歲的女性訪客量佔比為18%。每位獨立訪客的付費比預期值要低20%,點擊量比預期值要高25%,到站轉化率超過預期值高15%。

此案例可看出電商企業借用大數據進行精準營銷可大大提高電商廣告的精準度和命中率,在減少交易成本的同時也提高了交易效率,大大提升了整體的電商服務水平,實現企業利益最大化。​​​

Ⅳ 大數據的運營模式包括哪些方面

數據市場銷售


該方式關鍵就是指將初始數據開展市場銷售,或是授權第三方應用已有數據。該方式在中國因為多種多樣緣故進度遲緩,海外關鍵在金融業用以個人信用分析等。


科學研究咨詢分析


該方式就是指企業(如顧問公司)根據已有數據、公布數據或第三方數據開展分析,得到行業分析報告或是一些特殊方位的匯報,並將匯報開展出售的方式。


服務平台


該方式出示服務平台專用工具的租賃,企業將已有數據導進其服務平台或運用服務平台專用工具導進第三方數據,並且用其出示的專用工具開展測算,再將數值取回來。該方式下,服務平台依照數據量和使用時間開展收費標准。該方式很有可能與第三方數據儲存相結合,針對客戶而言,將數據放到第三方資料庫房並應用其服務平台開展測算,比較方便快捷。


廣告宣傳等運用


根據將大數據開展分析和挑選,進而將廣告宣傳要求連接至DSP服務平台等,供即時競價等。


人工智慧技術開發設計


該運營模式關鍵根據大數據分析持續開展人工智慧技術商品的開發設計,如Google的無人駕駛等。該方式在中國運用仍較少。


第三方儲存


在該運營模式下,企業自身並不建造資料庫或是數據管理中心,只是立即將數據上傳入第三方開展儲存和管理方法,該方式針對企業的資本開支工作壓力較小。除此之外,大家注意到第三方儲存因為其在技術性和機器設備上的領跑性,能夠協助企業在節約項目投資的狀況下得到 不錯實際效果。


關於大數據的運營模式包括哪些方面,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅵ 大數據營銷知識點總結

一、走進大數據世界

大數據的特徵(4V):

1.  數據的規模性

2.   數據結構多樣性

3.   數據傳播高速性

4.   大數據的真實性、價值性、易變性;

結構化數據、半結構化數據、非結構化數據

大數據處理的基本流程圖

大數據關鍵技術:

1.  大數據採集

2.   大數據預處理

3.  大數據存儲及管理

4.   大數據安全技術

5.  大數據分析與挖掘

6.   大數據展現與應用

二、大數據營銷概論

Target 百貨客戶懷孕預測案例

大數據營銷的特點:

1.   多樣化、平台化數據採集: 多平台包括互聯網、移動互聯網、廣電網、智能電視等

2.   強調時效性: 在網民需求點最高時及時進行營銷

3.   個性化營銷: 廣告理念已從媒體導向轉為受眾導向

4.   性價比高: 讓廣告可根據時效性的效果反饋,進行調整

5.   關聯性: 網民關注的廣告與廣告之間的關聯性

大數據運營方式:

1.   基礎運營方式

2.   數據租賃運營方式

3.   數據購買運營方式

大數據營銷的應用

1.   價格策略和優化定價

2.   客戶分析

3.   提升客戶關系管理

4.   客戶相應能力和洞察力

5. 智能嵌入的情景營銷

6.   長期的營銷戰略

三、產品預測與規劃

整體產品概念與整體產品五層次

整體產品概念: 狹義的產品: 具有某種特定物質形態和用途的物體。

產品整體概念(廣義):向市場提供的能夠滿足人們某種需要的

                      一切物品和服務。

整體產品包含:有形產品和無形的服務                          

整體產品五層次:潛在產品、延伸產品、期望產品、形式產品、核心產品

 

大數據新產品開發模型:

1.   需求信息收集及新產品立項階段

2.  新產品設計及生產調試階段

3.  小規模試銷及反饋修改階段

4.   新產品量產上市及評估階段

產品生命周期模型

傳統產品生命周期劃分法:

(1)銷售增長率分析法

  銷售增長率=(當年銷售額-上年銷售額)/上年銷售額×100%

銷售增長率小於10%且不穩定時為導入期;

銷售增長率大於10%時為成長期;

銷售增長率小於10%且穩定時為成熟期;

銷售增長率小於0時為衰退期。

(2)產品普及率分析法

    產品普及率小於5%時為投入期;

    普及率在5%—50%時為成長期;

    普及率在50%—90%時為成熟期;

    普及率在90%以上時為衰退期。

大數據對產品組合進行動態優化

產品組合

       銷售對象、銷售渠道等方面比較接近的一系列產品項目被稱為產品線。產品組合是指一個企業所經營的不同產品線和產品項目的組合方式,它可以通過寬度、長度、深度和關聯度四個維度反映出來

四、產品定價與策略

大數據定價的基本步驟:

1.   獲取大數據

2.   選擇定價方法

3.   分析影響定價因素的主要指標

4.  建立指標體系表

5.   構建定價模型

6.  選擇定價策略

定價的3C模式:成本導向法、競爭導向法、需求導向法

影響定價的主要指標與指標體系表的建立

影響定價因素的主要指標:

1.  個人統計信息:家庭出生、教育背景、所在地區、年齡、感情狀況、家庭關系等。

2.   工作狀況:行業、崗位、收入水平、發展空間等

3.  興趣:健身與養生、運動和戶外活動、娛樂、科技、購物和時尚等

4. 消費行為:消費心理、購買動機等。

定價策略:

精算定價: 保險、期貨等對風險計算要求很高的行業

差異定價: 平台利用大數據對客戶建立標簽,分析對產品的使用習慣、需求判斷客戶的忠誠度,對不同客戶進行差別定價

動態定價: 即根據顧客認可的產品、服務的價值或者根據供需狀況動態調整服務價格,通過價格控制供需關系。動態定價在提高消費者價格感知和企業盈利能力方面起著至關重要的作用。

價格自動化 :根據商品成本、市場供需情況、競爭產品價格變動、促銷活動、市場調查投票、網上協商、預訂周期長短等因素決定自身產品價格

用戶感知定價 :顧客所能感知到的利益與其在獲取產品或服務中所付出的成本進行權衡後對產品或服務效用所做出的整體評價。

協同定價: 是大數據時代企業雙邊平台多邊協同定價策略

價格歧視:

一級 :就是每一單位產品都有不同的價格,即商家完全掌握消費者的消費意願,對每個消費者將商品價格定為其能夠承受的最高出價;

二級 :商家按照客戶的購買數量,對相同場景提供的、同質商品進行差別定價;

三級 :可視為市場細分後的定價結果,根據客戶所處的地域、會員等級等個人屬性進行差別定價,但是對於同一細分市場的客戶定價一致。

五、銷售促進與管理

    促銷組合設計概念

大數據促銷組合設計流程

精準廣告設計與投放

[if !supportLists]l [endif] 廣告設計5M:任務(Mission),預算(Money),信息(Message),媒體(Media),測量(Measurement)。

通過用戶畫像的進一步挖掘分析,企業可以找出其目標消費群體的廣告偏好,如平面廣告的配色偏好,構圖偏好,視頻廣告的情節偏好,配樂偏好,人物偏好等,企業可以根據這些偏好設計出符合目標消費群體審美的廣告創意,選擇消費者喜歡的廣告代言人,做出能在目標消費群體中迅速傳播開來的廣告。

在媒體決策方面,利用大數據綜合考慮其廣告目的、目標受眾覆蓋率、廣告信息傳播要求、購買決策的時間和地點、媒體成本等因素後,有重點地採用媒體工具。企業可以在確定前述影響變數後,通過大數據的決策模型,確定相對最優的媒體組合。

六、客戶管理

    大數據在客戶管理中的作用

1.   增強客戶粘性

2.   挖掘潛在客戶

3.   建立客戶分類

    客戶管理中數據的分類、收集及清洗

數據分類:

描述性數據: 這類數據是客戶的基本信息。

如果是個人客戶,涵蓋了客戶的姓名、年齡、地域分布、婚姻狀況、學歷、所在行業、職業角色、職位層級、收入水平、住房情況、購車情況等;

如果是企業客戶,則包含了企業的名稱、規模、聯系人和法人代表等。

促銷性數據: 企業曾經為客戶提供的產品和服務的歷史數據。

包括:用戶產品使用情況調查的數據、促銷活動記錄數據、客服人員的建議數據和廣告數據等

交易性數據: 這類數據是反映客戶對企業做出的回饋的數據。

包括歷史購買記錄數據、投訴數據、請求提供咨詢及其他服務的相關數據、客戶建議數據等。

收集:

清洗:

首先,數據營銷人需要憑借經驗對收集的客戶質量進行評估

其次,通過相關欄位的對比了解數據真實度

最後,通過測試工具對已經確認格式和邏輯正確數據進行測試

客戶分層模型

客戶分層模型 是大數據在客戶管理中最常見的分析模型之一,客戶分層與大數據運營的本質是密切相關的。在客戶管理中,出於一對一的精準營銷要求針對不同層級的客戶進行區別對待,而客戶分層則是區別對待的基礎。

RFM客戶價值分析模型

時間(Rencency):

     客戶離現在上一次的購買時間。

頻率(Frequency):

     客戶在一定時間段內的消費次數。

貨幣價值(MonetaryValue):

    客戶在一定的時間內購買企業產品的金額。

七、 跨界營銷

利用大數據跨界營銷成功的關鍵點

1.   價值落地

2.  杠杠傳播

3.   深度融合

4.   數據打通

八、精準營銷

    精準營銷的四大特點

1.   可量化

2.   可調控

3.  保持企業和客戶的互動溝通

4.  簡化過程

精準營銷的步驟

1.  確定目標

2.  搜集數據

3.   分析與建模

4.  制定戰略

九、商品關聯營銷

       商品關聯營銷的概念及應用

關聯營銷:

關聯營銷是一種建立在雙方互利互益的基礎上的營銷,在交叉營銷的基礎上,將事物、產品、品牌等所要營銷的東西上尋找關聯性,來實現深層次的多面引導。

關聯營銷也是一種新的、低成本的、企業在網站上用來提高收入的營銷方法。

       關聯分析的概念與定義

最早的關聯分析概念: 是1993年由Agrawal、Imielinski和Swami提出的。其主要研究目的是分析超市顧客購買行為的規律,發現連帶購買商品,為制定合理的方便顧客選取的貨架擺放方案提供依據。該分析稱為購物籃分析。

電子商務領域: 關聯分析可幫助經營者發現顧客的消費偏好,定位顧客消費需求,制定合理的交叉銷售方案, 實現商品的精準推薦 ;

保險公司業務: 關聯分析可幫助企業分析保險索賠的原因,及時甄別欺詐行為;

電信行業: 關聯分析可幫助企業發現不同增值業務間的關聯性及對客戶流失的影響等

簡單關聯規則及其表達式

事務:簡單關聯分析的分析對象

項目:事務中涉及的對象

項集:若干個項目的集合

簡單關聯規則 的一般表示形式是:前項→後項(支持度=s%,置信度=c%)

或表達為:X→Y(S=s%,C=c%)

例如:麵包->牛奶(S=85%,C=90%)

            性別(女)∩收入(>5000元)→品牌(A)(S=80%,C=85%)

支持度、置信度、頻繁項集、強關聯規則、購物籃分析模型

置信度和支持度

support(X→Y)= P(X∩Y)                  

confidence(X→Y)= P(Y|X)

十、評論文本數據的情感分析

       商品品論文本數據挖掘目標

電商平台激烈競爭的大背景下,除了提高商品質量、壓低商品價格外,了解更多消費者的心聲對於電商平台來說也變得越來越有必要,其中非常重要的方式就是對消費者的文本評論數據進行內在信息的數據挖掘分析。評論信息中蘊含著消費者對特定產品和服務的主觀感受,反映了人們的態度、立場和意見,具有非常寶貴的研究價值。

針對電子商務平台上的商品評論進行文本數據挖掘的目標一般如下:

分析商品的用戶情感傾向,了解用戶的需求、意見、購買原因;

從評論文本中挖掘商品的優點與不足,提出改善產品的建議;

提煉不同品牌的商品賣點。

商品評論文本分析的步驟和流程

商品評論文本的數據採集、預處理與模型構建

數據採集:

1、「易用型」:八爪魚、火車採集器

2、利用R語言、Python語言的強大程序編寫來抓取數據

預處理:

1文本去重

檢查是否是默認文本

是否是評論人重復復制黏貼的內容

是否引用了其他人的評論

2機械壓縮去詞

例如: 「好好好好好好好好好好」->「好」

3短句刪除

原本過短的評論文本      例如:很「好好好好好好好好好好」->「好」

機械壓縮去詞後過短的評論文本   例如:「好好好好好好好好好好」->「好」

4評論分詞

文本模型構建包括三方面:情感傾向分析、語義網路分析、基於LDA模型的主體分析

 

情感傾向分析:

基於情感詞進行情感匹配

對情感詞的傾向進行修正

對情感分析結果進行檢驗

語義網路分析:

基於LDA模型的主體分析

十一、大數據營銷中的倫理與責任

       大數據的安全與隱私保護

數據安全:一是保證用戶的數據不損壞、不丟失;二是要保證數據不會被泄露或者盜用

 

大數據營銷中的倫理風險:用戶隱私、信息不對稱下的消費者弱勢群體、大數據「殺熟」

大數據倫理困境的成因:

用戶隱私意識淡薄

用戶未能清晰認知數據價值

企業利益驅使

] 管理機制不夠完善

大數據倫理構建的必要性:企業社會責任、用戶與社會群體的維系

這些是我按照老師講的課本上的內容結合PPT總結出來的《大數據營銷》的重點。

Ⅶ 如何用大數據做好企業運營

大數據對企業來說有什麼用?對於這個連IT界都眾說紛紜的事情,要讓希望使用大數據產品和服務的企業主們來說,更是一頭霧水。大數據是工具,那麼它究竟對企業會有什麼作用呢?了解了大數據的作用,才能讓大數據更好的服務自身。其實,從傳統企業的運行流程來看,大數據主要能夠在了解用戶、鎖定資源、規劃生產、做好運營、開展服務等方面,幫上企業的忙。

下面,我們來看一下到底大數據到底能幫什麼忙:

1、幫企業了解用戶

大數據通過相關性分析,將客戶、用戶和產品進行有機串聯,對用戶的產品偏好,客戶的關系偏好進行個性化定位,生產出用戶驅動型的產品,提供客戶導向性的服務。

從大數據技術方面來看,用數據來指引企業的成長,將不再單單是一句口號。據網路副總裁曾良表示,從挖掘的角度來看,他們通過對每天60億的檢索請求數
據分析,可以發現檢索某一品牌的受眾行為特徵,進而反饋給企業的品牌、產品研發部門,能更准確地了解目標用戶,並推出與調性相匹配的產品。

通過運用大數據,不僅可以從數據中發掘出適應企業發展環境的社會和商業形態,用數據對用戶和客戶對待產品的態度,進行挖掘和洞察,准確發現並解讀客戶及用戶的諸多新需求和行為特徵,這必將顛覆傳統企業在用戶調研過程中,過分依賴主觀臆斷的市場分析模式。

2、幫企業鎖定資源

通過大數據技術,可以實現企業對所需資源的精準鎖定,在企業在運營過程中,所需要的每一種資源的挖掘方式、具體情況和儲量分布等,企業都可以進行搜集
分析,形成基於企業的資源分布可視圖,就如同「電子地圖」一般,將原先只是虛擬存在的各種優勢點,進行「點對點」的數據化、圖像化展現,讓企業的管理者可
以更直觀地面對自己的企業,更好地利用各種已有和潛在資源。如果沒有大數據,將很難發現曾經認為是完全無關行為間的相互關聯性,就如同外媒曾經提到的「啤
酒」與「尿片」之間的關聯營銷一樣,如果美元大數據這將是一種幾乎不可能的事情。

3、幫企業規劃生產

大數據不僅改變了數據的組合方式,而且影響到企業產品和服務的生產和提供。通過用數據來規劃生產架構和流程,不僅能夠幫助他們發掘傳統數據中無法得知的價值組合方式,而且能給對組合產生的細節問題,提供相關性的、一對一的解決方案,為企業開展生產提供保障。

過去的所謂商業智能,往往大多是「事後諸葛亮」,而大數據則讓企業可預測未來的走向,幫助企業做到「未雨綢繆」。大數據的虛擬化特徵,還將大大降低企業的經營風險,能夠在生產或服務尚未展開之前就給出相關確定性答案,讓生產和服務做到有的放矢。

在這方面,不得不提到的就是最近火爆的《紙牌屋》,它的劇集為什麼會受到全球歡迎?有很大一部分原因就跟它前期依據大數據技術和思維方式所做的准備。
據稱,《紙牌屋》的資料庫包含了3000萬用戶的收視選擇、400萬條評論、300萬次主題搜索。下一季劇情拍什麼、誰來拍、誰來演、怎麼播,都由數千萬
觀眾的客觀喜好統計決定。

4、幫企業做好運營

過去某一品牌要做市場預測,大多靠自身資源、公共關系和以往的案例來進行分析和判斷,得出的結論往往也比較模糊,很少能得到各自行業內的足夠重視。通
過大數據的相關性分析,根據不同品牌市場數據之間的交叉、重合,企業的運營方向將會變得直觀而且容易識別,在品牌推廣、區位選擇、戰略規劃方面將做到更有
把握地面對。

對於大數據對企業運營的導航左右,夢芭莎集團董事長佘曉成深有感觸,他不禁感慨「大數據讓我們能夠及時調整運營策略,現在的庫存每季售罄率從80%提升到95%,實行30天缺貨銷售,能把30天缺貨控制在每天訂單的10%左右,比以前有3倍的提升。」

5、幫企業開展服務

通過大數據計算對社交信息數據、客戶互動數據等,可以幫助企業進行品牌信息的水平化設計和碎片化擴散。經濟學家Richard H.
Thaler曾經提出一種觀點,「個人觀點的微小變化都可以演變為所有人的群體行為模式的重大變革。」在這一重大變革的背景之下,對微小的信息流,企業都
必須重視,而客戶服務為應對這種情況,也需要像空氣一樣分布在一些細枝末節之中。企業可以藉助社交媒體中公開的海量數據,通過大數據信息交叉驗證技術、分
析數據內容之間的關聯度等,進而面向社會化用戶開展精細化服務,提供更多便利、產生更大價值。

Ⅷ 如何利用大數據實現精細化運營

通常企業可以從以下三個方面流程實現大數據的應用全面整合管理:

營銷管理
是從營銷活動的策劃到營銷活動的執行和監控,到營銷費用的核銷審批,到營銷效果的分析和評估。大數據時代,互聯網的信息不對稱讓網上信息種類繁雜,各行各業每時每刻都在產生著無數的碎片信息,傳統行業需要投入巨大的人工成本去進行營銷,而百會CRM可以通過對關鍵詞的的搜索再把信息進行審查,過濾掉無用的線索。提高營銷管理的效率。

銷售管理
眾所周知,銷售人員是決定企業經營情況的重要環節。隨著企業擴張,銷售團隊壯大,如何學習和應用最佳銷售人員的管理經驗和行為方式成為關鍵問題。而百會CRM系統可以實現良好的銷售行為的細分精準化。百會CRM用系統化的管理,精細化管理營銷的活動,同時可以根據系統篩選出目標客戶,精準地定位在目標客戶上,根據區分不同營銷對象來規劃市場活動和推動營銷層次。同時完成營銷活動的評價機制。降低企業運營成本,提高工作效率,擴展市場份額和增加銷量。

服務管理
服務管理是企業模塊中很容易被忽視的一塊,特別是售後服務,但是售後服務給企業帶來的附加價值是很大的,很多企業都沒有意識到這點。百會CRM的應用可以建立多種客戶溝通渠道,及時收集客戶反饋意見以及需求,完善客戶服務請求處理流程,提高響應速度以及服務質量,並對銷售執行過程進行有效監控和評估。

Ⅸ 品牌營銷利器!如何通過大數據推出爆款新品

傳統的新品在洞察市場機會時,往往是根據市場部,咨詢公司或者其他行業報告進行分析的,然後再粗略的預估新品的市場潛力。對於品牌來講,這種方法限制的新品的研發效率,並且不確定是否符合市場期望。

孫子兵法有雲: 知己知彼,百戰不殆 。如果把這句話搬到新品研發過程中,依然適用,可以這樣理解,

知己 ,了解品牌自身情況,市場佔有率,內部運作流程,品牌影響力,品牌運營以及品牌的短板。

知彼 ,了解品牌的消費者在哪,消費者是誰,消費者的興趣傾向;了解品牌的競爭對手,他在哪,什麼樣的,有哪些優勢和弱勢。

接下來,我們就聊聊,再者大數據時代,怎麼洞察市場,挖掘具有競爭力的新品。

人人都在討論大數據,那麼大數據的核心價值是什麼?能做哪些事情?我們拆解一下這個詞,分為 「大」 和 「數據」 。

何謂「大」?簡單來講,可以理解為它的覆蓋面廣,全面,無所不能,龐大的。

何謂「數據」?即為根數據(Metadata),散落在各處的信息,咨詢,資料等。

兩個字組合起來可以轉譯為,人類可以通過龐大的根數據,應用到生活的各個方面。

大數據的核心價值就在於它的 商業價值 。通過從龐大的數據中,挖掘最有價值的信息,並應用到實際場景中。

大數據時代,人與互聯網緊密相連。標記和記錄一個人的信息,不再僅僅是通過身份證,而是有無數個根數據組成。根數據不是對象本身,它只描述對象的屬性。例如,描述人的通俗的話語:

其中根數據為,身高,屁股,牙,口腔,胳肢窩,對應的值為一米二,身高一半,黃,臭和上銹。

當然,我們也可以通過根數據,了解整個人的信息,也就是所謂的用戶畫像。

以往,傳統線下商店裡,消費者買了什麼,是誰買的,為什麼買,他有什麼特徵,這些資料對於商店來說,是完全不清楚的。不過,這些事情對於大數據,簡直是輕而易舉。消費者在網上的記錄十分詳細,他的收入情況,地址甚至是生活習慣都可以探查清楚。

這也是大數據的魅力所在,當然,我們也可以將大數據能力矩陣,賦能在品牌新品的創新上,通過洞察市場機會,甄選產品概念並預估市場潛力。

盲目的投放和發布新產品,會受到市場的打擊,提前預知消費者的興趣傾向,購買喜好將會對新產品起到積極的正向作用。

用戶在互聯網上的多年的行為數據,都會詳細記錄在伺服器,數據可能會散落在各個網站。但,這些數據能夠詳細描述用戶的特徵,都需要哪些數據?

用戶基礎數據

這部分數據描述了用戶的基本特徵,能夠確定 用戶是誰 。具體可以包括,

姓名,性別,年齡,職業,收入,地域,注冊地,常用ip,手機型號等。如果該用戶是實名注冊,那這些數據可以很容易獲取。但若是非實名,就需要後期通過模型推斷其各個屬性,如用戶的性別判斷,筆者在之前的文章中也有所描述,可以參考下《 AI驅動的電商用戶模型:性別屬性是如何確定 》。

購物數據

購物數據,是用戶在電商網站上發生了購買行為,所記錄下來的數據,從購買數據中可以提取出很多有價值的信息。

當用戶對某件商品發生了購買行為,就意味著對商品有需求,商品對他有價值。

緊接著,如果用戶周期性購買,那麼用戶就是該商品的絕對忠誠用戶。

再者,用戶瀏覽,搜索,加購,關注行為,也能反映用戶對商品的傾向

不同的購買行為,能夠對用戶定義不同的標簽,從而衍生了如下的數據維度:

購買力: 通過歷史消費記錄,收集訂單價格信息,再根據其消費額度,判斷用戶的購買力,詳情也可以查看筆者之前文章《 電商購買力模型:用大數據解鎖智慧營銷的新姿勢 》

促銷敏感度: 用戶訂單中,有優惠的訂單比例。這個數據能夠對品牌商的促銷和促銷力度提供指導作用。

還有,用戶忠誠度,復購周期,品牌RFM模型,品牌偏好,性格偏好等等等等。

行業數據

當然,不單單要知道用戶的信息,還需要了解自己和對手市場情況,有針對性做分析。

首先,聚焦自身品牌粉絲,探查粉絲不同性別,區域和年齡層對產品屬性的青睞。舉個簡單例子,YSL粉絲群體中,一線城市品牌的金牌會員,年輕人更喜歡粉紅色的口紅,又喜歡短款,那麼品牌可以針對這些人群有的放矢的研發新產品。

其次,了解競品情況,跟進競品市場。每個品牌的產品線不一定相同,sku池深度迥異。對於競品品牌的爆品,我們可以針對性拉取爆品的粉絲,了解他的用戶群體,並應用到新品研發策略中。

社交數據

社交數據能夠更全面的認識品牌的人群,深度的理解用戶的社交屬性,在媒體上的發聲態度,可以更加立體的理解用戶群。

根據上述數據標簽,能夠充分的了解用戶的需求點在哪裡,新產品做到有的放矢。再通過大數據能力輸出與產品匹配程度較高的用戶群體,這可以為新產品的冷啟動帶來一批種子用戶。

新品營銷和品牌營銷的套路基本相同,任何的新品對於用戶來說,都需要經過「接觸-認知-認識-認可」的一個過程。不過,在新品上市時,我們需要通過大數據,來完成用戶對新品的接觸和認知過程。也可以認為,這是新品的冷啟動過程。

做過社區的朋友都應該知道,冷啟動的種子用戶,對於新產品有多麼的重要。尋找精準的流量對新品帶來的效果將是不可估量的。

這部分精準流量的篩選,可以分為三個階段,預熱期-爆發期-收尾期

預熱期:擴大人群范圍

預熱期的目標就是希望可以讓更多的人了解新品,讓用戶能夠真的感知到新品的優勢和創意點。此時,需要挖掘新品可能存在的潛在用戶流量,把數據范圍擴大新品所在品類,甚至相關品類。凡是對新品所在品類或者相關品類有過購買,瀏覽,搜索,收藏或者加購行為的用戶,都要進行觸達。

爆發期:尋找精準流量

爆發期即為收割期,春季栽的稻子該去收割了。其實就是把預熱期觸達的用戶,進一步精準篩選,選出頭部流量。此時,可以結合公司內外的資源對這部分用戶進行邀請制的測試,使用新產品,優惠補貼,評測或媒體公關。進而將頭部流量轉化為已購用戶和品牌粉絲,再通過這部分人群的口口相傳,達到很好的口碑傳播效應。

收尾期:人群二次觸達

當然,並不是每個精準用戶都會買單,各種各樣的原因導致部分用戶掉隊。可能是當時忘記了,可能當時手頭上有其他工作,可能對促銷不是很滿意,等等。對於這部分人群,我們仍需要再次觸達。通過數據篩選出這部分用戶群,然後進行大力度促銷,最後在觀察其數據情況。

當然,以上只是新品冷啟動過程中,對人群的玩法。後續還有很多,涉及營銷策劃、創意、傳播、新媒體、商家/貨品,線上&線下聯動營銷等。但,核心的點仍然是 洞察市場和了解用戶偏好 ,這樣才能推出爆款產品。

Ⅹ 大數據對企業運營管理有哪些價值

未來幾年,全球數據量將呈指數級增長。據國際數據公司(IDC)統計,全球數據總量預計2020年達到44ZB,中國數據量將達到8060EB,佔全球 數據總量的18%。

如今,大數據已成為一項業務上優先考慮的工作任務,因為它能夠對全球整合經濟時代的商務產生深遠的影響。除了為應對長期存在的業務挑戰提供解決方案之外,大數據還為眾多行業、甚至社會本身的轉型激發了許多新的方式。研究表明,72%的企業首選大數據應用需求是基於客戶行為分析的大數據營銷,其次產品創新、風險預測、供應鏈管理、客戶服務等也是企業優先考慮的大數據應用。

提升客戶洞察力

傳統的拍腦袋的決策方式和營銷手段,對大數據時代消費模式的戰略決策已經不再那麼適用,尤其是越到後來,市場、媒體、渠道成本越高,企業所換取的收益越來越少。那麼,如何才能在新時代里,尋找到投資和回報的平衡點,就需要利用大數據去預測消費者的行為,提高其購買力,從而獲得利益。

大數據的核心就是預測,大數據能夠預測體現在很多方面。大數據不是要教機器像人一樣思考,相反,它是把數學演算法運用到海量的數據上來預測事情發生的可能性。正因為在大數據規律面前,每個人的行為都跟別人一樣,沒有本質變化,所以商家會比消費者更了解消費者的行為。

助力精細化運營

好產品是運營出來的,互聯網產品需要不斷運營、持續打磨。產品運營的目的是為了擴大用戶群、提高用戶活躍度、尋找合適的商業模式並增加收入。成功的互聯網運營要做到精細化運營,成功的精細化運營需要大數據支撐。大數據和互聯網思維在此方面關聯度最高。所以,企業在大數據的應用場景上,一定是要優先考慮如何通過大數據進行精細化運營,以驅動更好的運營效率和效果的提升。

企業如何推動大數據應用

受應對業務挑戰這一需求的推動,並且根據不斷進步的技術和數據不斷變化的特點,眾多企業已經開始更深入地考察大數據的潛在價值。

1.以客戶為中心推動初始舉措。 最初的大數據舉措必須注重能夠為企業提供最大價值的領域,這一點勢在必行。對許多行業來說,這意味著從客戶分析開始,通過真正了解客戶需求,並預測未來行為,從而為客戶提供更好的服務。

要想有效地培養與客戶之間有意義的關系,企業必須以客戶認為有價值的方式與客戶聯系。價值可能來自更及時、更明智或者更相關的交互;也可能來自於企業通過改進底層運作而增強交互的整體體驗。無論來自何處,分析都有助於從大數據中獲得洞察力,這對於在這些關系中達到這一深度日益重要。

2.從現有數據開始,實現近期目標。 要實現近期目標,同時為持續開展大數據項目創造發展動力和專業知識,企業必須採取實用的方法。我們的調研表明,要開始尋求新的洞察力, 最具邏輯性和性價比的地點就是企業內部。

從內部著眼允許企業利用現有數據、軟體和技能,提供近期業務價值, 並且在考慮提升現有的能力而處理更復雜的數據來源和類型之前積累重要的經驗。大多數企業希望通過這樣做而充分利用現有存儲庫中的信息,同時擴展其數據倉庫,以處理更大數量和更多類型的數據。

3.制定整個企業的大數藍圖。 大數據環境下,企業需要根據自身行業特點制定企業的大數據藍圖。藍圖包含企業內的大數據願景、戰略和要求,對於在業務用戶的需求與IT實施路線圖之間做到協調非常關鍵。它實現了關於企業如何利用數據改進業務目標的一致理解。

有效的藍圖通過確定大數據適用的關鍵業務挑戰、規定如何使用大數據的業務流程要求,以及包含實現該藍圖所需數據、工具和硬體的架構,從而定義了企業內大數據的范圍。這是為指導企業以實用的方式,並以創造可持續的商業價值為出發點,開發並實施大數據解決方案而制定藍圖的基礎。中科點擊作為行業大數據應用專家,多年實戰經驗形成一套標准化的大數據應用開發模式,深挖各行業應用痛點,為企業量身定製大數據應用服務,已經為汽車、教育、金融、醫美等眾多行業客戶提供了數據應用和商業增值。

未來,大數據產業會形成一個生態系統,大數據的應用將會影響到更多行業,實現更多價值,企業級的大數據應用會蓬勃發展,目前很多企業已經意識到數據資產的重要性,有效的利用數據技術,把客戶數據承載下來,管理好,將是下個10至20年企業的核心競爭力!雪脈科技有著一批精深的專業演算法工程師,對大數據有深入研究,助理企業使用大數據管理,實現企業騰飛。

閱讀全文

與大數據品牌運營相關的資料

熱點內容
安裝黑蘋果過程中黑屏 瀏覽:798
公積金網路貸款是什麼 瀏覽:38
u盤文件夾變成亂碼文件夾 瀏覽:50
p2p平台是什麼app 瀏覽:171
銀行app用戶量排名 瀏覽:80
微信掃碼應用寶一直載入 瀏覽:901
迷你編程教培版怎麼樣 瀏覽:828
蘋果程序網路設置在哪裡設置 瀏覽:916
文件30kb等於多少m 瀏覽:631
遠程接入網路書籍 瀏覽:120
安卓配置API 瀏覽:142
linuxc語言執行shell 瀏覽:977
windows文件夾大小 瀏覽:967
黑暗破壞神3裝備升級 瀏覽:510
2021年底文件幣能升值多少 瀏覽:941
溫州文件櫃一般多少錢 瀏覽:499
空白文件可以佔多少g 瀏覽:611
騰訊文件雲空間多少g 瀏覽:828
大創項目文件大小不能超過多少 瀏覽:558
胎兒8周b超多少數據正常 瀏覽:492

友情鏈接