導航:首頁 > 網路數據 > 金融大數據來源

金融大數據來源

發布時間:2023-01-08 14:02:15

『壹』 大數據怎樣影響著金融業

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,花旗、富國、UBS等先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行360度評價,計算動態違約概率和損失率,提高貸款決策的可靠性。

『貳』 大數據金融-第一章 大數據金融概論

1.大數據與小數據

2.大數據的內涵
(1) 數據類型方面

(2) 技術方法方面

(3) 分析應用方面

3.大數據的特徵

多樣性:隨著互聯網的發展和感測器種類的增多,諸如網頁、圖片、音頻、視頻、微博類的未加工的半結構化和非結構化數據越來越多,以數量激增、類型繁多的非結構化數據為主。非結構化數據相對於結構化數據而言更加復雜,數據存儲和處理的難度增大。

時效性:大數據的時效性是指在數據量特別大的情況下,能夠在一定的時間和范圍內得到及時處理,這是大數據區別於傳統數據挖掘最顯著的特徵。只有對大數據做到實時創建、實時存儲、實時處理和實時分析,才能及時有效的獲得高價值的信息。

價值型:包含很多深度的價值,大數據分析挖掘和利用將帶來巨大的商業價值。

4.大數據與傳統數據的區別

5.大數據的產生背景

1.按照大數據結構分類

2. 按照大數據獲取處理方式分類

3.按照其他方式分類

1.銷售機會增多

0. 商業大數據的來源

1. 客戶

2. 市場

3. 商品

4. 供應鏈

0. 數據來源

2. 市場與精準營銷

3. 客戶關系管理

4. 企業運營管理

5. 數據商業化

0. 數據來源

2. 付款定價

3. 研發

4. 新的商業模式

5. 公共健康

1. 營銷

2. 服務

3. 運營

4. 風控

大數據金融是指運用 大數據技術和大數據平台 開展 金融活動和金融服務 ,對金融行業 積累的大數據以及外部數據 進行雲計算等信息化處理,結合傳統金融,開展資金融通、創新金融服務。

1. 呈現方式網路化
大量的金融產品和服務通過網路呈現。

2. 風險管理有所調整
風險管理理念 ——財務分析(第一還款來源)、可抵押財產或其他保證(第二還款來源)重要性將有所降低。
風險定價方式 ——更注重將交易行為的真實性、信用的可信度通過數據來呈現。
對客戶的評價 ——全方位、立體的/活生生的。
風險管理的主要手段 ——基於數據挖掘對客戶進行識別和分類。

3. 信息不對稱降低
4. 金融業務效率提高
在合適的時間、合適的地點,把合適的產品以合適的方式提供給合適的消費者。

5. 金融企業服務邊界擴大
由於效率提升,其經營成本必然隨之下降,最適合擴大經營規模。
金融從業人員個體服務對象會更多。

6. 產品是可控的、可受的
通過網路化呈現的金融產品,對消費者而言,其收益或成本、產品的流動性是可以接受的,其風險是可控的。

7. 普惠金融
大數據金融的高效率性及擴展的服務邊界,使金融服務的對象和范圍也大大擴展,金融服務也更接地氣。

1. 放貸快捷,精準營銷個性化服務
立足長期大量的信用及資金流的大數據基礎之上,在任何時點都可以通過計算得出信用評分,並採用網上支付方式,實時根據貸款需要及其信用評分等數據進行放貸。

2. 客戶群體大,運營成本低
大數據金融是以大數據雲計算為基礎,以大數據自動計算為主,不需要大量人工,成本較低,整合了碎片化的需求和供給,服務領域拓展至更多的中小企業和中小客戶。

3. 科學決策,有效風控
根據交易借貸行為的違約率等相關指標估計信用評分,運用分布式計算做出風險評估模型,解決信用分配、風險評估、授權實施以及欺詐識別等問題,有效地降低了不良貸款率。

基於 電商平台基礎 上形成的網上交易信息與網上支付形成的金融大數據,利用雲計算等先進技術對數據進行處理分析而形成的信用或訂單融資模式。
典型代表有 阿里小貸 ,基於對電商平台的 交易數據、社交網路的用戶交易與交互信息和購物行為習慣 等的大數據通過 雲計算 來實時計算得分和分析處理,形成網路商戶在電商平台中的累積信用數據,通過電商所構建的網路信用評級體系和金融風險計算模型及風險控制體系,來實時向網路商戶發放訂單貸款或者信用貸款,例如,阿里小貸可實現數分鍾之內發放貸款。

企業利用自身所處的 產業鏈上下游 (原料商、製造商、分銷商、零售商),充分整合供應鏈資源和客戶資源,提供金融服務而形成的金融模式。

京東商城、蘇寧易購是供應鏈金融的典型代表。

在供應鏈金融模式當中, 電商平台只是作為信息中介提供大數據金融 ,並不承擔融資風險及防範風險等。—— 渠道商為核心企業。

『叄』 大數據的主要數據來源包括

大數據的來源包括交易數據、人工數據、機器和感測器數據。 交易數據包括POS機數據、信用卡數據等。人為數據,包括通過微信、博客、推文等產生的郵件、文檔、圖片、數據流等。;以及機器感測器數據,例如感測器、儀表和其他設施。 大數據,或稱巨量數據,是指龐大到無法通過主流軟體工具在合理的時間內檢索、管理、處理和排序的信息,以幫助企業做出更主動的商業決策。大數據需要特殊的技術來有效處理大量可以容忍時間流逝的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展存儲系統。

『肆』 金融大數據是什麼

金融大數據是指收集海量非結構化數據,分析挖掘客戶的交易和消費信息,掌握客戶的消費習慣,准確預測客戶的行為,提高金融機構的服務、營銷和風控能力。
1、大數據金融主要體現在三個方面:一是數據客觀准確匹配;二是交易成本低,客戶群大;最後,數據及時有效,有助於控制風險。
2、大數據金融通過大數據技術收集客戶交易信息、在線社區交流行為、資金流動趨勢等數據。大數據金融了解客戶的消費習慣,針對不同的客戶推出不同的營銷和廣告,或分析客戶的信用狀況。
拓展資料:
1)因為大數據金融數據是根據客戶自己的行為收集的大數據金融是客觀真實的。因此,大數據金融為客戶制定的回售方案和偏好推薦也能精準大數據金融匹配度高。大數據金融基於雲計算技術 雲計算是一種超大規模分布式計算技術,通過預設程序,大數據金融雲計算可以搜索、計算和分析各類客戶數據,無需人工參與。
2)大數據金融雲計算技術降低了收集和分析數據的成本,不僅整合了碎片化的需求和供應,而且大大降低了大數據金融交易的成本,實現了跨區域的信息流動和交換,客戶群也隨之增長。在大數據金融模型中,互聯網公司設置了各種風險指標,如違約率、延遲交貨率、售後投訴率等,大數據金融收集的客戶數據是實時的,因為其信用評價也是實時的。時間,有利於數據需求方及時分析對方的信用狀況,控制和防範交易風險。
3)大數據,或稱海量數據,是指所涉及的海量數據,無法通過主流軟體工具進行檢索、管理、處理和整理成信息,幫助企業在合理的時間內做出更積極的業務決策。 「大數據」研究院Gartner給出了這樣的定義。 「大數據」需要一種新的處理模式,具有更強的決策力、洞察力和發現力和流程優化能力,以適應海量、高增長率和多樣化的信息資產。

『伍』 大數據的中的數據是從哪裡來的

大數據應用中的關鍵點有三個,首要的就是大數據的數據來源,我們在分析大數據的時候需要重視大數據中的數據來源,只有這樣我們才能夠做好大數據的具體分析內容。那麼大家知不知道大數據的數據來源都是通過什麼渠道獲得的?下面就由小編為大家解答一下這個問題。
對於數據的來源很多人認為是互聯網和物聯網產生的,其實這句話是對的,這是因為互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。而物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據的數據來源,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,是我們常用的數據來源。
而數據的來源是我們評價大數據應用的第一個關注點。首先需要我們看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是好數據還是壞數據,能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,只有我們找到了好的數據來源,我們就能夠做好大數據的工作。這句需要我們去尋找數據比較密集的領域。
一般來說,我們獲取數據的時候需要數據密集的行業中挖掘數據,主要就是金融、電信、服務行業等等,而金融是一個特別重要的數據密集領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。
我們在這篇文章中為大家介紹了大數據的數據來源以及數據密集的領域,希望這篇文章能夠給大家帶來幫助,最後感謝大家的閱讀。

『陸』 大數據金融是什麼

大數據金融是指集合海量非結構化數據,通過對其進行實時分析,可以為互聯網金融機構提供客戶全方位信息,通過分析和挖掘客戶的交易和消費信息掌握客戶的消費習慣,並准確預測客戶行為,使金融機構和金融服務平台在營銷和風控方面有的放矢。

大數據金融的內容:基於大數據的金融服務平台主要指擁有海量數據的電子商務企業開展的金融服務。大數據的關鍵是從大量數據中快速獲取有用信息的能力,或者是從大數據資產中快速變現的能力,因此,大數據的信息處理往往以雲計算為基礎。

(6)金融大數據來源擴展閱讀:

大數據金融的弊端:

1、大數據對個人信息的大量獲取導致了隱私和安全問題。

隨著個人所在或行經位置、購買偏好、健康和財務情況的海量數據被收集,再加上金融交易習慣、持有資產分布、以及信用狀況以更細致的方式被儲存和分析,機構投資者和金融消費者能獲得更低的價格、更符合需要的金融服務,從而提高市場配置金融資源的能力。

但同時,金融市場乃至整個社會管理的信息基礎設施將變得越來越一體化和外向型,對隱私、數據安全和知識產權構成更大風險。就個人隱私而言,大數據的隱私問題遠遠超出了常規的身份確認風險的范疇。

2、大數據技術不能代替人類價值判斷和邏輯思考。

大數據是人類設計的產物,大數據的工具(如Hadoop軟體)並不能使人們擺脫曲解、隔閡和成見,數據之間相關性也不等同於因果關系,大數據還存在選擇性覆蓋問題。

例如,社交媒體是大數據分析的重要信息源,但其中年輕人和城市人的比例偏多,還存在大量由程序控制的「機器人」賬號或「半機器人」賬號。波

士頓的 StreetBump應用程序為統計城市路面坑窪情況,從駕駛員的智能手機上收集數據,可能少計年老和貧困市民較多區域的情況;「谷歌流感趨勢」曾高估了 2012年流感發病率。這說明依賴有缺陷的大數據可能給政府決策造成負面影響,還可能加劇社會不公。

3、基於大數據開發的金融產品和交易工具對金融監管提出挑戰。

大數據的使用正在改變金融市場,也需要改變監管市場的方式,以保證市場參與者負責地使用大數據。

例如,2010年5月的「閃電暴跌」(flashcrash)令道瓊斯工業平均指數 突然大跌,美國監管部門認為是高頻交易造成了快速拋售引發的更多拋售。大數據中的一個數據點出錯就能導致「無厘頭暴跌」。

監管機構限制大數據技術的使用,或是對其使用進行直接干預,其潛在風險是巨大的,應鼓勵業界對更復雜的技術乃至更大數據的利用。

『柒』 支撐著互聯網金融的數據來源於哪裡

數據來源為:「網路指數」,它統計網路上一個詞的搜索頻率,我們發現,「互聯網金融」的搜索頻率在2013年6月突然高企,和2013年6月份發生的一個事情高度吻合,那就是「錢荒」。這兩者之間有這樣一個高度的耦合並不是偶然的,「錢荒」抬高了市場的利率中樞,使得余額寶的收益率大大提高,短時間內實現了爆炸式增長,吸引了全社會的眼球。從那之後,互聯網金融在中國社會就成為了一個高度關注的現象。
事件來源:互聯網金融在中國的發展很大程度上是因為余額寶的觸發。大家都很了解余額寶,它在短短幾個月之內成為全球第四大貨幣市場基金,開戶數超過了1億,余額寶的出現使大家突然對互聯網金融刮目相看,互聯網金融這個詞在中國社會也正式成為一個很時髦的詞彙。

『捌』 什麼是金融大數據分析

金融大數據分析是指使用大數據技術來收集、整理、分析金融數據的過程。這些數據可以來自各種來源,包括市場信息、交易記錄、客戶信息等。金融大數據分析的目的是幫助金融機構更好地理解市場趨勢和客戶需求,提升決策效率並降低風險。

『玖』 想要金融類數據,應該如何收集

金融大數據平台的搭建和應用是兩個部分,對於金融大數據平台來說,這兩個部分都很重要。


所以以下的部分我們從大數據平台和銀行可以分析哪些指標這兩個角度來闡述。


一、大數據平台


大數據平台的整體架構可以由以下幾個部分組成:





1.一個客戶


客戶主題:客戶屬性(客戶編號、客戶類別)、指標(資產總額、持有產品、交易筆數、交易金額、RFM)、簽約(渠道簽約、業務簽約)組成寬表


2.做了一筆交易


交易主題:交易金融屬性、業務類別、支付通道組成寬表。


3.使用哪個賬戶


賬戶主題:賬戶屬性(所屬客戶、開戶日期、所屬分行、產品、利率、成本)組成寬表


4.通過什麼渠道


渠道主題:渠道屬性、維度、限額組成寬表


5.涉及哪類業務&產品


產品主題:產品屬性、維度、指標組成寬表

閱讀全文

與金融大數據來源相關的資料

熱點內容
windows8網路連接 瀏覽:442
怎麼快速增加qq群人數 瀏覽:919
錘子視頻播放器文件不存在 瀏覽:707
蘋果手機怎麼清理app緩存 瀏覽:682
花園戰爭2豪華升級包 瀏覽:517
電腦無法向u盤傳輸文件 瀏覽:823
bpn配置文件 瀏覽:932
501完美越獄工具 瀏覽:119
中間夾菜單裡面不能顯示壓縮文件 瀏覽:952
如何指導小學生參加編程比賽 瀏覽:275
物業的招標文件有哪些 瀏覽:452
保存游戲文件名非法或只讀 瀏覽:258
js怎麼做圖片時鍾 瀏覽:451
華為應用裡面有了app說明什麼 瀏覽:801
資料庫中xy是什麼意思 瀏覽:893
u盤打不開提示找不到應用程序 瀏覽:609
網站功能介紹怎麼寫 瀏覽:954
word在試圖打開文件時錯誤 瀏覽:108
主板無vga插槽怎麼連接編程器 瀏覽:521
錄視頻文件在哪裡刪除 瀏覽:881

友情鏈接