1. 中國目前在大數據行業的發展情況如何
我國大數據產業開始已進入深化階段
中國大數據產業從萌芽到如今漸成體系,已走過將近10個年頭。「十四五」開局之年,大數據產業也進入了集成創新、深度應用的新階段。大數據在醫療、工業、交通等領域的融合應用技術加快創新突破,大數據融合應用重點從虛擬經濟轉變為實體經濟;大數據底層技術方面,信息安全、模式識別、語言工程、計算機輔助設計、高性能計算等加快突破,大數據技術領域逐漸補齊短板,並進一步強化長板。
—— 更多本行業研究分析詳見前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》
2. 大數據可以應用在哪些方面
可以應用在雲計算方面。
大數據具體的應用:
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
7、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。
8、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。
9、分析所有SKU,以利潤最大化為目標來定價和清理庫存。
10、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
大數據的用處:
1、與雲計算的深度結合。大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。
自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
2、科學理論的突破。隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。
網路--大數據
3. 如何利用大數據做行業趨勢分析
從數據源、分復析維度制和展示結果來分析如何利用大數據做行業趨勢分析:
數據源:大數據採集電商平台線上銷售數據和消費者的文本數據;
分析維度:通過大數據整合和語義分析等,分析行業銷售趨勢、品牌佔比趨勢、產品潮流趨勢、消費者偏好趨勢等維度;
展示結果:通過在線平台展示,持續監控數據的變化。
4. 大數據技術就業前景如何
近幾年來,互聯來網行業發源展風起雲涌,而移動互聯網、電子商務、物聯網以及社交媒體的快速發展更促使我們快速進入了大數據時代。截止到目前,人們日常生活中的數據量已經從TB(1024GB=1TB)級別一躍升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別,數據將逐漸成為重要的生產因素,人們對於海量數據的運用將預示著新一波生產率增長和消費者盈餘浪潮的到來。大數據時代,專業的大數據人才必將成為人才市場上的香餑餑。
因此,當下大數據從業人員的兩個主要趨勢是:大數據領域從業人員的薪資將繼續增長;大數據人才供不應求。
另外,大數據專業畢業生就業崗位非常多,比如:Java大數據分布式程序開發、大數據集成平台的應用與開發、大數據平台運維、Java海量數據分布式編程、大數據架構設計、大數據分析、Java大數據分布式開發、基於大數據平台的程序開發、數據可視化、大數據挖掘、Java海量數據分布式編程、大數據架構設計等。就業前景雖好,但自學較困難。有機會最好還是選擇尚矽谷大數據培訓,進行系統化學習。
5. 大數據未來的發展前景怎麼樣呢
從我國數據產量和存量來看,廣東、北京、浙江、江蘇、上海、等地區數據資源較為豐富,東部地區數據產量和存量均高於西部地區。從省際數據流量來看,東部地區月均互聯網省際出口總流量佔全國比重超過一半。
在以北上廣為代表的東部地區數據資源豐富的背景下,其大數據產業發展水平快於其他地區省份。其中,北上廣大數據企業數量佔全國比重近70%,廣東和北京大數據發展水平較高。
東部地區數據產量整體高於西部,省際數據流量遠高於其他地區
2019年,我國數據產量總規模為3.9ZB。從數據產量的地區分布看,2019年全國數據產量排名前十位的省份為廣東、北京、浙江、江蘇、上海、山東、四川、河南、河北和湖南。
從人均數據產量來看,2019年人均數據產量排名前十位的省份分別是北京、上海、浙江、天津、廣東、內蒙古、西藏、海南、江蘇和遼寧。整體來看,東部地區數據產量和人均數據產量均高於西部地區。
—— 更多數據來請參考前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》
6. 大數據應用的第一、二、三產業價值
大數據應用的第一、二、三產業價值
大數據應用在目前已經得到了部分推廣,其在IT、金融、交通、製造等多個方面已經開始提現價值。大數據應用的整體范圍是從服務業開始,向第二、第一產業推廣的,今後其在工農業領域也將發揮不亞於第三產業中的價值。
大數據應用的第三產業價值
大數據應用在理論上是可以讓所有產業都從中獲益的。而根據1985年我國統計局的產業劃分來看,農、林、漁、牧被定為第一產業;工業和建築業被定為第二產業;其他均為第三產業。而由於數據缺乏及從業人員等原因,第一、二產業的發展速度相對第三產業會有所遲緩。
第三產業一般被認為是服務業,其一般可分為流通部門和服務部門兩種。而第三產業中匯聚了大量的數據以及大批科研中堅,因此大數據行業在第三產業中最先開展,效果也最為突出。
醫療健康方面,一些貼身設備可以收集用戶的健康數據,從而建立一個專屬的健康檔案,通過運動、呼吸、心率、睡眠等多個角度來確定用戶的需求,通過大數據分析為用戶建立專屬的解決方案。也可以在醫院等場所收集患者信息,進行疫情的預測。
第三產業的數據產生量和處理能力都更高
交通方面,通過車輛位置、時間等信息確定路況,為駕駛員提供最快捷的路徑選擇, 避免堵車。在普通用戶方面,利用手機收集地理位置等數據,結合地鐵、公交等多種手段幫助用戶找到最佳出行方式,同時利用這些數據進行資料庫的更新,保障數據的完整無誤。
金融方面, 利用機器學習及大數據對每一個信貸申請人進行全方位分析,對借款人過去的信用資料與資料庫中的全體借款人的信用習慣相比較,檢查借款人的發展趨勢跟經常違約、隨意透支的用戶進行比較,減少欺詐損失、管理信貸風險以及不良信貸的問題。
電信方面,通過集成數據對客戶流失的原因進行綜合分,利用分析結果對於網路布局進行優化,為用戶提供更好的服務;同時,對用戶行為進行分析,及時推出符合用戶興趣的業務解決潛在流失用戶問題。企業方面,發揮自身優勢幫助企業收集、管理和評估大數據集,然後以可視化的方式將這些數據呈現給企業,幫助企業改進決策。
大數據應用的第二產業價值
大數據應用在第二產業之中與物聯網有著密不可分的聯系。物聯網的發展,需要以RFID、工業大數據、感測器及其網路的應用為切入點,最終實現經濟效益提升、安全生產和節能減排的目的。
鋼筋水泥的大數據驅動
大數據一般具有種類多、數量大和實時性高的特點,而工業中的數據盡管多,可是普遍是以數據表格以及紙質數據為主的,這種數據管理方式存在諸多問題,也不利於數據分析。而隨著工業化和信息化的結合,工業大數據得到了發展,但是數據依然是以非結構化數據為主。而大數據的發展並沒有讓工業數據採集變得容易,因此工業方面急需工業互聯網的建設。
此外,工業數據如壓力、溫度等數據需要在語境中才能得到理解。如燃氣輪機排氣裝置上的溫度讀數與機車的內部溫度是完全不同,而如果採用傳統方式分析可能需要的時間需要接近一個月,而在工業大數據應用後,這一周期得到了大幅縮短。
大數據應用的第一產業價值
在第一產業方面,種植業等一般需要大量經驗的積累才能准確的掌握最大收益率。而藉助大數據的力量則可以解決這一傳統問題。
利用數據採集和數據分析,進行大量的採集點獲取天氣數據,結合天氣模擬、土質分析、作物分析等做出綜合判斷,向農民推薦相關農作物進行種植,從而獲得最大化收益。此外,可以在農田中布置感測器收集農田數據,將數據上傳並進行分析後確定施肥、殺蟲、灌溉以及防災等時間,保障農作物的正常發展。
大數據種地是一種潮流趨勢
漁業中可以利用探測器進行水質監測,分析確定含氧量等確定水質健康程度,幫助漁民及時了解養殖情況。林業和牧業也可以利用類似的方式獲得相關幫助。
從第三產業的應用到第一、二產業推廣,大數據應用的范圍在不斷推廣。在未來,大數據還可能會向更多的領域拓展。
7. 大數據技術處理的數據類型繁多,大約
目前,不少人都會對大數據分析有著濃厚的興趣,那麼什麼是大數據分析?大數據分析是指對海量的數據進行分析。大數據有4個顯著的特點, 海量數據、急速、種類繁多、數據真實。大數據被稱為當今最有潛質的IT詞彙,接踵而來的的數據挖掘、數據安全、數據分析、數據存儲等等圍繞大數據的商業價值的利用逐漸成為行業人士爭相追捧的利潤焦點。
大數據分析類型有哪些?
1.交易數據(TRANSACTION DATA)
大數據平台能夠獲取時間跨度更大、更海量的結構化交易數據,這樣就可以對更廣泛的交易數據類型進行分析,不僅僅包括POS或電子商務購物數據,還包括行為交易數據,例如Web伺服器記錄的互聯網點擊流數據日誌。
2.人為數據(HUMAN-GENERATED DATA)
非結構數據廣泛存在於電子郵件、文檔、圖片、音頻、視頻,以及通過博客、維基,尤其是社交媒體產生的數據流。這些數據為使用文本分析功能進行分析提供了豐富的數據源泉。
3.移動數據(MOBILE DATA)
能夠上網的智能手機和平板越來越普遍。這些移動設備上的App都能夠追蹤和溝通無數事件,從App內的交易數據(如搜索產品的記錄事件)到個人信息資料或狀態報告事件(如地點變更即報告一個新的地理編碼)。
4.機器和感測器數據(MACHINE AND SENSOR DATA)
這包括功能設備創建或生成的數據,例如智能電表、智能溫度控制器、工廠機器和連接互聯網的家用電器。這些設備可以配置為與互聯網路中的其他節點通信,還可以自動向中央伺服器傳輸數據,這樣就可以對數據進行分析。機器和感測器數據是來自新興的物聯網(IoT)所產生的主要例子。來自物聯網的數據可以用於構建分析模型,連續監測預測性行為(如當感測器值表示有問題時進行識別),提供規定的指令(如警示技術人員在真正出問題之前檢查設備)。
大數據分析是成功開展業務的重要組成部分。有效地使用數據,可以更好地理解企業的先前績效,使用像Smartbi這樣的商業智能軟體,可以協助業務人員管理者為未來的活動做出更好的決策。在公司運營的各個級別,可以採用多種方式利用數據。所有行業都使用四種類型的大數據分析。雖然Smartbi將這些類別分為幾類,但它們都鏈接在一起並相互構建。從最簡單的分析類型轉變為更復雜的分析方法,難度和所需資源也隨之增加。同時,增加的洞察力和價值水平也在增加。
閱讀原文
www.smartbi.com.cn
有用
|
分享
OPPO Reno9系列現已開售,至高享24期分期免息!
值得一看的手機相關信息推薦
OPPO Reno9系列,自研影像專用晶元,拍人自然有質感;16GB+512GB超速大內存,流暢加倍;高通8+旗艦晶元,暢快高能;官方商城以舊換新至高補貼3990元,立即購買!
OPPO廣告
四輪電動車報價2023款上汽大眾ID.4 X 煥新上市
值得一看的四輪電動車相關信息推薦
煥新品質,MEB平台傾心打造。綜合補貼後售價189,288元起!即刻訂購!
上海上汽大眾汽車銷售廣告
天翼雲電腦-靈活擴展\按需付費\雲端存儲\安全可靠!
租遠程電腦-天翼雲電腦-基礎版,2核4G80G硬碟50M帶寬,滿足簡單辦公,客戶服務等場景。天翼雲電腦可通過手機外接擴展塢\顯示器和鍵鼠等外設,還原完整桌面pc體驗!
天翼雲科技有限公司廣告
大家還在搜
大數據常見的四種數據類型
大數據的三個類型
大數據分析的數據類型
大數據有哪三種數據類型
大數據的三種數據類型
大數據分析分為三種
c語言的四大數據類型是什麼?
PHP中文網
2020-05-16
銀承是什麼意思是什麼
財梯網
11-10
Notime 美容儀面部儀器 家用射頻美容儀提拉緊致美容儀臉部美容器超聲波美容儀 超聲緊膚美容儀粉色
¥1099 元¥1200 元
購買
京東廣告
word打字會覆蓋後面的字怎麼辦
PHP中文網
04-01
13點贊
銀行下一步工作措施範文
8. 大數據存在的安全問題有哪些
【導讀】互聯網時代,數據已成為公司的重要資產,許多公司會使用大數據等現代技術來收集和處理數據。大數據的應用,有助於公司改善業務運營並預測行業趨勢。那麼,大數據存在的安全問題有哪些呢?今天就跟隨小編一起來了解下吧!
一、分布式系統
大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。
二.數據存取
大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。
三.數據不正確
網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。
四.侵犯隱私
大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。
五、雲安全性不足
大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。
以上就是小編今天給大家整理分享關於「大數據存在的安全問題有哪些?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
9. 央行緊急排查銀行與大數據公司合作,涉及10家平台
昨日(10月24日)下午,有消息稱,央行緊急調研要求銀行填寫是否與第三方數據公司開展合作。
排查內容涉及數據採集、信用欺詐、信用評分、風控建模方面,央行要求上報第三方數據公司的名字、股東背景、是否涉及爬蟲。
有銀行人士向消金時代證實了此消息,並稱:「我們沒有收到直接文件,雖然通知是人行發的,但是銀監局直接電話通知我們的,時間是本周二。」
網路上流傳的一份截圖(上圖)顯示,各企業 徵信 機構還被要求梳理是否與:同盾科技、魔蠍科技、新顏科技、集奧聚合、公信寶、白騎士、天機數據、立木徵信、聚信立、51信用卡等10家公司有業務或股權投資關聯。
各機構排查自身業務中是否存在違規爬蟲行為,如存在上述情況,請立即上報,對於存在違規爬蟲業務的要立即整改,不存在上述兩種情況的,請出具加蓋公章的書面承諾,並於10月24日前送至徵信管理處。
不過,另有截圖(下圖)顯示監管部門要求填表了解是否與上述除同盾科技以外9家公司有業務或股權投資關聯。
河北地區銀行人士向我們表示:「要求我們交的僅是文字說明,未涉及表格。」
根據了解,被點名的平台或許是各地方監管的附加要求。據消金時代核實,某中部地區銀行收到的通知內包含同盾科技,某北方地區銀行收到的通知則不包含同盾科技。
而上述10家平台,最近都不算太平。
9月6日,魔蠍科技被警方控制,高管被帶走,服務癱瘓,新顏科技CEO黃向前被帶走,聚信立被曝有警方進駐調查。
9月11日,公信寶被警方查封。
9月12日,集奧聚合深圳分公司有10多人被帶走。財新等媒體報道稱,集奧聚合北京辦公室也被深圳警方帶走多人,包括爬蟲數據接入負責人和合同負責人。
中秋節期間,同盾科技子公司信川科技法人代表、總經理徐斐和旗下數聚魔盒總經理童保華被警方帶走協助調查。財新等媒體報道稱,10月3日,黑龍江警方從同盾科技北京辦公室帶走多位從事爬蟲業務的子公司員工。
10月9日,有媒體曝出立木徵信於7月18日被查,法人劉勤楓及大部分員工被警方帶走。
白騎士、天機數據此前也均是市場上較為活躍的有爬蟲服務的平台,此前已暫停爬蟲服務。
而據財新報道,除配合調查外,包括新顏CEO黃向前、同盾科技的兩位相關業務負責人徐斐和童保華已被檢方批捕。
已進行多輪自查
一張統計表截圖(下圖)顯示,合作情況排查僅上報金融機構與數據公司在個人信息方面的合作情況,不包括企業信息合作。從此條來看,排查意在個人信息保護。
由於大數據行業動盪,對風險向來敏感的金融行業,早已開始多輪自查。9月,中國互聯網金融協會發出窗口指導,提示行業內機構應清查使用數據的來源是否合規。
城商行、農商行、消金公司等多家機構也暫停大數據風控合作業務。一家數據商人士表示,各機構要求數據商出具文件對是否涉及爬蟲業務進行說明。
上周,北京銀監局下發文件,規範金融機構和金融科技公司合作,嚴禁金融機構與以「大數據」為名竊取、濫用、非法買賣或泄露客戶信息的企業開展合作。
10月22日,北京金融局窗口指導摸排區內所有大數據企業是否存在違規爬蟲業務。
近期,央行也下發了《個人金融信息(數據)保護試行辦法》(以下簡稱:《辦法》)的徵求意見稿。據媒體披露,《辦法》中最嚴苛的一點是,除了依法設立的徵信機構之外,未經人民銀行批准,任何單位和個人不得從事個人金融信息的收集處理工作,以及對外提供 個人徵信 業務。
《辦法》規定,金融機構也可以通過外包服務開展業務,只是對外包服務的要求更高,金融機構要進行充分調研審查,評估外包服務公司的能力。
從前述排查來看,有業內人士認為,監管強調的是客戶信息來源是否合規,而非否定金融機構與數據機構合作形式。也有人認為,在《辦法》正式下達前,中小銀行應該不敢再合作。
打擊套路貸,影響自下而上
前年開始,全國開始對套路貸和掃黑除惡進行打擊。今年4月,最高人民法院、最高人民檢察院發布《關於辦理實施「軟暴力」的刑事案件若干問題的意見》,打擊范圍升級。
10月11日至12日,「全國掃黑除惡專項斗爭第二次推進會」在陝西西安召開,對網貸涉黑嚴打的監管風暴持續強化。10月21日,兩高兩部正式發布 《放貸意見》 ,界定無牌發放年化36%以上 貸款 達一定條件的非法放貸以非法經營罪處罰。
對套路貸、非法放貸的監管日益趨嚴。而很多大數據風控公司與「714高炮」等現金貸平台合作密切,甚至有公司親自下場放貸,據財新報道,被查大數據公司均由於714高炮涉及的 催收 引發命案有關,公安對大數據公司是有針對性的介入。
網路現金貸暴力催收,引發數據行業動盪,有持牌機構人士稱:「最近的數據公司被抓,導致貸款業務風控模型可控程度急速下降。」風波影響可謂「自下而上」。
除了涉及現金貸問題,不少使用爬蟲技術的大數據風控公司本身就有致命缺陷。
對大數據風控服務商的強監管風暴,讓「爬蟲」一詞常登熱點,爬蟲技術中立也被業內反復強調。
一般來說,大數據風控行業的數據來源分幾種,數據源接入、機構 共享 及爬蟲。其中,爬蟲來的數據更為客觀和數量龐大,在數據積累初期作用很大,但也常常採用籠統授權的方式爬取用戶的非公開個人信息。
有業內人士向消金時代表示:「爬蟲乾的是臟活累活,市場過度競爭導致無利可圖,性價比低,所以企業只能把盈利點放在爬蟲以外的地方。聚信立、公信寶、魔蠍科技等數據公司都在做的事情就是把爬蟲數據入庫,如果僅輸出評分倒也不至於引發強烈後果,但很多都把通話記錄賣給催收,個人基本信息賣給營銷公司等,涉嫌販賣個人數據等問題。」
根據2017年6月施行的《最高人民法院、最高人民檢察院關於辦理侵犯公民個人信息刑事案件適用法律若干問題的解釋》,(一)出售或者提供行蹤軌跡信息,被他人用於犯罪的;(二)知道或者應當知道他人利用公民個人信息實施犯罪,向其出售或者提供的;(三)非法獲取、出售或者提供行蹤軌跡信息、通信內容、徵信信息、財產信息五十條以上的;(四)非法獲取、出售或者提供住宿信息、通信記錄、健康生理信息、交易信息等其他可能影響人身、財產安全的公民個人信息五百條以上的;(五)非法獲取、出售或者提供第三項、第四項規定以外的公民個人信息五千條以上的;(六)數量未達到第三項至第五項規定標准,但是按相應比例合計達到有關數量標準的等條件達到任一條,應當認定為刑法第二百五十三條之一規定的「情節嚴重」。
但是同時,上周北京銀監局下發的文件也肯定了大數據技術的價值,「充分運用大數據技術,加大風險監測和預警力度」。
在數據治理體系逐漸完善的背景下,大數據在金融行業的應用仍有無限前景。
10. 大數據發展的前景怎麼樣
大數據主要的三大就業方向:
大數據系統研發類人才;
大數據應用開發類人才;
大數據分析類人才。
大數據十大就業職位:
一、ETL研發
隨著數據種類的不斷增加,企業對數據整合專業人才的需求越來越旺盛。ETL開發者與不同的數據來源和組織打交道,從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要。
ETL研發,主要負責將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
目前,ETL行業相對成熟,相關崗位的工作生命周期比較長,通常由內部員工和外包合同商之間通力完成。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。
二、Hadoop開發
Hadoop的核心是HDFS和MapRece.HDFS提供了海量數據的存儲,MapRece提供了對數據的計算。隨著數據集規模不斷增大,而傳統BI的數據處理成本過高,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長。如今具備Hadoop框架經驗的技術人員是最搶手的大數據人才。
三、可視化(前端展現)工具開發
海量數據的分析是個大挑戰,而新型數據可視化工具如Spotifre,Qlikview和Tableau可以直觀高效地展示數據。
可視化開發就是在可視開發工具提供的圖形用戶界面上,通過操作界面元素,由可視開發工具自動生成應用軟體。還可輕松跨越多個資源和層次連接您的所有數 據,經過時間考驗,完全可擴展的,功能豐富全面的可視化組件庫為開發人員提供了功能完整並且簡單易用的組件集合,以用來構建極其豐富的用戶界面。
過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。
四、信息架構開發
大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
五、數據倉庫研究
數據倉庫是為企業所有級別的決策制定過程提供支持的所有類型數據的戰略集合。它是單個數據存儲,出於分析性報告和決策支持的目的而創建。為企業提供需要業務智能來指導業務流程改進和監視時間、成本、質量和控制。
數據倉庫的專家熟悉Teradata、Neteeza和Exadata等公司的大數據一體機。能夠在這些一體機上完成數據集成、管理和性能優化等工作。
六、OLAP開發
隨著資料庫技術的發展和應用,資料庫存儲的數據量從20世紀80年代的兆(M)位元組及千兆(G)位元組過渡到現在的兆兆(T)位元組和千兆兆(P)位元組,同時,用戶的查詢需求也越來越復雜,涉及的已不僅是查詢或操縱一張關系表中的一條或幾條記錄,而且要對多張表中千萬條記錄的數據進行數據分析和信息綜合。聯機分析處理(OLAP)系統就負責解決此類海量數據處理的問題。
OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。
七、數據科學研究
這一職位過去也被稱為數據架構研究,數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作 將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。因此,數據科學家首先應當具備優秀的溝通技能,能夠同時將數據分析結果解釋給IT部門和業務部門領導。
總的來說,數據科學家是分析師、藝術家的合體,需要具備多種交叉科學和商業技能。
八、數據預測(數據挖掘)分析
營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。
九、企業數據管理
企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗 和規范化,將數據導入數據倉庫中,成為一個可用的版本。然後,通過報表和分析技術,數據被切片、切塊,並交付給成千上萬的人。擔當數據管家的人,需要保證 市場數據的完整性,准確性,唯一性,真實性和不冗餘。
十、數據安全研究
數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。數據安全研究員還需要具有較強的管理經驗,具備運維管理方面的知識和能力,對企業傳統業務有較深刻的理解,才能確保企業數據安全做到一絲不漏。