導航:首頁 > 網路數據 > 大數據挖掘書推薦

大數據挖掘書推薦

發布時間:2023-01-06 08:41:38

⑴ 提高數據分析能力必讀書籍推薦

【導讀】隨著互聯網的發展,數據分析已經成了非常熱門的職業,大數據分析師也成了社會打工人趨之若鶩的職業,不僅高薪還沒有很多職場微世界的繁瑣事情,不過要想做好數據分析工作也並不簡單,參看一些好書,對行進數據分析會更有幫助!今天小編就給大家帶來了提高數據分析能力必讀書籍推薦,希望對各位小夥伴有所幫助。

數據分析進階

1.《精益數據分析》

本書展示了怎樣驗證自己的設想、找到實在的客戶、打造能掙錢的產品,以及行進企業知名度。並經過30多個事例剖析,深化展示了怎樣將六個典型的商業辦法運用到各種規劃的精益創業、數據分析根底,和數據驅動的思維辦法中,找到企業添加的首先要害方針。

2.《數學之美》

本書把深邃的數學原理講得愈加通俗易懂,讓非專業讀者也能領會數學的魅力。讀者經過具體的比方學到的是考慮問題的辦法 ——
怎樣化繁為簡,怎樣用數學去向理工程問題,怎樣跳出固有思維不斷去考慮立異。

數據挖掘

1.《數據挖掘導論(無缺版)》

本書全面介紹了數據挖掘,包括了五個主題:數據、分類、相關剖析、聚類和異常檢測。除異常檢測外,每個主題都有兩章。前一章包括根柢概念、代表性演算法和點評技術,然後一章談論高檔概念和演算法。這樣讀者在透徹地了解數據挖掘的根底的一同,還可以了解更多重要的高檔主題。

2.《數據挖掘概念與技術》

本書無缺全面地敘說數據挖掘的概念、辦法、技術和最新研討翻開。本書對前兩版做了全面修訂,加強和從頭組織了全書的技術內容,要害論說了數據預處理、再三辦法挖掘、分類和聚類等的內容,還全面敘說了OLAP和離群點檢測,並研討了挖掘網路、凌亂數據類型以及重要運用范疇。

3.《數據挖掘與數據化運營實戰:思維、辦法、技巧與運用》

現在有關數據挖掘在數據化運營實踐范疇比較全面和系統的作品,也是諸大都據挖掘書本中為數不多的交叉許多實在的實踐運用事例和場景的作品,更是發明性地針對數據化運營中不同剖析挖掘課題類型,推出逐一對應的剖析思路集錦和相應的剖析技巧集成,為讀者供給「菜單化」實戰錦囊的作品

作為數據分析師,如果僅僅安於現狀,不注重自我行進,那麼,不久的將來,你很或許成為公司的「人肉」取數機,影響往後的工作生計。

以上就是小編今天給大家整理分享關於「提高數據分析能力必讀書籍推薦」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,一直學習,這樣更有核心競爭力與競爭資本。

⑵ 大神,關於大數據處理方面的書籍有推薦嗎

《大數據處理之來道》作者:自何金池
分析比較了當下流行的大數據處理技術的優劣及適用場景,包括Hadoop、Spark、Storm、Dremel、Drill等,詳細分析了各種技術的應用場景和優缺點;同時闡述了大數據下的日誌分析系統,重點講解了ELK日誌處理方案;最後分析了大數據處理技術的發展趨勢,重點從各種技術的起源、設計思想、架構等方面闡述大數據處理之道。

⑶ 推薦一本關於大數據,數據分析類似的書籍

1、《Hadoop權威指南》
現在3.1版本剛剛發布,但官方並不推薦在生產環境使用。作為hadoop的入門書籍,從2.x版本開始也不失為良策。
本書從Hadoop的緣起開始,由淺入深,結合理論和實踐,全方位地介紹Hadoop這一高性能處理海量數據集的理想工具。剛剛更新的版本中,相比之前的版本增加了介紹YARN , Parquet , Flume, Crunch , Spark的章節,非常適合於Hadoop 初學者。
2、《Learning Spark》
《Spark 快速大數據分析》是一本為Spark 初學者准備的書,它沒有過多深入實現細節,而是更多關註上層用戶的具體用法。不過,本書絕不僅僅限於Spark 的用法,它對Spark 的核心概念和基本原理也有較為全面的介紹,讓讀者能夠知其然且知其所以然。
3、《Spark機器學習:核心技術與實踐》
以實踐方式助你掌握Spark機器學習技術。本書採用理論與大量實例相結合的方式幫助開發人員掌握使用Spark進行分析和實現機器學習演算法。通過這些示例和Spark在各種企業級系統中的應用,幫助讀者解鎖Spark機器學習演算法的復雜性,通過數據分析產生有價值的數據洞察力。

⑷ 市面上大數據的書不少,如果只挑一本,哪本值得推薦

市場上大數據的說不少,但是你要挑一本的話,其實我還是覺得你在網路上選擇一些自己可以公開的數據。因為每個人需要的每個程度的書是不一樣的,你可以選擇購買一些書的電子版本。電子版本反而比書籍會更好一點。

⑸ 有什麼比較好的大數據入門的書推薦

比較好的大數據入門的書有《大數據日知錄:架構與演算法》。

《大數據日知錄:架構與演算法》是2014年電子工業出版社出版的圖書,作者是張俊林。《大數據日知錄:架構與演算法》從架構與演算法的角度全面梳理了大數據存儲與處理的相關技術。大數據技術具有涉及的知識點異常眾多且正處於快速演進發展過程中等特點。

其技術點包括底層的硬體體系結構、相關的基礎理論、大規模數據存儲系統、分布式架構設計、各種不同應用場景下的差異化系統設計思路、機器學習與數據挖掘並行演算法以及層出不窮的新架構、新系統等。

主要介紹

本書對眾多紛繁蕪雜的相關技術文獻和系統進行了擇優汰劣並系統性地對相關知識分門別類地進行整理和介紹,將大數據相關技術分為大數據基礎理論、大數據系統體系結構、大數據存儲。

以及包含批處理、流式計算、互動式數據分析、圖資料庫、並行機器學習的架構與演算法以及增量計算等技術分支在內的大數據處理等幾個大的方向。通過這種體系化的知識梳理與講解,相信對於讀者整體和系統地了解、吸收和掌握相關的技術有很大的幫助與促進作用。

⑹ 數據挖掘從入門到進階 要看什麼書

數據挖掘從入門到進階 要看什麼書
做數據挖掘也有些年頭了,寫這篇文一方面是讓我寫篇文,朋友作為數據挖掘方面的參考,另一方面也是有拋磚引玉之意,希望能夠和一些大牛交流,相互促進,讓大家見笑了。
Q&A:
Q:學習,最近在看集體智慧編程,樓主可否推薦下數學基礎的書?
A:我數學本身也不好 自己也在偷偷補 因為看的不多也不能給出個提綱式的建議 只能給您列下我近期看過和在看的覺得不錯的書 您看做參考吧
矩陣方面 Kaare Brandt Petersen的《The Matrix Cookbook》 網易公開課中的《麻省理工公開課:線性代數》
2.概率論與數理統計方面 JohnA.Rice 的《數理統計與數據分析》《統計建模與R軟體》
3.微積分方面 網易公開課中的《麻省理工學院公開課:單變數微積分》
其實您只要有了
1、概率論與數理統計以及其他統計學基礎
2、扎實的線性代數功底
3、微積分(如果能學習下實變函數和泛函分析就更好了)
這幾方面的基礎 基本上機器學習的大部分演算法您都具有了其數學基礎
如果您覺得我說的太泛 可以先看看《模式分類》這本書的附錄中的數學基礎 這樣您就大體有個印象了
入門:
數據挖掘入門的書籍,中文的大體有這些:
Jiawei Han的《數據挖掘概念與技術》
Ian H. Witten / Eibe Frank的《數據挖掘 實用機器學習技術》
Tom Mitchell的《機器學習》
TOBY SEGARAN的《集體智慧編程》
Anand Rajaraman的《大數據》
Pang-Ning Tan的《數據挖掘導論》
Matthew A. Russell的《社交網站的數據挖掘與分析》
很多人的第一本數據挖掘書都是Jiawei Han的《數據挖掘概念與技術》,這本書也是我們組老闆推薦的入門書(我個人覺得他之所以推薦是因為Han是他的老師)。其實我個人來說並不是很推薦把這本書。這本書什麼都講了,甚至很多書少有涉及的一些點比如OLAP的方面都有涉獵。但是其實這本書對於初學者不是那麼友好的,給人一種教科書的感覺,如果你有大毅力讀完這本書,也只能獲得一些零碎的概念的認識,很難上手實際的項目。
我個人推薦的入門書是這兩本:TOBY SEGARAN的《集體智慧編程》和Ian H. Witten / Eibe Frank的《數據挖掘 實用機器學習技術》
《集體智慧編程》很適合希望了解數據挖掘技術的程序員,這本書講述了數據挖掘裡面的很多實用的演算法,而且最重要的是其講述的方式不是像Han那種大牛掉書袋的講法,而是從實際的例子入手,輔以python的代碼,讓你很快的就能理解到這種演算法能夠應用在哪個實際問題上,並且還能自己上手寫寫代碼。唯一的缺點是不夠深入,基本沒有數學推導,而且不夠全面,內容不夠翔實。不過作為一本入門書這些缺點反而是幫助理解和入門的優點。
推薦的另一本《數據挖掘 實用機器學習技術》則相對上一本書要稍微難一點,不過在容易理解的程度上依然甩Han老師的書幾條街,其作者就是著名的Weka的編寫者。整本書的思想脈絡也是盡可能的由易到難,從簡單的模型入手擴展到現實生活中實際的演算法問題,最難能可貴的是書的最後還稍微講了下如何使用weka,這樣大家就能在學習演算法之餘能夠用weka做做小的實驗,有直觀的認識。
看完上述兩本書後,我覺得大體數據挖掘就算有個初步的了解了。往後再怎麼繼續入門,就看個人需求了。
如果是只是想要稍微了解下相關的技術,或者作為業余愛好,則可隨便再看看Anand Rajaraman的《大數據》以及Matthew A. Russell的《社交網站的數據挖掘與分析》。前者是斯坦福的」Web挖掘」這門課程的材料基礎上總結而成。選取了很多數據挖掘里的小點作為展開的,不夠系統,但講的挺好,所以適合有個初步的了解後再看。後者則亦是如此,要注意的是裡面很多api因為GFS的緣故不能直接實驗,也是個遺憾
如果是繼續相關的研究學習,我認為則還需要先過一遍Tom Mitchell的《機器學習》。這本書可以看做是對於十多年前的機器學習的一個綜述,作者簡單明了的講述了很多流行的演算法(十年前的),並且對於各個演算法的適用點和特點都有詳細的解說,輕快地在一本薄薄的小書里給了大家一個機器學習之旅。
進階:
進階這個話題就難說了,畢竟大家對於進階的理解各有不同,是個仁者見仁的問題。就我個人來說,則建議如下展開:
視頻學習方面:
可以看看斯坦福的《機器學習》這門課程的視頻,最近聽說網易公開課已經全部翻譯了,而且給出了雙語字幕,更加容易學習了^_^
書籍學習方面:
我個人推薦的是這樣:可以先看看李航的《統計學習方法》,這本書著重於數學推導,能讓我們很快的對於一些演算法的理解更加深入。有了上面這本書的基礎,就可以開始啃一些經典名著了。
這些名著看的順序可以不分先後,也可以同時學習:
Richard O. Duda的《模式分類》這本書是力薦,很多高校的數據挖掘導論課程的教科書便是這本(也是我的數據挖掘入門書,很有感情的)。如果你不通讀這本書,你會發現在你研究很多問題的時候,甚至一些相對簡單的問題(比如貝葉斯在高斯假設下為什麼退化成線性分類器)都要再重新回頭讀這本書。
Christopher M. Bishop的《Pattern Recognition And Machine Learning》這本書也是經典巨著,整本書寫的非常清爽。
The Elements of Statistical Learning》這本書豆友有句很好的吐槽「機器學習 — 從入門到精通」可以作為這本書的副標題。可以看出這本書對於機器學習進階的重要性。值得一說的是這本書雖然有中文版,但是翻譯之爛也甚是有名,聽說是學體育的翻譯的。
Hoppner, Frank的《Guide to Intelligent Data Analysis》這本書相對於上面基本經典巨著並不出名,但是寫的甚好,是knime官網上推薦的,標榜的是解決實際生活中的數據挖掘問題,講述了CRISP-DM標准化流程,每章後面給出了R和knime的應用例子。
項目方面:
事實上,我覺得從進階起就應該上手一些簡單的項目了。如果不實踐只是看書和研究演算法,我覺得是無法真正理解數據挖掘的精髓所在的。打個簡單的比方,就算你看完了C Primer、effective C 等等書籍,如果自己不寫C ,那麼自己也就會停留在hello world的級別。實踐出真知非常切合數據挖掘這門學科,實際上手項目後才會發現什麼叫」80%的准備,20%的建模」,real world的問題我認為並不是僅僅靠modeling就能很好的解決的。詳細的可以看看《Guide to Intelligent Data Analysis》就能略知一二。如果上手做推薦或者一些簡單的項目,也可以考慮用用mahout,推薦的入門手冊是《mahout in action》。項目問題說來話長,有時間會以CRISP流程為引單獨作文,這里也就不詳談了。
軟體方面:
我常用而且推薦的軟體有如下,這里只是簡單的列出,以後有時間再詳細分析和寫出入門:
Weka Java的軟體,可以集成到自己的項目中
Orange 一個用python寫的數據挖掘開源軟體,界面做的很漂亮,可以做圖形化實驗,也可以用python調用編程。
Knime 和Orange類似,特點是可以集成weka和R等開源軟體
SAS的EM模塊以及R 還有最最經典的matlab大大
這里有篇文有簡要的介紹http://www.oschina.net/question/12_14026
再往後:
再往後的其實就是我就是覺得是學數學了,然後就是深入讀一些你感興趣的topic的書籍和paper,接項目,做項目了。發展有數據分析師或者去專門的企業做數據研究員,當然混學術界的我就不清楚了。
初略寫完發現成一篇長文了,最近也是在做一個用眼底照片預測stroke的項目,比較忙,等閑下來以後也會寫些演算法或者軟體或者實際項目的心得的文。當然也只是我個人粗淺的想法,也希望能和大家有所交流,相互促進,我個人的郵箱是[email protected],有什麼問題可以再帖子里討論,也可郵件交流^_^

⑺ 想從零開始自學大數據,請問有哪些書籍推薦

在人人高呼的大數據時代,你是想繼續做一個月薪6K+的碼農,還是想要翻身學習成為炙手可熱名企瘋搶的大數據工程師呢?
隨著互聯網技術的發展,大數據行業前景非常被看好,有很多朋友對大數據行業心嚮往之,卻苦於不知道該如何下手,或者說學習大數據不知道應該看些什麼書。作為一個零基礎大數據入門學習者該看哪些書?今天就給大家分享幾本那些不容錯過的大數據書籍。

1、《數據挖掘》
這是一本關於數據挖掘領域的綜合概述,本書前版曾被KDnuggets的讀者評選為最受歡迎的數據挖掘專著,是一本可讀性極佳的教材。它從資料庫角度全面系統地介紹數據挖掘的概念、方法和技術以及技術研究進展,並重點關注近年來該領域重要和最新的課題——數據倉庫和數據立方體技術,流數據挖掘,社會化網路挖掘,空間、多媒體和其他復雜數據挖掘。
2、《Big Data》
這是一本在大數據的背景下,描述關於數據建模,數據層,數據處理需求分析以及數據架構和存儲實現問題的書。這本書提供了令人耳目一新的全面解決方案。但不可忽略的是,它也引入了大多數開發者並不熟悉的、困擾傳統架構的復雜性問題。本書將教你充分利用集群硬體優勢的Lambda架構,以及專門用來捕獲和分析網路規模數據的新工具,來創建這些系統。
3、《Mining of Massive Datasets》
這是一本書是關於數據挖掘的。但是本書主要關注極大規模數據的挖掘,也就是說這些數據大到無法在內存中存放。由於重點強調數據的規模,所以本書的例子大都來自Web本身或者Web上導出的數據。另外,本書從演算法的角度來看待數據挖掘,即數據挖掘是將演算法應用於數據,而不是使用數據來「訓練」某種類型的機器學習引擎。

⑻ 有什麼比較好的大數據入門的書推薦

1. 《大數據分析:點「數」成金》
你現在正坐在一座金礦上,這些金子或被埋於備份,或正藏在你眼前的數據集里,他們是提升公司效益、拓展新的商業關系、制定更直觀決策的秘訣所在,足以使你的企業更上一層樓。你將明白如何利用、分析和駕馭數據來獲得豐厚回報。作者Frank Ohlhorst厚積數十年的技術經驗寫了此書。該書介紹了如何將大數據應用於各行各業,你將了解到如何對數據進行挖掘,怎樣從數據中揭示趨勢並轉化為競爭策略及提取價值的方法。這些更有意思也是更有效的方法能夠提升企業的智能化水平,將有助於企業解決實際問題,提升利潤空間,提高生產率並發現更多的商業機會。
2.《大數據時代》
《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托被譽為」大數據商業應用第一人」,擁有再哈佛大學、牛津大學和新加坡國立大學等多個互聯網研究重鎮任教經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。該書主要講了大數據時代的變革、商業變革和管理變革。《大數據時代》認為大數據的核心就是預測。大數據為人類的生活創造了前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。
3.《雲端時代殺手級應用:大數據分析》
《雲端時代殺手級應用:大數據分析》分析了什麼是大數據、大數據大商機、技術與前瞻三個部分。第一個部分介紹大數據分析的概念,以及企業、政府部門可應用的范疇。什麼是大數據分析?與個人與企業有什麼關系?將對全球產業造成什麼樣的沖擊?第二部分完整介紹了大數據在各產業的應用實況,為企業及政府部門提供應用的方向。提供了全球各地的實際應用案例,涵蓋了零售、金融、政府部門、能源、製造、娛樂等各個行業,充分展示了大數據分析產生的效益。第三部分則簡單介紹了大數據分析所需要的技術及未來的發展趨勢,為讀者提供了應用與研究的方向。
4.《大數據》
本書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例奧巴馬建設」前所未有的開放政府「的雄心、公開財務透明的曲折。《數據質量法》背後隱情,全國醫改法案的波瀾、統一身份證的百年糾結以及雲計算、Facebook和推特等社交媒體等等,為您一一講解數據創新給社會帶來的種種變革和挑戰。
5.《大數據互聯網大規模數據挖掘與分布式處理》。
該書主要講的是海量數集數據挖掘常用的演算法。書中分析了海量數據集數據挖掘常用的演算法,介紹了目前WEB端應用的許多重要話題等。

⑼ 《Hadoop與大數據挖掘》epub下載在線閱讀,求百度網盤雲資源

《Hadoop與大數據挖掘》(張良均 樊哲 位文超 劉名軍等 著)電子書網盤下載免費在線閱讀

鏈接:https://pan..com/s/1VZ3pQ_TdIVoJzwp1QNcUnA 提取碼:kx9d

書名:Hadoop與大數據挖掘

作者:張良均 樊哲 位文超 劉名軍等 著

出版社:機械工業出版社

出版年份:2017-6-1

頁數:322

內容簡介:

這是一本適合教學和零基礎自學的Hadoop與大數據挖掘的教程,即便你完全沒有Hadoop編程基礎和大數據挖掘基礎,根據本書中的理論知識和上機實踐,也能迅速掌握如何使用Hadoop進行大數據挖掘。全書主要分為兩篇:基礎篇(1-7章),首先從宏觀上介紹了大數據相關概念和技術,然後逐一對Hadoop、Hive、HBase、Pig、Spark、Oozie等一系列大數據技術的概念、原理、架構,以及企業應用方法進行了詳細介紹,同時配有大量的案例。掌握了這些內容,就具備了大數據技術的基礎;挖掘實戰篇(8章),主要是一個企業級大數據應用項目——電子商務智能推薦系統。通過分析應用背景、構建系統,使讀者了解針對系統的每一層應用使用什麼大數據技術來解決問題。涉及的流程有數據採集、數據預處理、模型構建等,在每一個流程中會進行大數據相關技術實踐,運用實際數據來進行分析,使讀者切身感受到利用大數據技術解決問題的魅力。

⑽ 數據挖掘參考書推薦

《數據挖掘:概念與技術(原書第3版)》入門首選。學習數據挖掘,不能沒有軟體工具,spss,sas,R語言,你可以學這些工具,當然excl也不錯。

閱讀全文

與大數據挖掘書推薦相關的資料

熱點內容
在java的菜單如何導入文件 瀏覽:982
現在什麼網站銷量最高 瀏覽:760
angularjsclass定義 瀏覽:157
ug數控編程怎麼導出程序 瀏覽:466
cmdb文件 瀏覽:710
鵯文件夾 瀏覽:763
網路輿情應對的基本理念是什麼 瀏覽:433
word2007層次結構 瀏覽:456
去掉文件名的數字 瀏覽:713
word公司 瀏覽:710
淘寶店數據包怎麼上傳 瀏覽:341
pbt文件 瀏覽:204
HX基礎編程怎麼改變字體 瀏覽:876
怎麼開網路教學 瀏覽:915
630升級工程武器 瀏覽:936
用換機助手接收的軟體文件在哪找 瀏覽:282
閱達app一教一輔五年級有哪些 瀏覽:7
win10系統用f2調節音量 瀏覽:19
壓縮文件密碼器 瀏覽:840
線下活動數據分析有哪些 瀏覽:314

友情鏈接