❶ 交通大數據行業的現狀是什麼
交通大數據行業的現狀是什麼?作為人類行為的重要組成部分和重要條件之一,對大數據的感知是最為迫切的。近年來,我國的智能交通發展迅速,許多技術手段已達到國際領先水平。問題和困難,但是,非常突出,也從城市發展的角度,智能交通的潛在價值並沒有被有效的挖掘:知覺和交通信息的集合是有限的,大量的數據管理系統中存在的不能共享使用,有效的交通情況分析預測疲勞,公共交通信息服務難以滿足需求。雖然有不同的建築概念和投資在不同地區,整個智能交通的現狀特點是低效率和智能不足,這使得許多先進的技術和設備未能發揮應有的作用,還會導致大量的投資浪費。最重要的是在困難時期的損害較小的數據:管理理念和技術設備模擬時間只有在某種程度上,和關系資料庫管理系統的分析只能嚴格的特定關系,對於大規模數據,尤其是半結構化和非結構化數據。
雖然數字化已經基本實現,但是數字化和數字化並不是一回事。它只是提高了本地收集、存儲和應用的效率,但本質上沒有太大的改變。大數據時代的到來,必將為解決難題帶來巨大機遇。大數據必然要求我們改變小數據條件下的盲目和精確計算,但更好地面對困惑,把握宏觀形勢;大數據不可避免地要求我們關注的不是因果關系而是相關性,這使得處理大量的非結構化數據成為可能,促使我們將一切都數字化,最終實現方便高效的管理。
交通大數據行業的現狀是什麼?目前,大數據在交通中的應用主要有兩個方面。一方面,大數據感測器數據可以用來了解車輛的交通密度,合理的道路規劃可以包括單車道的路線規劃。另一方面,可以利用大量的實時數據實現信號量的實時調度,提高現有線路的運行能力。信號燈的科學布置是一項復雜的系統工程,需要利用大數據計算平台制定出更加合理的方案。科學信號系統將使現有道路的通行能力提高約30%。在美國,政府基於特定路段的交通事故信息增加了更多的交通信號燈,從而將事故發生率降低了50%以上。依託大數據實現機場航班起降,提高航班管理效率。航空公司可以利用大數據來增加乘客容量和降低運營成本。鐵路利用大數據有效安排客運和貨運列車,提高效率和降低成本。
交通大數據行業的現狀如何?這個領域的大數據工程師是這樣的,作為人類行為的重要組成部分和重要條件之一,對大數據的感知也是最為迫切的。近年來,我國的智能交通得到了快速發展,你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本站的其他文章進行學習。
❷ 交通大數據分析會對智慧交通產生那些影響
隨著這些年我國城市化發展的加速,城市交通擁堵、交通污染日益嚴重,交通事故頻繁發生。眾所周知,智能交通成為改善城市交通的關鍵策略。因此,及時、准確獲取交通大數據並構建交通數據處理模型是建設智能交通的前提,而這一難題可以通過大數據技術得到解決。
交通行業現狀
我國智能交通發展始於上世紀90年代,在「十二五」規劃中,我國交通部進一步明確未來智能交通運輸的發展目標,例如,感知識別、網路傳輸、智能處理和數據挖掘等。在改善結構調整和城際溝通的支撐、引領雙重作用,成為城市交通最重要的發展領城。包括大數據等現代先進技術的應用,提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
我國新型城鎮化將需要形成城市群內部城市之間、城市內部的軌道交通系統,交通運輸環境進一步改善。包括大數據等現代先進技術的應用,目的在於提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
目前遇到的問題
1、海量數據
軌道交通系統每時每刻都在產生大量數據,來自故障維修系統、實時監控系統、項目實施進度系統、物資物料統計系統等,且數據增長速度越來越快,這些數據的價值在哪?該如何利用提升地鐵運營效率,確保項目交付的及時監控。
2.數據認知
大多數傳統系統,故障維修系統,實時監控系統,物資物料統計系統中,已有簡單的分析統計圖表,但數據格式比較單一,靈活性差,交互性低,管理者難以對數據有很好的認知。
3、管理決策
大數據運營在地鐵網路化、大客流運營常態下愈發凸現其對軌道交通安全、高效運行和乘客服務方面的重要作用,能迅速從底層數據中提取關鍵數據,以數據驅動運營方向,對決策提供科學支撐。
現在很多地方的交通大數據系統都用的BI平台,比如永洪科技,一般的大數據分析系統分為3個層次:
1、數據層以及建模層:整合交通行業各信息系統,打破信息孤島,實現數據共享。數據決策方面、銷售方面、運營方面關心的指標,建立不同分析主題集市。
2、業務層:梳理交通行業指標,將分析結果推送至展現層。
3、展現層:以豐富美觀的圖表展現方式,靈活多變的交互方式,將分析結果呈現給各角色管理人員。
基本上現在的大數據分析平台都可以做到以下幾個方面:
1、基於交通數據分析平台,決策層、管理層可能洞察軌交運行狀況。
2、應對軌交各系統數據量的迅速增長,基於明細數據,任意業務的計算及展現,可達到秒級響應。
3、運營和分析部門都能做部分自服務分析,以滿足實時探索分析需求。
4、能夠快速響應新的分析需求和變化,提高工作效率 。
❸ 互聯網+交通」 大數據時代下的智能交通
互聯網+交通」:大數據時代下的智能交通
早上十點,張先生准備從位於城南的公司出發去城北的咖啡廳見客戶。出發之前,他打開手機導航APP,選擇了一條車流量最少、交通狀況最好的出行線路。二十分鍾後,張先生順利抵達目的地。令他感到舒心的是,咖啡廳附近新建了停車場,以往他可是因為有急事卻找不到停車位吃了好幾次罰單。和客戶寒暄的過程中,張先生得知客戶這次沒開車,而是選擇了打車軟體,原本40元的車程,他只花了十幾元。
如今,越來越多的人和張先生一樣感受著智能交通帶來的便利。但是他們可能並不知道,經常遇到的攝像頭、電子卡口、電子警察等系統,它們在保障城市安全、維持交通秩序的同時,也在不斷產生大量數據信息,不僅能夠節約時間,也能大大提高交通工具和道路的使用效率,減少能耗。
在「互聯網+」背景下,智能交通大數據技術的應用,不僅將「先知」逐漸變成現實,更建立起車、路、人之間的網路,通過整合信息,最終為人(車內的人和關注車內人的人)提供服務,使得交通更加智能、精細和人性;對管理者而言則大大提高管理者獲取數據的能力,提高他們的決策能力和管理交通的能力。
一、「互聯網+交通」的表現形式
2015年3月5日,李克強總理在政府工作報告中首次提出「互聯網+」行動計劃。互聯網與傳統行業的融合發展將從全流程上改造傳統行業,從而產生新的業態。互聯網與交通的碰撞也形成了「線上資源合理分配、線下高效優質運行」的新格局。
早在2011年底,「互聯網+交通」已初見端倪。鐵路推出了網路訂購火車票的新舉措,讓百姓利用電腦、手機,通過網路,足不出戶就能買到火車票;民航行動更快,很早就實現了網路訂票,現在通過大數據分析,通過手機APP可實現手機購票值機、查看航班動態等功能;而大力推進高速公路ETC聯網發展,則是公路方面推進網路化的措施。此外,人們平日出行開車也越來越離不開導航系統、打車軟體。
1. 事前預判
我們在生活中,總會有感覺到交通不方便的地方,如飛機晚點、延誤,超級大堵車……如此這些,已經成為我們生活中習以為常的事情。交通永遠不會有發展到最完美的時候,人類會不斷提出新的要求以改善舒適度。
以出行高峰時段的交通擁堵為例,智能交通能夠提高人們出行的計劃性,通過他人的出行數據,預備出行者可以提早知曉不久後的某時段交通預計的流量情況,以此妥善安排自身的出行。其次,智能交通可以提高出行的可靠性,即例如甲要從A地去B地,必經路線的堵車已經無法避免,提高出行可靠性就在於可以通過智能交通的技術手段,根據以往同一時段該路線的交通狀況,預估同樣出行方式下將可能多耗費的時間。再者,智能交通應用在汽車上的自動避讓和制動等功能還可以在一定程度上提高出行的安全性。
總而言之,以智能交通的技術手段提高信息採集強度及採集量,並提高其數據處理水平,繼而把所得信息通過各種不同渠道傳送給每個有需要的人,智能交通正在提高整個交通系統的應變性和個人出行的應變性。
幾年前,海康威視已經布局大數據和雲計算,並在武漢市成立了大數據和雲計算研發中心。目前,海康威視已推出了大數據的初步應用,主要在三個方面:人臉數據的大庫檢索、海量卡口數據的高效檢索分析和案事件數據的分析。
大數據的魅力在於我們可以從數據中找規律,它能使原來的「事後檢索」變成「事前預判」。海康威視大資料庫檢索,可以做到將犯罪分子人臉、作案車輛等特徵圖片放進視頻圖像庫里進行搜索比對,尋找犯罪嫌疑人的蹤跡。
例如,在南方某座特大城市,針對某系列案件,警方運用海康威視的大數據技術,通過大量信息的檢索、比對和分析,發現嫌疑人每次作案前均會到某個地方落腳的規律。當地警方提前在落腳點布防,成功抓獲了准備再次作案的嫌疑人。基於大數據的雲計算搜索,就像網路搜索關鍵詞一樣迅速找到想要的東西,不需要像從前一樣由多名警察一幀一幀盯著事發地點的監控錄像,尋找作案嫌疑人。
大數據還必須做到「秒級響應」,反應遲緩的話,大數據也就失去了價值。海康威視在多個城市的電子卡口系統中應用了大數據技術,在上百億條車輛記錄中快速搜索,幾秒鍾甚至零點幾秒鎖定結果。在此基礎上,可以更好地實現如套牌車輛研判、跟車關聯分析、違法多發時間和地點研判、交通流量分析和交通誘導等應用。
2. 調整更改
在傳統的規劃過程中,設計部門根據對現狀的判斷和經驗的積累,容易對交通項目進行個人意志和團隊意志的主觀操作,更有某些小型設計單位採用閉門造車的方式進行拿來主義的設計,這與規劃的本職形成嚴重對峙,更不符合互聯網+時代下對大數據應用的渴求。
對於城市管理者或是城市交通管理者、公路交通管理者,智能交通是幫助提高其管理的技術手段,大大提高管理者獲取數據的能力,提高他們的決策能力和管理交通的能力。
舉個最簡單的例子,道路的渠化由交通設計院規劃設計,然後施工建設。然而道路及其周邊區域的情況不是一成不變的。隨著城市的發展,道路起初的設計可能無法滿足市民的實際需求。比如城北新建了一個工業園區,那早高峰往北面上班的車會明顯增多,同時晚高峰從城北返城的車會增多。這時之前設計的道路顯然不足以滿足市民的需求,道路再次設計成潮汐車道或者是可變車道均可提升道路的通行能力,滿足市民的需求。但是二者如何選擇,抑或兩個方案一起實施,一直是困擾交通管理者的一件事情。這時,道路上安裝的電子警察、卡口和視頻檢測器所採集的過車信息和車流量數據就可以為道路的渠化提供有用的信息。
再舉個例子,城市交通中,大家最熟悉的是紅綠燈。有些城市的紅綠燈裝有信號控制系統,在所有道路資源都充分使用的條件下,紅綠燈的轉換頻率只能按時間分配,不可能讓路上的車輛變少,然而合理的紅綠燈配時可以讓道路的通行率大大提升。前端信號機配備有車檢板,支持地埋線圈的接入,同時也可以通過視頻檢測器,實現控制區域內車流量、佔有率、車速、排隊長度等交通參數的採集、處理和存儲。交通信號控制系統可根據前端獨立的車輛信息來直接調整對應信號燈的綠信比,也可根據區域整體的車流狀況對信號燈配時方案進行針對性的區域協調。同時這部分交通參數信息也可提供到其他相關聯的交通管理系統使用。比如通過大數據採集分析和交通模擬,進行區域的信號協調控制。
3.分析應用
對交通出行的大數據進行分析總結可以得出不同城市的相互聯系強度、城市流動人口的來源,指導城市對外交通建設;能夠分析出城市交通現象與重要事件之間的關系,有效預防下次突發事件造成的交通壓力;大數據能夠形象地反映居民的出行路徑、偏好,總結出居民的出行習慣從而為第三方服務平台提供參考,加快推進交通運輸由傳統產業向現代服務業轉型升級。
智能交通綜合管控平台存儲了大量的交通數據信息,如何有效充分地利用這些信息將非常重要。通過對平台存儲的數據進行智能研判分析,獲得一些潛在有價值的數據和信息,為交通管理、刑偵稽查提供重要的線索和數據信息。
比如案件刑偵分析時,某些車輛行駛軌跡可能會成為重要線索。平台行車軌跡分析功能可以輸入關注車輛號牌,選定關注的時間段,進行分析。分析結果會以列表的方式呈現在列表中按照時間先後順序顯示該車輛在此時間段內的所有過車信息。如果平台部署了電子地圖模塊。可在電子地圖模塊展現車輛行車軌跡分析結果展示,並在地圖按照車輛行駛的時間和空間順序,在地圖中描繪車輛行駛軌跡。
同時,目前機動車數量的激增,機動車車輛牌照無法憑借肉眼觀察直接判定車輛號牌真偽、套牌與否。出現部分車主為了逃避交通違法處罰,甚至進行其它不法活動時為了躲避刑偵緝查,而使用假牌和套牌的手段。智能交通綜合管控平台使用車牌識別技術,採集經過監測點車輛的信息,如車牌號碼、車身顏色、車輛類型、出現時間,根據創建的套牌分析模型,實時自動完成套牌嫌疑車輛的檢測和報警,可有效打擊使用套牌車輛的行為。
而在治安監控中,外來車輛初次入城信息將會成為外地車輛流竄作案的重要線索。可利用卡口、電子警察對車輛採集進行數據信息,可在指定時間段內,對首次經過指定路口的車輛進行查詢展示,此功能配合城市卡口包圍圈、城際卡口、電子警察採集的數據信息將發揮更大的作用。
現在在很多一二線城市,由於計程車在高峰時期供不應求,催生出了很多非法營運車輛。這些車輛雖然在一定程度內可以方便大眾的出行,但是由於其無監管部門,對於民眾的生命和財產有一定的安全隱患,而此類車輛很難從常規車輛中分辨出來。針對這類情況,可引入車輛積分制度,對符合積分細則的車輛進行積分,例如在本地案件多發地區的車輛進行高積分規則,每抓拍捕獲一次積3分,對相對涉案車輛較少地區的車輛,每次抓拍捕獲積1分。在研判中可按一定時段檢索分值排列靠前的車輛,納入視線,進行重點管控,並從中發現相關線索。積分細則可由相關部門的業務實際應用進行設定,積分細則後期可進行添加和修改,積分實行累加制,不設上限。同時可以對於重點監控區域,如學校、銀行、醫院、廣場、娛樂場所(廣場、KTV等),可以有針對性的對重點區域的卡口/路口某些時段內的車輛進行分析和觀察,分析出這些區域內頻繁出入的車輛、按照次數從高到低排行顯示車輛的詳細抓拍識別信息。對頻繁出入車輛進行關注,從而起到預警作用。
交通管理部門如何保證交通安全、交通秩序是一個重要的任務。在有限警力的條件下如何達到管理交通安全的目標,警力有的放矢的調動安排將非常重要。智能交通綜合管控平台對交通數據進行研判分析,可將違法多發地點按照違法次數從高到低的次序顯示排名靠前的違法多發地點,為交通管理部門的警力調動安排提供參考信息。為了在有限警力的條件下達到管理交通安全的目標,保證警力在最合適的時間出勤。智能交通綜合管控平台對交通數據時間特點進行分析研判,可將違法多發時段分析出來,並按照違法多發時段的違法次數排序,顯示違法多發時間段,為交通管理部門警力調度提供參考。
二、「互聯網+交通」在國內的應用
杭州市建立了「一個中心、三個系統」即交通指揮中心、交通管理信息系統、交通控制系統和交通工程類信息系統。杭州市交警支隊還實行了集中調度指揮和交通信息預報制度,在市區主幹路、主要交叉路口實行分級預警和干預機制,重點解決早晚高峰、節假日重要時段的路面交通問題。
各城市交管部門一直在探索優秀的勤務模式,以最少的警力、最小的行政成本,獲得最好的交通管理效果和最大的社會效益。杭州市通過改變交警的傳統路面巡邏執勤模式,通過交警支隊視頻作戰室、交警大隊分指揮室和交警中隊數字勤務室三級指揮系統的網路巡邏執勤模式,結合路邊重點巡邏,實施「上下聯動」機制,實現「桌面就是路面」,使科技應用直達基層民警,提升了交通管控效能,擴大了路面管理的覆蓋面,加大了路面管理的密度和力度,提高了應對交通擁堵、交通事故等交通突發事件的快速反應能力,減少了道路交通事故和交通違法行為,提高了道路通行能力,緩解了交通擁堵,確保了城市道路交通的安全、暢通、有序。
三、「互聯網+交通」的發展趨勢
首先,要大力發展綠色、便捷、高效、經濟的公共交通。通過智能交通技術手段提高公共交通系統的服務水平,引導城市居民出行方式的轉變。
其次,以智能交通技術提升道路交通管理水平,提高城市道路體系的綜合利用效率。
再次,優化區域交通組織,以先進的交通管理手段如先進的交通信號系統、交通誘導系統、交通違法自動考量系統,減少路口延誤、排隊等候,使得道路通暢、規范停車場管理等關鍵環節。
當前我國城市交通發展處於挑戰和機遇並存的關鍵歷史階段。一方面,隨著城鎮化、機動化的持續快速發展,城市交通擁堵加劇、污染嚴重、事故頻發,面臨嚴峻挑戰;另一方面,我國城市出在老城改造、新城建設的城市大發展時期,是實現生態城市、綠色交通的最佳時機,可以通過「互聯網+交通」的融合發展,通過智能交通實現我國城市綠色交通系統建設的跨越式發展。
❹ 大數據在智慧交通中起了哪些作用
大數據用於智能交通的積極意義
第一,大數據的虛擬性可以解決跨越行政區域的限制。交通大數據的虛擬性,有利於其信息跨越區域管理,只要多方共同遵照相關的信息共享原則,就能在已有的行政區域下解決跨域管理問題。
第二,大數據具有信息集成優勢和組合效率。大數據有助於建立綜合性立體的交通信息體系,通過將不同范圍、不同區域、不同領域的「數據倉庫」加以綜合,構建公共交通信息集成利用模式,發揮整體**通功能,這樣才能發現新價值,帶來新機會。例如氣象、交通、保險部門的數據結合起來,可高效率地研究交通領域防災減災;IC卡數據結合抽樣調查,能更快捷、更精確測得城市交通流分布狀況。
第三,大數據的智能性能較好的配置交通資源。通過對大數據的分析處理,可以輔助交通管理制定出較好的統籌與協調解決方案。一方面減少各個交通部門運營的人力和物力,另一方面可有些提升道理交通資源的合理利用。如根據大數據結果確定多模式地面公交網路高效配置和客流組織方案,多層次地面公交主幹網路綠波通行控制以及交通信號自適應控制。
第四,大數據的快速性和可預測性能提升交通預測的水平。在對各個部門的數據進行准確提煉和構建合適的交通預測模型後,可以有效模擬交通未來運行狀態,驗證技術方案的可行性。而在實時交通預測領域,大數據的快速信息處理能力,對於車輛碰撞、車輛換道、駕駛員行為狀態檢測等實時預測也有非常高的可靠性。
第五,提高交通運行效率。大數據技術能促進提高交通運營效率、道路網的通行能力、設施效率和調控交通需求分析。交通的改善所涉及工程量較大,而大數據的大體積特性有助於解決這種困境。
大數據的實時性,使處於靜態閑置的數據被處理和需要利用時,即可被智能化利用,使交通運行的更加合理。大數據技術具有較高預測能力,可降低誤報和漏報的概率,隨時針對交通的動態性給予實時監控。因此,在駕駛者無法預知交通的擁堵可能性時,大數據亦可幫助用戶預先了解。
第六,提高交通安全水平。主動安全和應急救援系統的廣泛應用有效改善了交通安全狀況,而大數據技術的實時性和可預測性則有助於提高交通安全系統的數據處理能力。在駕駛員自動檢測方面,駕駛員疲勞視頻檢測、酒精檢測器等車載裝置將實時檢測駕車者是否處於警覺狀態,行為、身體與精神狀態是否正常。同時,聯合路邊探測器檢查車輛運行軌跡,大數據技術快速整合各個感測器數據,構建安全模型後綜合分析車輛行駛安全性,從而可以有效降低交通事故的可能性。在應急救援方面,大數據以其快速的反應時間和綜合的決策模型,為應急決策指揮提供輔助,提高應急救援能力,減少人員傷亡和財產損失。
第七,提供環境監測方式。大數據技術在減輕道路交通堵塞、降低汽車運輸對環境的影響等方面有重要的作用。通過建立區域交通排放的監測及預測模型,共享交通運行與環境數據,建立交通運行與環境數據共享試驗系統,大數據技術可有效分析交通對環境的影響。同時,分析歷史數據,大數據技術能提供降低交通延誤和減少排放的交通信號智能化控制的決策依據,建立低排放交通信號控制原型系統與車輛排放環境影響模擬系統。
❺ 大數據,數據挖掘在交通領域有哪些應用
交通領域大數據分析和應用的場景會相當多,這裡面要注意兩點,一個是大數據本身的技術處理平台,一個是數據分析和挖掘演算法。具體場景當時寫過點內容,如下:
對於公交線路規劃和設計是一個大數據潛在的應用場景,傳統的公交線路規劃往往需要在前期投入大量的人力進行OD調查和數據收集。特別是在公交卡普及後可以看到,對於OD流量數據完全可以從公交一卡通中採集到相關的交通流量和流向數據,包括同一張卡每天的行走路線和換乘次數等詳細信息。對於一個上千萬人口的大城市而言,每天的流量數據都會相當大,單一分析一天的數據可能沒有相關的價值,而分析一個周期的數據趨勢變化則會相當有價值。結合交通流量流向數據趨勢變化,可以很好的幫助公交部門進行公交運營線路的調整,換乘站的設計等很多內容。這個方法可能很早就有人想到,但是在公交卡沒有普及或海量數據處理和計算能力沒有跟上的時候確實很難實際落地操作,而現在則是完全可以落地操作的時候了。
從單一的公交流量流向數據動態分析僅僅是一個方面,大數據往往更加強調相關性分析。比如對於在某一個時間段內公交流量和流向數據發生明細的趨勢變化的時候,這個趨勢變化的究竟和哪些潛在的大事件或其它影響因素的變化存在相關性,如何去分析這些相關性並做出正確的應對。舉個簡單的例子來說,當市中心區內的房屋租金持續增長的時候一定會影響到交通流的變化,很多人可能會搬離到更遠的地方去居住,自然會形成更多的新增公交流量和流向信息。在《大數據時代》裡面談到更多的會關心相關性而不是因果只是一個方面的內容,實際上往往探索因果仍然很重要,就拿尿片和啤酒的例子來說看起來很簡單,但是究竟是誰發現了這種相關性才更加重要,發現相關性的過程往往是從果尋因的過程,否則你也很難真正就確定是具備相關性。
其次就智能交通來說,現在的智慧交通應用往往已經能夠很方面的進行整個大城市環境下的交通狀況監控並發布相應的道路狀況信息。在GPS導航中往往也可以實時的看到相應的擁堵路況等信息,而方便駕駛者選擇新的路線。但是這仍然是一種事後分析和處理的機制,一個好的智能導航和交通流誘導系統一定是基於大量的實時數據分析為每個車輛給出最好的導航路線,而不是在事後進行處理。對於智能交通中的交通流分配和誘導等模型很復雜,而且面對大量的實時數據採集,根據模型進行實時分分析和計算,給出有價值的結果,這個在原有的信息技術下確實很難解決。隨著物聯網和車聯網,分布式計算,基於大數據的實時流處理等各種技術的不斷城市,智能的交通導航和趨勢分析預測將逐步成為可能。
還有一個在國外大片中經常能夠看到的就是實時的車輛追蹤,隨著智慧城市的建設,城市裡面到處都是攝像頭採集數據,當鎖定一個車輛後如何根據車輛的特徵或車牌號等信息,實時的追蹤到車輛的行走路線和位置。這裡面往往需要實時的視頻數據採集,採集數據的實時分析和比對,給出相應的參考信息和數據。這個個人認為是具有相當大的難度,要知道對於視頻流和圖像信息的比對和分析往往更加耗費計算資源,需要更長的計算周期,要從城市成千上萬個攝像頭裡面採集數據並進行實時分析完全滿足大數據常說的海量數據,異構數據,速度和價值等四個維度的特徵。基於車輛能夠做到,基於人當然同樣也可以做到,希望這類應用能夠逐步的出現,至少現在從硬體水平能力和技術基礎上已經具備這種大數據應用的能力。
-
❻ 大數據和智慧交通有哪些應用的案例
智慧交通的應用案例
根據ITS114的不完全統計,截至2015年12月31日,包括城市智慧交通和高速公路機電市場的全年千萬項目統計規模為182.5億,其中主要分為四大市場1.交通管控市場千萬項目規模為84.24億。2.智慧交通/智能運輸市場千萬項目規模為20.33億。3.高速公路機電市場千萬項目規模為75.8億。4.平安城市千萬項目規模為56.6億。以上四個市場都有著很多的智慧交通方面的應用案例。
具體的在交通管控市場方面, 當前各個省積極構建的交通運行監測與應急指揮系統,還有圍繞著視頻、圖像分析,從而實現在治安、交通、工業製造、汽車、人工智慧等等諸多領域的應用亦是智慧交通的典型案例。如深圳榕享的"交通模擬與智能管控機器人"可實時採集視頻檢測數據與線圈檢測數據,將採集的交通流數據、信號配時等數據輸入到建立的模擬路網模型中,進行實時的交通系統模擬。通過一體化交通模擬模型,機器人能快速找出路網擁堵點以及分析路網的常發性擁堵點,並對交通流運營狀況的演變進行預測和分析。在交通模擬與智能管控機器人平台上,還可對城市的任意交叉口的交通環境進行設置,周邊居民可將相關建議"告知"機器人,實時模擬交叉口改良效果,實現全民參與、全民實踐、全民創新的交通管理新模式。
智慧交通/運輸方面各種「專車」「快車」「拼車」「代駕」平台類和軟體數據類的實例比比皆是,如我們都熟知的「滴滴快遞」「uber"「e代駕」等app應用。
交通工具新型技術案例方面:如無人駕駛、自動駕駛、智能車等等;在2015年12月互聯網大會上李彥宏展示的無人車,李書福展現的自動駕駛技術都體現了當前智能交通工具的發展。 更近一點的是,汽車電子標識、ETC、車路協同。2015年的新能源客車市場呈爆發性增長,新能源客車銷量達到37363輛,同比增長213.19%,同時2015年國務院印發《新能源公交車推廣應用考核辦法(試行)》、《電動汽車充電基礎設施發展指南》等等政策文件,可預見的是新能源汽車將會造就一個巨大的市場,建立在新能源汽車之上的車聯網也將搭上順風車。
平安城市也有很多已經成型的智慧交通案例。平安城市是基於GIS數字地圖技術,高度整合治安監控、智能交通、數字城管、應急指揮等子系統,改變傳統的靜態管理和單點管理,實現實時、動態的聯動管理新模式,實現了整個城市的治安、交通、城管、應急聯動等各個職能部門的聯動,建立了高效的城市部門聯動機制,提高了城市的集成化、智慧化管理水平。根據高清視頻監控系統的特點和應用需求,結合當前與今後一定時期內圖像監控系統與圖像應用系統的發展需要,建設一套先進的平安城市綜合應用平台,為指揮調度、調查取證、應急處置、交通管理等多種後台應用提供及時、可靠的視頻圖像信息,服務於實戰。市面上常見的平安城市系統具備的主要功能大部分都有:人臉卡口功能;交通事件檢測功能;智能檢索功能;道路違法抓拍功能;車輛稽查布控功能;非現場執法;分析研判功能;交通事態監控功能;視頻質量檢測功能;智能應用管理功能;數據格式及通信功能;遠程式控制制功能;指揮調度功能;勤務管理功能; 設備運行狀態監測功能。
大數據方面的應用案例
在醫療方面,紐約的mountsinai醫院利用數千名患者的數據、歷年匯報的流感爆發數據等數據與病毒的變異過程做交叉比對。通過這種工作,科學家和醫生可以預測病毒如何傳播,以及對抗這些病毒的最佳途徑;甚至有可能使用預測分析來判斷病毒的傳播方式,然後採取行動來限制這一傳播。據說這家醫院有望在未來阻止流感的發生。
在交通方面,浙江某城市與英特爾合作,安裝了1000個數字監控設備,100個智能監測點系統,超過300個檢查點的電子警察,和500多個視頻監控系統。通過更有效地監測交通和擁堵數據,改善交通流量,減少道路交通事故。
在廢物處理方面, 英國曼徹斯特垃圾處理局有一套系統,能夠利用數據使得產生的垃圾被盡可能多的再次利用。通過對來自不同地區的卡車進出加工廠時進行稱重,能夠了解每個地區所產生的垃圾數量。這些數據幫助當局出台了相應的政策,鼓勵那些特定的社區更好的垃圾回收和垃圾減量。
在建築方面, 住房慈善機構hact從400,000座住房中持續不斷地收集數據,並進行了各種數據分析。通過數據來發現設計、建造、布局中存在的潛在問題,進而在建造新的樓宇時優化相關的參數,避免這些問題,改進政府保障房的的維修,規劃空間合理使用。
智能應用服務,Google提供的大數據分析智能應用包括客戶情緒分析、交易風險(欺詐分析)、產品推薦、消息路由、診斷、客戶流失預測、法律文案分類、電子郵件內容過濾、政治傾向預測、物種鑒定等多個方面。據稱,大數據已經給Google每天帶來2300萬美元的收入。例如,一些典型應用如下:
(1)基於Map Rece,Google的傳統應用包括數據存儲、數據分析、日誌分析、搜索質量以及其他數據分析應用。
(2)基於Dremel系統, Google推出其強大的數據分析軟體和服務 — BigQuery,它也是Google自己使用的互聯網檢索服務的一部分。Google已經開始銷售在線數據分析服務,試圖與市場上類似亞馬遜網路服務(Amazon Web Services)這樣的企業雲計算服務競爭。這個服務,能幫助企業用戶在數秒內完成萬億位元組的掃描。
(3)基於搜索統計演算法,Google推出搜索引擎的輸寫糾錯、統計型機器翻譯等服務。
(4)Google的趨勢圖應用。通過用戶對於搜索詞的關注度,很快的理解社會上的熱點是什麼。對廣告主來說,它的商業價值就是很快的知道現在用戶在關心什麼,他們應該在什麼地方投入一個廣告。據此,Google公司也開發了一些大數據產品,如「Brand Lift in Adwords」、「Active GRP」等,以幫助廣告客戶分析和評估其廣告活動的效率。
(5)Google Instant。輸入關鍵詞的過程,Google
Instant 會邊打邊預測可能的搜索結果。
谷歌的大數據平台架構仍在演進中,追去的目標是更大數據集、更快、更准確的分析和計算。這將進一步引領大數據技術發展的方向。
在競選方面,直到2012年,奧巴馬的數據團隊對數以千萬計的選民郵件進行了大數據挖掘,精確預測出了更可能擁護奧巴馬的選民類型,並進行了有針對性的宣傳,從而幫助奧巴馬成為了美國歷史上唯一一位在競選經費處於劣勢下實現連任的總統。只要數據量夠大,夠及時,挖掘夠深刻,就可以洞悉每個選民的投票幾率。
在教育方面,"以物聯網、雲計算等綜合技術的成熟為基礎,在學生管理資料庫中挖掘出有價值的數據,經過過程性和綜合性的考慮,找到學生各種行為之間的內在聯系,考量背後的邏輯關系,並作出恰當的教學決策。以某集團最新出版的全球少兒美語旗艦課程為例,引入了首款應用於少兒英語學習領域的MyEnglishLab在線學習輔導系統(以下簡稱MEL),應用大數據技術全程實時分析學生個體和班級整體的學習進度、學情反饋和階段性成果,從而及時找到問題所在對症下葯,實現對學習過程和結果的動態管理。
❼ 大數據對交通行業有什麼作用
第一,為用戶提供服務內容越來越精準。有賴於基於大數據的交通路網動態分析,為用戶提供了出行的實時方案選擇。
第二,交通通行效率越來越高。這也有賴於各種各樣的互聯網感知器,對復雜天氣、事故、各種突發事件的實時分析,使得交通管理部門掌握了更多的交通狀況,及時做出反應。
第三,現場人工執法越來越少。有賴於基於大數據的行為分析,交通執法的事情都變成一個事後的非現場的執法。
第四,交通服務自動化程度越來越高。移動支付和各種自動化設備的應用,自助服務和無感服務普遍應用。
第五,交通主管部門的決策越來越科學。政府對重大政策的制定和推出越來越依賴於對交通行為的分析,最典型的就是廣州限外地牌照這件事情,專業機構通過數據分析發現廣州道路擁堵的症結。
❽ 如何運用交通大數據智慧出行
2015年兩會上,「大數據(big data)」一詞首次寫入政府工作報告。在交通領域,大數據一直被視作緩解交通壓力的技術利器。應用大數據有助於了解城市交通擁堵問題中人的出行規律和原因,實現交通和生活的和諧,提高城市的宜居性,為政府精準管理提供基於數據證據的綜合決策。
隨著手機網路、全球定位系統(global positioning system,GPS)/北斗車載導航、車聯網、交通物聯網的發展,交通要素的人、車、路等的信息都能夠實時採集,城市交通大數據來源日益豐富。在日益成熟的物聯網和雲計算平台技術支持下,通過城市交通大數據的採集、傳輸、存儲、挖掘和分析等,有望實現城市交通一體化,即在一個平台上實現交通行政監管、交通企業運營、交通市民服務的集成和優化。
❾ 根據 大數據在交通方面可以有哪些應用
交通方面的大數據用的還是比較多的。只是常在人們的身邊,人們忽略了而已。典型的就是網路地圖工具,那就是利用大數據分析的出來的路況信息。幾乎每個人都有用過吧?