1. 大數據的就業崗位有哪些
大數據崗位高薪清單對於求職者來說,大數據只是所從事事業的一個方向,而職業崗位則是決定做什麼事?大數據從業者/求職者可以根據自身所學技術及興趣特徵,選擇一個適合自己的大數據相關崗位。下面為大家介紹十種與大數據相關的熱門崗位。
1 ETL研發企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL
2 Hadoop開發隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。
3 可視化工具開發可視化開發就是在可視化工具提供的圖形用戶界面上,通過操作界面元素,有可視化開發工具自動生成相關應用軟體,輕松跨越多個資源和層次連接所有數據。過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。
4 信息架構開發大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
5 數據倉庫研究為方便企業決策,出於分析性報告和決策支持的目的而創建的數據倉庫研究崗位是一種所有類型數據的戰略集合。為企業提供業務智能服務,指導業務流程改進和監視時間、成本、質量和控制。
6 OLAP開發OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。
7 數據科學研究數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。8 數據預測分析營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。
8 數據預測分析營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。
9 企業數據管理企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。
10 數據安全研究數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。
2. 招聘信息數據通過大數據分析平台重點分析以下幾點
職位區域分布,職位薪資區間分布,職位相關公司的福利,職位相關技能要求。
具體分析如下:
1、分析大數據職位的區域分布情況。
2、分析大數據職位薪資區間分布情況。
3、分析大數據職位相關公司的福利情況。
分析大數據職位相關技能要求情況。
3. 之前我在百度招聘上搜索過司機的崗位,這兩天無緣無故的發來一條百度招聘的簡訊它是怎麼知道我的手機號的
現在都是大數據時代,網上隨便一比對,只能手機許可權的拉取,相關工作人員職業道德底線太低都會遭成數據外泄。
4. 大數據行業有哪些工作機會,招聘的崗位技能有哪些
想要學習大數據開發,第一件事並不是要找書籍或者是找視頻教程,而是要了解一下大數據行業前景,了解一下成為大數據工程師需要具備什麼樣的能力,掌握哪些技能我當初學習大數據之前也有過這樣的問題,作為一個過來人,今天就跟大家聊下大數據人才應該具備的技能。
首先我們要知道對於大數據開發工程師需要具備的技能,下面我們分別來說明:
用人單位對於大數據開發人才的能力要求有
技能要求:
1.精通JAVA開發語言,同時熟悉Python、Scala開發語言者優先;
2.熟悉Spark或Hadoop生態圈技術,具有源碼閱讀及二次開發工作經驗;精通Hadoop生態及高性能緩存相關的各種工具,有源碼開發實戰經驗者優先;
3.熟練使用SQL,熟悉資料庫原理,熟悉至少一種主流關系型資料庫;熟悉Linux操作系統,熟練使用常用命令,熟練使用shell腳本;熟悉ETL開發,能熟練至少一種ETL(talend、kettle、ogg等)轉化開源工具者優先;
4.具有清晰的系統思維邏輯,對解決行業實際問題有濃厚興趣,具備良好的溝通協調能力及學習能力。
以上就是想要成為大數據人才需要具備的技能
那麼如何具備這些能力,怎麼學習了,對於大多數人來說,目前只有通過參加大數據的學習,才能夠系統的掌握以上的大數據技能,從而勝任大數據工程師的工作。
5. 「大數據」時代下的企業招聘
「大數據」時代下的企業招聘
在原有的人才資料庫的基礎上,導入以社交媒體為代表的「大數據」將使H R (人力資源部門)做聘用決策時更客觀。
數據,對於企業的H R 來說並不陌生,從最開始通過招聘搜集員工信息,到能力測評,以及年度、季度的績效考評,日積月累的數據不可謂不大,但是真正將這些數據整理分析,提供給人才管理者做決策的企業卻並不多見。然而,不管你用不用,這些數據還在增大,而且,隨著新技術的出現和普及,移動設備和社交媒體也加入到企業招聘的渠道中。如何充分利用這些數據以便更有效地支持人力資源管理工作?目前企業利用人才數據的現狀如何?人才「大數據」應用的前景是怎樣的?針對這些問題,德勤華永會計師事務所中國區人力資源部招聘總監王文佶和SHL 中國區總經理付權分別從企業實踐和調研分析的角度闡述了各自的看法。
從「小數據」說起
世界經理人:SHL發布的《2013 年全球評測趨勢報告》顯示,企業在利用人才『大數據』方面還處於起步階段。這里提到的『大數據』概念跟以前企業在招聘中運用的人才數據有何不同?
王文佶:其實數據一直存在,HR招聘過程本身就涉及很多數據,從應聘者的簡歷、筆試到面試都包含很多評分(rating)。但相比較現在所說的大數據,我們把這些稱為小數據。所謂小數據就是按照某個業務流程目標,預先設定一些甄選標准,通過抽樣的方法來判斷整個流程是否符合你的需要,通過數據來研究。
德勤也有人才分析數據,但基本都是基於怎樣利用好現有的小數據,就是把原來從不同部門或不同領域採集來的本身結構化的數據,錄入數據倉庫( Data Warehouse),並進行數據挖掘( Data Mining)。比如,德勤有一個候選人跟進系統—ATS (Applicant Tracking System),只要應聘者投遞簡歷,他的信息就會進入德勤的全球人才庫,現在約有30 0 萬人的信息。這個資料庫可以在德勤的各個跨國公司之間共享。德勤中國可以利用這個資料庫尋找美國德勤吸引來的人。這是一個巨大的人才資料庫或者候選人資料庫,我們可以經常進行數據挖掘。
另外,德勤也在用SH L 專門的工具叫做人才數據與結構分析(Talent Analytics),它從數據的體量上來講更大。比如,SHL能對所有應聘財務的學生,在全球范圍做各種比對和分析,從而分析出一種趨勢,我們將這種趨勢稱之為對標。當一家企業想確定今年招收員工的整體質量時,SHL 的數據可以幫我們橫向地跟全世界、亞洲或者其他競爭公司的情況做比較。
但是,我認為真正的大數據是研究非結構化數據,而非通過某一個特定目標、一個已經設定的標准去採集。當大數據來臨,產生的最主要的區別在於:大數據可以通過某種機器的手段,更多地採集候選人非結構化的、自然的、在社交媒體和網路上的信息,來輔佐目前已有的結構化數據,並幫助進行判斷。如果能做到這些,那麼招聘決策就會更加准確。
付權:以前的數據來源於調查研究。假如美聯社的薪酬數據來源於針對不同企業的HR所做的調研報告,內容可能包括今年不同崗位的薪酬漲幅如何,然後通過某個公司進行有效的數據處理後,便得出這個行業的薪酬基準( Bench mark)。但現在的數據來源於每個人與整個數據採集機構直接的互動。比如LinkedIn就是這樣的數據採集機構,上面的數據是使用者作為個體自發提供的,而LinkedIn 同時也有社交媒體(Social Media) 的概念,所以它的數據是准確可信的。LinkedIn不僅僅是一個社交媒體,也是建立企業人才庫(Talent Pool) 的有效工具。
無論是大數據還是過去的小數據,它們的功能是一致的,就是對業績進行有效預測( Predict Performance)。舉例來說,一個應聘者加入新公司,就需要接受測試,因為公司並不了解他。這就需要一個信效度較高的測試來判斷該應聘者是否符合這個企業的文化和業績目標,以及能否跟同事友好相處,互相促進。測試的種類非常多,但所有目的都是為了預測業績。世界經理人:所謂小數據的分析是怎樣運用到招聘和人才決策中去的?
王文佶:從校招和社招兩個角度來說。在校招方面,我們不是針對個人,而主要是針對整體進行分析。比如根據現在業務的需要,可能分析得出不一定非要招財務背景的學生做審計。通過小數據分析,我們發現財經類和非財經類的同學在考CPA 的通過率方面沒有差別,甚至非財務類的學生第一第二年的通過率更高。這個現象很奇怪,於是我們就找到培訓部門一起研究這些數據,並分析出很多可能原因。
這也是小數據的局限,因為通過分析產生一個結論,這種結論不能嚴密地解答疑問,會產生很多可能性。比如可能非財務類的學生由於不懂,所以同樣的課程花了更多精力,上進心和壓力感都更強,因此他們的考試通過率更高;還可能是因為財經類的學生進來就能用,所以更多時候被派到項目上去,反而沒時間預習功課。業務經理不願意用非財經類新人,因為他們不能立刻上手,所以他們有更多的時間去復習。經過分析,這些情況都有可能,但無法得出確定的結論,但至少我們知道,招聘時不一定非要招審計和財經類的學生,這就是一個小數據的例子。
在社招方面,德勤目前更多是在人才吸引、渠道分布和廣告有效性上做分析。對所有參加社招的人員,我們都會追蹤其消息來源,是通過自投簡歷、獵頭邀請,還是朋友推薦過來應聘的。就目前來說,德勤社招最得力的渠道是員工推薦,占整個最終招聘量的45%.於是,四五年前,我們把員工推薦的項目政策重新進行了改革,以提高大家的積極性。比如員工推薦的獎勵金額從原來的半年後付一半、一年後付全額,改為了把人介紹過來就付一半、三個月後付全額。這樣員工有很大積極性。
世界經理人:目前,企業HR對人才數據管理系統的重視程度偏低,或者說利用得不太好,是什麼原因?王文佶:一個主要的原因可能是數據收集所需要的投入超出了數據分析所帶來的實際收益,即投入產出不成比。比如德勤用過的人才招聘管理系統Taleo,它的一個功能是可以對所有篩選過的簡歷貼上各種標簽,比如此人這個職位好像不合適,但也許他將來能適合其他職位,於是可以做一個標記,下次找的時候就可以調出來。但是從現實的角度來看,這些工具沒有得到充分的利用。首先因為招聘官經常同時要管理十幾個空缺職位,而能把這些職位完成是首要任務。如果有剩餘時間或者找不到應聘者,他們才可能會花時間利用工具進行數據挖掘;第二個是技巧問題和工具方便性問題。另一方面,企業人力資源部門的職能條塊分割,使得各項人才管理數據分別由不同的職能團隊來收集和管理。比如薪酬團隊的數據和培訓團隊的數據往往就不被招聘團隊所掌握。現實的悖論往往是,大企業的HR有非常完善的HR職能團隊和基礎架構,可以收集到很多有用的數據,但是龐大的數據量和縱橫交錯的管理結構使得數據比較難以被有效利用,必須建立起一個項目團隊來收集、整理、分析這些數據。
大數據是什麼?
世界經理人:與小數據相比,大數據突破了哪些瓶頸?
付權:相對於大數據而言,通過調研得到的小數據可以從特殊到最後形成普遍的結論,卻很難逆向推理—從共性中找出特殊。大數據是從特殊到一般來推理出共性,然後還能從一般到特殊,尋找到異類或者優秀人才所具有的特徵,再把該特性標准化,從而形成了一個螺旋上升的推理。這是過去的小數據所缺少的。
此外,大數據可以讓我們跟蹤一個人的發展過程。比如,某位投資經理在十年的時間跨度內,盡管其能力可能變化不大,但個性可能會有所變化,他的動機可能逐漸降低或逐漸增加,技能和經驗一定是在增加的。為了了解這個人所經歷的變化,我們需要對他不同時段的評測數據進行有效的比對和分析,從而了解他的發展路徑。這在以前的小數據時代是不存在的。
大數據應用最重要的是,第一,它改變了預測績效的手段,以前是用小數據,現在是用大數據;第二,在人力資源領域裡面,大數據為人才模型提供更為詳盡、准確的數據支撐,更好地為企業管理人員所用,這非常重要。
世界經理人:與以前靠直覺來進行人才判斷相比,依靠大數據進行判斷是否會讓決策過程越來越科學化?
付權:所謂直覺是通過閱人無數所產生的經驗的第一反應,叫第一性原則。第一性原則的有效性是存疑的。有些情況下,由於巨大的文化差異,導致面試者的行為表現和表述方式都會非常不同,怎樣透過這些表面看到他們的能力、個性、動機、技能和經驗,這些都是無法通過直覺簡單獲取的。
大數據能夠讓人才選擇更加客觀、精確、容易。大數據為某位候選者的「畫像」(profile)提供一個正確、准確的反射,去映射到人才模型上面,來判斷他是否勝任這一職位。比如說通過評測數據,我們可以直觀看到一個人的評測結果是66 分,另一個人是67 分,這種微妙的差距是通過肉眼和直覺無法判斷的。而通過大數據,這就讓人才選擇更加容易和客觀。
社交媒體展現真實的應聘者
世界經理人:越來越多的企業開始利用社交媒體網路來進行招聘,這對HR意味著什麼?
王文佶:如同大數據在精準營銷上的應用,現在用戶在淘寶上搜過什麼,一打開微博也會出現同類商品的推送,如果說在招聘上也是用同樣的觀念或方法,有一個例子是LinkedIn 會根據用戶的社交信息,推送 「Maybe interesting in this job」的條目。這和電商運用的手段一樣,根據過去的網路行為推斷出你現在的需求。
德勤對社招和校招都做過這個畫像,就是找到理想候選人應該具備什麼樣的能力素質,怎樣描述,它包括候選人特徵。而在大數據時代,這個畫像里可能還要添加其他一些社交媒體的行為指標。在沒有大數據和測評工具的情況下,高管的最終決策主要通過一起吃飯或一起去打高爾夫等活動,為了觀察他們舉手投足自然的表現。但我們不可能把這套方法運用到每個應聘者。如果運用大數據,只要符合一定的法律規范,是不是能獲得每一個應聘者工作和社交行為( Work & Social Behavior) 相關信息呢?這時候公司有兩種方法,一種是找第三方的背景調查公司,一種是詢問其以前所在公司的高管。將來如果一個人在微博、LinkedIn等社交媒體上都很活躍,那麼理論上,只要獲得他的授權,或是幾個簡單的基本信息,就能通過某種機制瀏覽到他所有的網路行為,而這些行為只要整合起來,再與通過標准化方法收集的信息做比對,就有助於提高招聘質量。但實際上要做到這些很難。這是一個理想,但只要我們有這個願景,我想早晚會實現,甚至大家最終會完全接受這種方法。
世界經理人:德勤是如何利用社交媒體進行招聘的?
王文佶:現在越來越多的大公司鼓勵招聘團隊自己直接、主動地去找人(Proactive Sourcing),也就是通過數據挖掘,通過自己建關系去找人。目前這種方式只佔德勤總招聘量的7%,而我們的目標至少要達到15% 以上。
在這種情況下,以LinkedIn為代表的社交媒體起到了較大的作用。我們購買Linkedln專門的招聘者(recruiter) 帳號,它和個人帳號不同,使用招聘者賬號就可以直接做數據挖掘,在Linkedln的350 萬中國國內用戶中直接搜索,甚至是在全球兩億四的用戶中搜索。還有,利用公司員工的Linkedln賬戶帶來更多企業曝光率。當有人點擊這個人的LinkedIn賬戶時,其所在公司的招聘廣告就會在旁邊跳出來。這是一個最新的解決方案,藉助員工的人脈做推廣。微博、微信、大街網等則幫助我們進行僱主品牌和招聘信息的傳播。
今年我們招聘團隊特地開發了一個基於德勤人脈關系的任務眾包平台:德勤聚力網(Deloit te Power House)。它的目標受眾是德勤現員工、准員工、實習生、前員工以及任何有志加入德勤的潛在候選人。在這個平台上,用戶可以發布眾包任務去找幫手,找資源,拓人脈。通過朋友間的不斷傳遞, 用戶發布的任務項目得到解決的同時也積聚了人脈。 並且, 用戶在網站上的每一次貢獻都可以獲得積分獎勵。這個平台不僅可以幫助招聘,還能幫助每一個員工把他們的職業人脈打通,在這個平台上整合和強化他們自己的社交關系。
世界經理人:企業在利用社交媒體進行招聘方面遇到哪些問題?
王文佶:很多公司都喜歡利用社交媒體來擴大直接招聘( Direct Sourcing)。他們碰到的問題有兩個:第一,投入和產出比的權衡問題(ROI)。建設和維護社交媒體需要更多的管理投入,包括人員和資金,但社交媒體的效果不能也不應該僅用找到幾個人來衡量;第二,使用技巧問題。招聘官的主要職責是篩選簡歷並對應聘者進行評測。但是要管理社交媒體這一平台,要求的技能是如何做市場營銷,如何吸引被動候選人並說服他們加入。
大部分現有的招聘官缺乏這方面的技巧和思維方式,需要很多學習培訓。
所以,現在用社交媒體最多的是獵頭,他們有這個技能,知道如何找到候選人,激發他們的工作熱情,把工作機會銷售給他。企業內部HR 在社交媒體的使用方面相對較弱。
此外,當我們利用社交媒體數據進行數據分析時,也會遇到一些技術和法律問題,比如掃描社交媒體數據是一個新興技術,大數據分析的方法到底是否可靠、能否實現;對使用個人信息的法律限制和壁壘在哪;隱私權應該怎麼保護?目前在這些方面還有很多不清晰的地方。
6. 大數據就業崗位有哪些
大數據就業的崗位:ETL研發、Hadoop開發、信息架構開發、數據安全研究。
1、ETL負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
3、信息架構文件是統籌安排信息的基礎,這些統籌安排主要集中在搭建某個特殊產品、一套產品或單個產品的信息架構。除了信息架構和信息規劃外還有信息設計,它主要就是為支持信息架構和規劃而進行的實際操作活動。
4、數據安全研究:數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。
7. 大數據可視化招聘崗位職責有哪些
大數據可視化招聘崗位職責:負責大數據項目前端展示模式規劃構思和創意設計。 負責提供大數據可視化部分合理化的設計解決方案。 持續的優化相關的大數據可視化內容的質量、性能、用戶體驗。負責輸出高質量可視化設計圖,與開發團隊充分溝通協作,確認可控的誤差范圍和視覺效果的最終實現,有較強的設計執行力。
崗位要求:
有良好的美術功底和優秀的創意、審美、實現能力,能把設計風格和專題、產品特色進行有效的結合;
具備C/S、B/S界面設計經驗;
分析業務需求,並加以分解歸納出產品人機交互界面需求,熟練使用原型製作工具;
研發團隊緊密協作,積極地推進視覺設計的產品化;
精通Photoshop/AI等常用設計製作軟體,對圖片渲染和視覺效果有較好認識;
了解html,div+css等網頁編輯語言和規范標準的優先;
有大數據行業經驗者優先考慮。
8. 大數據崗位招聘靠譜嗎
這就是培訓機構拉人的辦法之一,我當年也上過當的。
9. 誰能做大數據工程師
大數據是眼下非常時髦的技術名詞,與此同時自然也催生出了一些與大數據處理相關的職業,通過對數據的挖掘分析來影響企業的商業決策。
這群人在國外被叫做數據科學家(Data Scientist),這個頭銜最早由D.J.Pati和Jeff Hammerbacher於2008年提出,他們後來分別成為了領英(LinkedIn)和Facebook數據科學團隊的負責人。而數據科學家這個職位目前也已經在美國傳統的電信、零售、金融、製造、物流、醫療、教育等行業里開始創造價值。
不過在國內,大數據的應用才剛剛萌芽,人才市場還不那麼成熟,「你很難期望有一個全才來完成整個鏈條上的所有環節。更多公司會根據自己已有的資源和短板,招聘能和現有團隊互補的人才。」領英(LinkedIn)中國商務分析及戰略總監王昱堯對《第一財經周刊》說。
於是每家公司對大數據工作的要求不盡相同:有的強調資料庫編程、有的突出應用數學和統計學知識、有的則要求有咨詢公司或投行相關的經驗、有些是希望能找到懂得產品和市場的應用型人才。正因為如此,很多公司會針對自己的業務類型和團隊分工,給這群與大數據打交道的人一些新的頭銜和定義:數據挖掘工程師、大數據專家、數據研究員、用戶分析專家等都是經常在國內公司里出現的Title,我們將其統稱為「大數據工程師」。
王昱堯認為,在一個成熟的數據驅動型公司,「大數據工程師」往往是一個團隊,它意味著從數據的收集、整理展現、分析和商業洞察、以至於市場轉化的全過程。這個團隊中可能包括數據工程師、分析師、產品專員、市場專員和商業決策者等角色,共同完成從原始數據到商業價值的轉換—概括來講,這是一個支持企業做出商業決策、發掘商業模式的重要群體。
由於國內的大數據工作還處在一個有待開發的階段,因此能從其中挖掘出多少價值完全取決於工程師的個人能力。已經身處這個行業的專家給出了一些人才需求的大體框架,包括要有計算機編碼能力、數學及統計學相關背景,當然如果能對一些特定領域或行業有比較深入的了解,對於其快速判斷並抓准關鍵因素則更有幫助。
雖然對於一些大公司來說,擁有碩博學歷的公司人是比較好的選擇,不過阿里巴巴集團研究員薛貴榮強調,學歷並不是最主要的因素,能有大規模處理數據的經驗並且有喜歡在數據海洋中尋寶的好奇心會更適合這個工作。
除此之外,一個優秀的大數據工程師要具備一定的邏輯分析能力,並能迅速定位某個商業問題的關鍵屬性和決定因素。「他得知道什麼是相關的,哪個是重要的,使用什麼樣的數據是最有價值的,如何快速找到每個業務最核心的需求。」聯合國網路大數據聯合實驗室數據科學家沈志勇說。學習能力能幫助大數據工程師快速適應不同的項目,並在短時間內成為這個領域的數據專家;溝通能力則能讓他們的工作開展地更順利,因為大數據工程師的工作主要分為兩種方式:由市場部驅動和由數據分析部門驅動,前者需要常常向產品經理了解開發需求,後者則需要找運營部了解數據模型實際轉化的情況。
你可以將以上這些要求看做是成為大數據工程師的努力方向,因為根據萬寶瑞華管理合夥人顏莉萍的觀察,這是一個很大的人才缺口。目前國內的大數據應用多集中在互聯網領域,有超過56%的企業在籌備發展大數據研究,「未來5年,94%的公司都會需要數據科學家。」顏莉萍說。因此她也建議一些原本從事與數據工作相關的公司人可以考慮轉型。
本期《第一財經周刊》采訪了BAT這3家國內互聯網公司,以及相關領域的人力資源專家,他們從職場角度為我們解讀如何成為大數據工程師以及這類崗位的職場現狀。
A 大數據工程師做什麼?
用阿里巴巴集團研究員薛貴榮的話來說,大數據工程師就是一群「玩數據」的人,玩出數據的商業價值,讓數據變成生產力。大數據和傳統數據的最大區別在於,它是在線的、實時的,規模海量且形式不規整,無章法可循,因此「會玩」這些數據的人就很重要。
沈志勇認為如果把大數據想像成一座不停累積的礦山,那麼大數據工程師的工作就是,「第一步,定位並抽取信息所在的數據集,相當於探礦和采礦。第二步,把它變成直接可以做判斷的信息,相當於冶煉。最後是應用,把數據可視化等。」
因此分析歷史、預測未來、優化選擇,這是大數據工程師在「玩數據」時最重要的三大任務。通過這三個工作方向,他們幫助企業做出更好的商業決策。
找出過去事件的特徵
大數據工程師一個很重要的工作,就是通過分析數據來找出過去事件的特徵。比如,騰訊的數據團隊正在搭建一個數據倉庫,把公司所有網路平台上數量龐大、不規整的數據信息進行梳理,總結出可供查詢的特徵,來支持公司各類業務對數據的需求,包括廣告投放、游戲開發、社交網路等。
找出過去事件的特徵,最大的作用是可以幫助企業更好地認識消費者。通過分析用戶以往的行為軌跡,就能夠了解這個人,並預測他的行為。「你可以知道他是什麼樣的人、他的年紀、興趣愛好,是不是互聯網付費用戶、喜歡玩什麼類型的游戲,平常喜歡在網上做什麼事情。」騰訊雲計算有限公司北京研發中心總經理鄭立峰對《第一財經周刊》說。下一步到了業務層面,就可以針對各類人群推薦相關服務,比如手游,或是基於不同特徵和需求衍生出新的業務模式,比如微信的電影票業務。
預測未來可能發生的事情
通過引入關鍵因素,大數據工程師可以預測未來的消費趨勢。在阿里媽媽的營銷平台上,工程師正試圖通過引入氣象數據來幫助淘寶賣家做生意。「比如今年夏天不熱,很可能某些產品就沒有去年暢銷,除了空調、電扇,背心、游泳衣等都可能會受其影響。那麼我們就會建立氣象數據和銷售數據之間的關系,找到與之相關的品類,提前警示賣家周轉庫存。」薛貴榮說。
在網路,沈志勇支持「網路預測」部分產品的模型研發,試圖用大數據為更廣泛的人群服務。已經上線的包括世界盃預測、高考預測、景點預測等。以網路景點預測為例,大數據工程師需要收集所有可能影響一段時間內景點人流量的關鍵因素進行預測,並為全國各個景點未來的擁擠度分級—在接下來的若干天時間里,它究竟是暢通、擁擠,還是一般擁擠?
找出最優化的結果
根據不同企業的業務性質,大數據工程師可以通過數據分析來達到不同的目的。
以騰訊來說,鄭立峰認為能反映大數據工程師工作的最簡單直接的例子就是選項測試(AB Test),即幫助產品經理在A、B兩個備選方案中做出選擇。在過去,決策者只能依據經驗進行判斷,但如今大數據工程師可以通過大范圍地實時測試—比如,在社交網路產品的例子中,讓一半用戶看到A界面,另一半使用B界面,觀察統計一段時間內的點擊率和轉化率,以此幫助市場部做出最終選擇。
作為電商的阿里巴巴,則希望通過大數據鎖定精準的人群,幫助賣家做更好的營銷。「我們更期待的是你能找到這樣一批人,比起現有的用戶,這些人對產品更感興趣。」薛貴榮說。一個淘寶的實例是,某人參賣家原來推廣的目標人群是產婦,但工程師通過挖掘數據之間的關聯性後發現,針對孕婦群體投放的營銷轉化率更高。
B 需要具備的能力
數學及統計學相關的背景
就我們采訪過的BAT三家互聯網大公司來說,對於大數據工程師的要求都是希望是統計學和數學背景的碩士或博士學歷。沈志勇認為,缺乏理論背景的數據工作者,更容易進入一個技能上的危險區域(Danger Zone)—一堆數字,按照不同的數據模型和演算法總能捯飭出一些結果來,但如果你不知道那代表什麼,就並不是真正有意義的結果,並且那樣的結果還容易誤導你。「只有具備一定的理論知識,才能理解模型、復用模型甚至創新模型,來解決實際問題。」沈志勇說。
計算機編碼能力
實際開發能力和大規模的數據處理能力是作為大數據工程師的一些必備要素。「因為許多數據的價值來自於挖掘的過程,你必須親自動手才能發現金子的價值。」鄭立峰說。
舉例來說,現在人們在社交網路上所產生的許多記錄都是非結構化的數據,如何從這些毫無頭緒的文字、語音、圖像甚至視頻中攫取有意義的信息就需要大數據工程師親自挖掘。即使在某些團隊中,大數據工程師的職責以商業分析為主,但也要熟悉計算機處理大數據的方式。
對特定應用領域或行業的知識
在顏莉萍看來,大數據工程師這個角色很重要的一點是,不能脫離市場,因為大數據只有和特定領域的應用結合起來才能產生價值。所以,在某個或多個垂直行業的經歷能為應聘者積累對行業的認知,對於之後成為大數據工程師有很大幫助,因此這也是應聘這個崗位時較有說服力的加分項。
「他不能只是懂得數據,還要有商業頭腦,不論對零售、醫葯、游戲還是旅遊等行業,能就其中某些領域有一定的理解,最好還是與公司的業務方向一致的,」就此薛貴榮還打了個比方,「過去我們說一些奢侈品店員勢利,看人一眼就知道買得起買不起,但這群人恰恰是有敏銳度的,我們認為他們是這個行業的專家。又比如對醫療行業了解的人,他在考慮醫療保險業務時,不僅會和人們醫院看病的記錄相關,也會考慮飲食數據,這些都是基於對該領域的了解。」
C 大數據工程師的職業發展
如何成為大數據工程師
由於目前大數據人才匱乏,對於公司來說,很難招聘到合適的人才——既要有高學歷,同時最好還有大規模數據處理經驗。因此很多企業會通過內部挖掘。
今年8月,阿里巴巴舉辦了一個大數據競賽,把天貓平台上的數據拿出來,去除敏感問題後,放到雲計算平台上交予7000多支隊伍進行比賽,比賽分為內部賽和外部賽。「通過這個方式來激勵內部員工,同時也發現外部人才,讓各行業的大數據工程師涌現出來。」
顏莉萍建議,目前長期從事資料庫管理、挖掘、編程工作的人,包括傳統的量化分析師、Hadoop方面的工程師,以及任何在工作中需要通過數據來進行判斷決策的管理者,比如某些領域的運營經理等,都可以嘗試該職位,而各個領域的達人只要學會運用數據,也可以成為大數據工程師。
薪酬待遇
作為IT類職業中的「大熊貓」,大數據工程師的收入待遇可以說達到了同類的頂級。根據顏莉萍的觀察,國內IT、通訊、行業招聘中,有10%都是和大數據相關的,且比例還在上升。顏莉萍表示,「大數據時代的到來很突然,在國內發展勢頭激進,而人才卻非常有限,現在完全是供不應求的狀況。」在美國,大數據工程師平均每年薪酬高達17.5萬美元,而據了解,在國內頂尖互聯網類公司,同一個級別大數據工程師的薪酬可能要比其他職位高20%至30%,且頗受企業重視。
職業發展路徑
由於大數據人才數量較少,因此大多數公司的數據部門一般都是扁平化的層級模式,大致分為數據分析師、資深研究員、部門總監3個級別。大公司可能按照應用領域的維度來劃分不同團隊,而在小公司則需要身兼數職。有些特別強調大數據戰略的互聯網公司則會另設最高職位—如阿里巴巴的首席數據官。「這個職位的大部分人會往研究方向發展,成為重要數據戰略人才。」顏莉萍說。另一方面,大數據工程師對商業和產品的理解,並不亞於業務部門員工,因此也可轉向產品部或市場部,乃至上升為公司的高級管理層。
10. 招聘網站
建議你還是去 去以下中國最頂尖 的網站注冊你的簡歷就可以了,能找到很多的企業:
www.zhaopin.com 智聯招聘,最近打很多廣告,確實不錯
www.cjol.com 中國人才熱線,老牌網站,信息多,大公司多
www.51job.com 他最大的特色就是有傳統報紙的求職招聘版塊跟他一起配套宣傳。很多HR經理不一定是非得上網招人的,基本走了網路加傳統的線路。
當然,你可以根據你所在的地區上一些地方求職網站.
如果你是行業比較特殊或者不是大眾職位的,你可以上一些分類招聘網站,比如http://www.job36.com/
個人推薦。1.www.51job.com 2.www.cjol.com 3.www.zhaopin.com