導航:首頁 > 網路數據 > 大數據戶

大數據戶

發布時間:2023-01-01 06:54:21

A. 大型資料庫的設計原則與開發技巧

隨著計算機技術越來越廣泛地應用於國民經濟的各個領域 在計算機硬體不斷微型化的同時 應用系統向著復雜化 大型化的方向發展 資料庫是整個系統的核心 它的設計直接關系系統執行的效率和系統的穩定性 因此在軟體系統開發中 資料庫設計應遵循必要的資料庫範式理論 以減少冗餘 保證數據的完整性與正確性 只有在合適的資料庫產品上設計出合理的資料庫模型 才能降低整個系統的編程和維護難度 提高系統的實際運行效率 雖然對於小項目或中等規模的項目開發人員可以很容易地利用範式理論設計出一套符合要求的資料庫 但對於一個包含大型資料庫的軟體項目 就必須有一套完整的設計原則與技巧

一 成立數據小組

大型資料庫數據元素多 在設計上有必要成立專門的數據小組 由於資料庫設計者不一定是使用者 對系統設計中的數據元素不可能考慮周全 資料庫設計出來後 往往難以找到所需的庫表 因此數據小組最好由熟悉業務的項目骨幹組成

數據小組的職能並非是設計資料庫 而是通過需求分析 在參考其他相似系統的基礎上 提取系統的基本數據元素 擔負對資料庫的審核 審核內容包括審核新的資料庫元素是否完全 能否實現全部業務需求 對舊資料庫(如果存在舊系統)的分析及數據轉換 資料庫設計的審核 控制及必要調整

二 設計原則

規范命名 所有的庫名 表名 域名必須遵循統一的命名規則 並進行必要說明 以方便設計 維護 查詢

控制欄位的引用 在設計時 可以選擇適當的資料庫設計管理工具 以方便開發人員的分布式設計和數據小組的集中審核管理 採用統一的命名規則 如果設計的欄位已經存在 可直接引用 否則 應重新設計

庫表重復控制 在設計過程中 如果發現大部分欄位都已存在 開發人員應懷疑所設計的庫表是否已存在 通過對欄位所在庫表及相應設計人員的查詢 可以確認庫表是否確實重復

並發控制 設計中應進行並發控制 即對於同一個庫表 在同一時間只有一個人有控制權 其他人只能進行查詢

必要的討論 資料庫設計完成後 數據小組應與相關人員進行討論 通過討論來熟悉資料庫 從而對設計中存在的問題進行控制或從中獲取資料庫設計的必要信息

數據小組的審核 庫表的定版 修改最終都要通過數據小組的審核 以保證符合必要的要求

文件處理 每次數據修改後 數據小組要對相應的頭文件進行修改(可由管理軟體自動完成) 並通知相關的開發人員 以便進行相應的程序修改

三 設計技巧

分類拆分數據量大的表 對於經常使用的表(如某些參數表或代碼對照表) 由於其使用頻率很高 要盡量減少表中的記錄數量 例如 銀行的戶主賬表原來設計成一張表 雖然可以方便程序的設計與維護 但經過分析發現 由於數據量太大 會影響數據的迅速定位 如果將戶主賬表分別設計為活期戶主賬 定期戶主賬及對公戶主賬等 則可以大大提高查詢效率

索引設計 對於大的資料庫表 合理的索引能夠提高整個資料庫的操作效率 在索引設計中 索引欄位應挑選重復值較少的欄位 在對建有復合索引的欄位進行檢索時 應注意按照復合索引欄位建立的順序進行 例如 如果對一個 萬多條記錄的流水表以日期和流水號為序建立復合索引 由於在該表中日期的重復值接近整個表的記錄數 用流水號進行查詢所用的時間接近 秒 而如果以流水號為索引欄位建立索引進行相同的查詢 所用時間不到 秒 因此在大型資料庫設計中 只有進行合理的索引欄位選擇 才能有效提高整個資料庫的操作效率

數據操作的優化 在大型資料庫中 如何提高數據操作效率值得關注 例如 每在資料庫流水表中增加一筆業務 就必須從流水控製表中取出流水號 並將其流水號的數值加一 正常情況下 單筆操作的反應速度尚屬正常 但當用它進行批量業務處理時 速度會明顯減慢 經過分析發現 每次對流水控製表中的流水號數值加一時都要鎖定該表 而該表卻是整個系統操作的核心 有可能在操作時被其他進程鎖定 因而使整個事務操作速度變慢 對這一問題的解決的辦法是 根據批量業務的總筆數批量申請流水號 並對流水控製表進行一次更新 即可提高批量業務處理的速度 另一個例子是對插表的優化 對於大批量的業務處理 如果在插入資料庫表時用普通的Insert語句 速度會很慢 其原因在於 每次插表都要進行一次I/O操作 花費較長的時間 改進後 可以用Put語句等緩沖區形式等滿頁後再進行I/O操作 從而提高效率 對大的資料庫表進行刪除時 一般會直接用Delete語句 這個語句雖然可以進行小表操作 但對大表卻會因帶來大事務而導致刪除速度很慢甚至失敗 解決的方法是去掉事務 但更有效的辦法是先進行Drop操作再進行重建

資料庫參數的調整 資料庫參數的調整是一個經驗不斷積累的過程 應由有經驗的系統管理員完成 以Informix資料庫為例 記錄鎖的數目太少會造成鎖表的失敗 邏輯日誌的文件數目太少會造成插入大表失敗等 這些問題都應根據實際情況進行必要的調整

必要的工具 在整個資料庫的開發與設計過程中 可以先開發一些小的應用工具 如自動生成庫表的頭文件 插入數據的初始化 數據插入的函數封裝 錯誤跟蹤或自動顯示等 以此提高資料庫的設計與開發效率

避免長事務 對單個大表的刪除或插入操作會帶來大事務 解決的辦法是對參數進行調整 也可以在插入時對文件進行分割 對於一個由一系列小事務順序操作共同構成的長事務(如銀行交易系統的日終交易) 可以由一系列操作完成整個事務 但其缺點是有可能因整個事務太大而使不能完成 或者 由於偶然的意外而使事務重做所需的時間太長 較好的解決方法是 把整個事務分解成幾個較小的事務 再由應用程序控制整個系統的流程 這樣 如果其中某個事務不成功 則只需重做該事務 因而既可節約時間 又可避免長事務

適當超前 計算機技術發展日新月異 資料庫的設計必須具有一定前瞻性 不但要滿足當前的應用要求 還要考慮未來的業務發展 同時必須有利於擴展或增加應用系統的處理功能

lishixin/Article/program/SQL/201311/16498

B. 大型資料庫設計原則

一個好的資料庫產品不等於就有一個好的應用系統 如果不能設計一個合理的資料庫模型 不僅會增加客戶端和伺服器段程序的編程和維護的難度 而且將會影響系統實際運行的性能 一般來講 在一個MIS系統分析 設計 測試和試運行階段 因為數據量較小 設計人員和測試人員往往只注意到功能的實現 而很難注意到性能的薄弱之處 等到系統投入實際運行一段時間後 才發現系統的性能在降低 這時再來考慮提高系統性能則要花費更多的人力物力 而整個系統也不可避免的形成了一個打補丁工程 筆者依據多年來設計和使用資料庫的經驗 提出以下一些設計准則 供同仁們參考

命名的規范

不同的資料庫產品對對象的命名有不同的要求 因此 資料庫中的各種對象的命名 後台程序的代碼編寫應採用大小寫敏感的形式 各種對象命名長度不要超過 個字元 這樣便於應用系統適應不同的資料庫

游標(Cursor)的慎用

游標提供了對特定集合中逐行掃描的手段 一般使用游標逐行遍歷數據 根據取出的數據不同條件進行不同的操作 尤其對多表和大表定義的游標(大的數據集合)循環很容易使程序進入一個漫長的等特甚至死機 筆者在某市《住房公積金管理系統》進行日終帳戶滾積數計息處理時 對一個 萬個帳戶的游標處理導致程序進入了一個無限期的等特(後經測算需 個小時才能完成)(硬體環境 Alpha/ Mram Sco Unix Sybase ) 後根據不同的條件改成用不同的UPDATE語句得以在二十分鍾之內完成 示例如下

Declare Mycursor cursor for select count_no from COUNT

Open Mycursor

Fetch Mycursor into @vcount_no

While (@@sqlstatus= )

Begin

If @vcount_no= 條件

操作

If @vcount_no= 條件

操作

Fetch Mycursor into @vcount_no

End

改為

Update COUNT set 操作 for 條件

Update COUNT set 操作 for 條件

在有些場合 有時也非得使用游標 此時也可考慮將符合條件的數據行轉入臨時表中 再對臨時表定義游標進行操作 可時性能得到明顯提高 筆者在某地市〈電信收費系統〉資料庫後台程序設計中 對一個表( 萬行中符合條件的 多行數據)進行游標操作(硬體環境 PC伺服器 PII Mram NT Ms Sqlserver ) 示例如下

Create #tmp /* 定義臨時表 */

(欄位

欄位

)

Insert into #tmp select * from TOTAL where

條件 /* TOTAL中 萬行 符合條件只有幾十行 */

Declare Mycursor cursor for select * from #tmp

/*對臨時表定義游標*/

索引(Index)的使用原則

創建索引一般有以下兩個目的 維護被索引列的唯一性和提供快速訪問表中數據的策略 大型資料庫有兩種索引即簇索引和非簇索引 一個沒有簇索引的表是按堆結構存儲數據 所有的數據均添加在表的尾部 而建立了簇索引的表 其數據在物理上會按照簇索引鍵的順序存儲 一個表只允許有一個簇索引 因此 根據B樹結構 可以理解添加任何一種索引均能提高按索引列查詢的速度 但會降低插入 更新 刪除操作的性能 尤其是當填充因子(Fill Factor)較大時 所以對索引較多的表進行頻繁的插入 更新 刪除操作 建表和索引時因設置較小的填充因子 以便在各數據頁中留下較多的自由空間 減少頁分割及重新組織的工作

數據的一致性和完整性

為了保證資料庫的一致性和完整性 設計人員往往會設計過多的表間關聯(Relation) 盡可能的降低數據的冗餘 表間關聯是一種強制性措施 建立後 對父表(Parent Table)和子表(Child Table)的插入 更新 刪除操作均要佔用系統的開銷 另外 最好不要用Identify 屬性欄位作為主鍵與子表關聯 如果數據冗餘低 數據的完整性容易得到保證 但增加了表間連接查詢的操作 為了提高系統的響應時間 合理的數據冗餘也是必要的 使用規則(Rule)和約束(Check)來防止系統操作人員誤輸入造成數據的錯誤是設計人員的另一種常用手段 但是 不必要的規則和約束也會佔用系統的不必要開銷 需要注意的是 約束對數據的有效性驗證要比規則快 所有這些 設計人員在設計階段應根據系統操作的類型 頻度加以均衡考慮

事務的陷阱

事務是在一次性完成的一組操作 雖然這些操作是單個的操作 SQL Server能夠保證這組操作要麼全部都完成 要麼一點都不做 正是大型資料庫的這一特性 使得數據的完整性得到了極大的保證

眾所周知 SQL Server為每個獨立的SQL語句都提供了隱含的事務控制 使得每個DML的數據操作得以完整提交或回滾 但是SQL Server還提供了顯式事務控制語句

BEGIN TRANSACTION 開始一個事務

MIT TRANSACTION 提交一個事務

ROLLBACK TRANSACTION 回滾一個事務

事務可以嵌套 可以通過全局變數@@trancount檢索到連接的事務處理嵌套層次 需要加以特別注意並且極容易使編程人員犯錯誤的是 每個顯示或隱含的事物開始都使得該變數加 每個事務的提交使該變數減 每個事務的回滾都會使得該變數置 而只有當該變數為 時的事務提交(最後一個提交語句時) 這時才把物理數據寫入磁碟

資料庫性能調整

在計算機硬體配置和網路設計確定的情況下 影響到應用系統性能的因素不外乎為資料庫性能和客戶端程序設計 而大多數資料庫設計員採用兩步法進行資料庫設計 首先進行邏輯設計 而後進行物理設計 資料庫邏輯設計去除了所有冗餘數據 提高了數據吞吐速度 保證了數據的完整性 清楚地表達數據元素之間的關系 而對於多表之間的關聯查詢(尤其是大數據表)時 其性能將會降低 同時也提高了客 戶端程序的編程難度 因此 物理設計需折衷考慮 根據業務規則 確定對關聯表的數據量大小 數據項的訪問頻度 對此類數據表頻繁的關聯查詢應適當提高數據冗餘設計

數據類型的選擇

數據類型的合理選擇對於資料庫的性能和操作具有很大的影響 有關這方面的書籍也有不少的闡述 這里主要介紹幾點經驗

Identify欄位不要作為表的主鍵與其它表關聯 這將會影響到該表的數據遷移

Text 和Image欄位屬指針型數據 主要用來存放二進制大型對象(BLOB) 這類數據的操作相比其它數據類型較慢 因此要避開使用

日期型欄位的優點是有眾多的日期函數支持 因此 在日期的大小比較 加減操作上非常簡單 但是 在按照日期作為條件的查詢操作也要用函數 相比其它數據類型速度上就慢許多 因為用函數作為查詢的條件時 伺服器無法用先進的性能策略來優化查詢而只能進行表掃描遍歷每行

例如 要從DATA_TAB 中(其中有一個名為DATE的日期欄位)查詢 年的所有記錄

lishixin/Article/program/Oracle/201311/17929

C. 國產十大資料庫排名

1、openGauss企業。

2、達夢。

3、GaussDB。

4、PolarDB。

5、人大金倉。

6、GBase。

7、TDSQL。

8、SequoiaDB。

9、OushuDB。

10、AnalyticDB。

詳細介紹:

1、南大通用:

南大通用提供具有國際先進技術水平的資料庫產品。南大通用已經形成了在大規模、高性能、分布式、高安全的數據存儲、管理和應用方面的技術儲備,同時對於數據整合、應用系統集成、PKI安全等方面具有豐富的應用開發經驗。

2、武漢達夢:

武漢達夢資料庫有限公司成立於2000年,為國有控股的基礎軟體企業,專業從事資料庫管理系統研發、銷售和服務。其前身是華中科技大學資料庫與多媒體研究所,是國內最早從事資料庫管理系統研發的科研機構。達夢資料庫為中國資料庫標准委員會組長單位,得到了國家各級政府的強力支持。

3、人大金倉:

人大金倉資料庫管理系統KingbaseES是北京人大金倉信息技術股份有限公司自主研製開發的具有自主知識產權的通用關系型資料庫管理系統。

金倉資料庫主要面向事務處理類應用,兼顧各類數據分析類應用,可用做管理信息系統、業務及生產系統、決策支持系統、多維數據分析、全文檢索、地理信息系統、圖片搜索等的承載資料庫。

4、神舟通用:

神通資料庫是一款計算機資料庫。神通資料庫標准版提供了大型關系型資料庫通用的功能,豐富的數據類型、多種索引類型、存儲過程、觸發器、內置函數、視圖、Package、行級鎖、完整性約束、多種隔離級別、在線備份、支持事務處理等通用特性,系統支持SQL通用資料庫查詢語言。

D. 什麼 是 大 數據

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。

第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。

大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。

E. 大資料庫是什麼東東啊

你好,朋友,很高興回答你問題.行業能否成為你的天堂,取決的因素太多太多,在你做出決定之間前,作為行業過來人的我,真心建議你對自己進行全方位的評估!

F. 大數據常用哪些資料庫

通常資料庫分為關系型資料庫和非關系型資料庫,關系型資料庫的優勢到現在也是無可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比較小型的Access等等資料庫,這些資料庫支持復雜的SQL操作和事務機制,適合小量數據讀寫場景;但是到了大數據時代,人們更多的數據和物聯網加入的數據已經超出了關系資料庫的承載范圍。

大數據時代初期,隨著數據請求並發量大不斷增大,一般都是採用的集群同步數據的方式處理,就是將資料庫分成了很多的小庫,每個資料庫的數據內容是不變的,都是保存了源資料庫的數據副本,通過同步或者非同步方式保證數據的一致性,每個庫設定特定的讀寫方式,比如主資料庫負責寫操作,從資料庫是負責讀操作,等等根據業務復雜程度以此類推,將業務在物理層面上進行了分離,但是這種方式依舊存在一定的負載壓力的問題,企業數據在不斷的擴增中,後面就採用分庫分表的方式解決,對讀寫負載進行分離,但是這種實現依舊存在不足,且需要不斷進行資料庫伺服器擴容。
NoSQL資料庫大致分為5種類型

1、列族資料庫:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面簡單介紹幾個

(1)Cassandra:Cassandra是一個列存儲資料庫,支持跨數據中心的數據復制。它的數據模型提供列索引,log-structured修改,支持反規范化,實體化視圖和嵌入超高速緩存。

(2)HBase:Apache Hbase源於Google的Bigtable,是一個開源、分布式、面向列存儲的模型。在Hadoop和HDFS之上提供了像Bigtable一樣的功能。

(3)Amazon SimpleDB:Amazon SimpleDB是一個非關系型數據存儲,它卸下資料庫管理的工作。開發者使用Web服務請求存儲和查詢數據項

(4)Apache Accumulo:Apache Accumulo的有序的、分布式鍵值數據存儲,基於Google的BigTable設計,建立在Apache Hadoop、Zookeeper和Thrift技術之上。

(5)Hypertable:Hypertable是一個開源、可擴展的資料庫,模仿Bigtable,支持分片。

(6)Azure Tables:Windows Azure Table Storage Service為要求大量非結構化數據存儲的應用提供NoSQL性能。表能夠自動擴展到TB級別,能通過REST和Managed API訪問。

2、鍵值資料庫:Redis、SimpleDB、Scalaris、Memcached等,下面簡單介紹幾個

(1)Riak:Riak是一個開源,分布式鍵值資料庫,支持數據復制和容錯。(2)Redis:Redis是一個開源的鍵值存儲。支持主從式復制、事務,Pub/Sub、Lua腳本,還支持給Key添加時限。

(3)Dynamo:Dynamo是一個鍵值分布式數據存儲。它直接由亞馬遜Dynamo資料庫實現;在亞馬遜S3產品中使用。

(4)Oracle NoSQL Database:來自Oracle的鍵值NoSQL資料庫。它支持事務ACID(原子性、一致性、持久性和獨立性)和JSON。

(5)Oracle NoSQL Database:具備數據備份和分布式鍵值存儲系統。

(6)Voldemort:具備數據備份和分布式鍵值存儲系統。

(7)Aerospike:Aerospike資料庫是一個鍵值存儲,支持混合內存架構,通過強一致性和可調一致性保證數據的完整性。

3、文檔資料庫:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面簡單介紹幾個

(1)MongoDB:開源、面向文檔,也是當下最人氣的NoSQL資料庫。

(2)CounchDB:Apache CounchDB是一個使用JSON的文檔資料庫,使用Javascript做MapRece查詢,以及一個使用HTTP的API。

(3)Couchbase:NoSQL文檔資料庫基於JSON模型。

(4)RavenDB:RavenDB是一個基於.NET語言的面向文檔資料庫。

(5)MarkLogic:MarkLogic NoSQL資料庫用來存儲基於XML和以文檔為中心的信息,支持靈活的模式。

4、圖資料庫:Neo4J、InfoGrid、OrientDB、GraphDB,下面簡單介紹幾個

(1)Neo4j:Neo4j是一個圖資料庫;支持ACID事務(原子性、獨立性、持久性和一致性)。

(2)InfiniteGraph:一個圖資料庫用來維持和遍歷對象間的關系,支持分布式數據存儲。

(3)AllegroGraph:AllegroGraph是結合使用了內存和磁碟,提供了高可擴展性,支持SPARQ、RDFS++和Prolog推理。

5、內存數據網格:Hazelcast、Oracle Coherence、Terracotta BigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面簡單介紹幾個

(1)Hazelcast:Hazelcast CE是一個開源數據分布平台,它允許開發者在資料庫集群之上共享和分割數據。

(2)Oracle Coherence:Oracle的內存數據網格解決方案提供了常用數據的快速訪問能力,一致性支持事務處理能力和數據的動態劃分。

(3)Terracotta BigMemory:來自Terracotta的分布式內存管理解決方案。這項產品包括一個Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop連接器。

(4)GemFire:Vmware vFabric GemFire是一個分布式數據管理平台,也是一個分布式的數據網格平台,支持內存數據管理、復制、劃分、數據識別路由和連續查詢。

(5)Infinispan:Infinispan是一個基於Java的開源鍵值NoSQL數據存儲,和分布式數據節點平台,支持事務,peer-to-peer 及client/server 架構。

(6)GridGain:分布式、面向對象、基於內存、SQL+NoSQL鍵值資料庫。支持ACID事務。

(7)GigaSpaces:GigaSpaces內存數據網格能夠充當應用的記錄系統,並支持各種各樣的高速緩存場景。

G. 什麼是大型資料庫

大型資料庫是IBM公司開發
他有兩種資料庫類型;一種是關系資料庫,典型代表產品內:DB2;另一種則是層次資料庫容,代表產品:IMS層次資料庫。
大型資料庫的數據定義包括資料庫模式定義和外模式定義。大型資料庫的資料庫模式是物理資料庫記錄型的集合。每個物理資料庫記錄型對應於層次數據模型中的一個層次模式,由一個DBD定義。物理資料庫記錄型到存儲資料庫的映射包含在這個物理資料庫記錄型的DBD定義中。
大型資料庫的外模式是邏輯資料庫記錄型的集合。每個邏輯資料庫記錄型由一個PCB定義。一個邏輯資料庫記錄型到大型資料庫模式的映射包含在這個邏輯資料庫記錄型的PCB定義中。用戶是按照外模式操縱數據的。

H. fm2021大資料庫怎麼開

在高級設置里。
開檔的時候點高級設置,下一頁右上角就能看到設置資料庫大小。「巨大資料庫」是需要補丁的,目前21的沒有。大資料庫包含大多數知名球員,基本你能想出來的球員,他都會有,弱點的國家,也會有很多知名的球星,也許鄭大志都能開出來。

I. 大型資料庫應具備哪些特點

數據量大,並發訪問高,數據的完整性和一致性,
信息存儲
性和檢索性,處理功能強大,速度較快。

閱讀全文

與大數據戶相關的資料

熱點內容
招標文件中應該證明的內容有 瀏覽:607
工件編程怎麼換平面 瀏覽:25
明珠三國官方版本 瀏覽:758
jspop換行 瀏覽:319
如何用網路畫圖 瀏覽:52
dxf編程如何修刀 瀏覽:344
js音頻控制 瀏覽:112
蘋果6p微信發送語音會自己中斷 瀏覽:644
win10拷貝文件到u盤速度慢 瀏覽:396
怎麼把ps源文件字體改清楚 瀏覽:440
u盤如何恢復win10系統下載 瀏覽:153
完美世界100級升級攻略 瀏覽:67
安卓手機去除廣告軟體 瀏覽:529
水果禮品卡網站有哪些 瀏覽:272
愛譜數據線纜多少錢 瀏覽:165
word轉換成圖片格式 瀏覽:182
移動數據收費標準是多少 瀏覽:952
me525微信451去升級版 瀏覽:152
如何把壓縮文件變成永久文件 瀏覽:828
數據分片最大值多少 瀏覽:598

友情鏈接