1. 什麼是交通大數據
跟交通信息有關的所有數據整合到一起(比如車輛信息、地圖信息、人員信息、違規違章記錄信息等等),形成一個數據鏈,這樣的就是交通大數據。
2. 智能交通中有哪些問題可以用大數據來解決
隨著時代的發展,人們已經不知不覺走進了信息化時代,在信息化時代大量的數據爆棚成了新時代的特徵。在這種特徵下人們依然追求生產生活質量的提高。對於發展智能交通使人們生活以及現實社會的需要,然而在智能交通的構建當中,大量的信息數據也給其增添了變化和難度,如何在大數據時代構建一個智能化、安全化、低成本、高效便捷化的智能交通系統成為了當今人們研究的課題。
就目前而言,國際上還沒有給予「大數據」一個明確的具有權威性的定義,但是其在本質上的認識各個國家基本相同。一些研究人士認為「大數據」是數量極大的一堆數據,其作用性非常強,並且其可以對其應用領域的大體上做出預測。還有一些研究人士認為,在大量信息數據技術處理應用當中,「大數據」是一項大的數據集合,並且該種集合不僅數據量大並且還非常復雜。但是無論怎樣大數據時代已經走來,我們必須接受並且要利用好其在各個領域的應用。因此在今天的智能交通領域,利用大數據技術已經成為了時代發展的必然,因為其可以給現代智能交通帶來諸多大的變化。
隨時網路信息技術以及相關配套技術的快速發展,使得當今時代在不知不覺中走進一個「大數據」時代階段。大數據時代已經來臨,對於城市交通來說既是機遇,也是挑戰,如何應對,如何利用,這是一個很大的課題。在傳統交通中,城市交通是中流砥柱,具有基礎性的作用。大數據時代的特徵人們用四個V字開頭的英文單詞來表達即速度(Velocity)、多樣性(Variety)、體量(Volume)以及價值密度(Value)。在大數據時代,城市交通與大數據必然發生各種聯系,通過大數據帶來的技術突破推動城市交通邁向全面信息化時代,通過城市交通的快速發展推動大數據更加落地,產生實效城市交通大數據的集成和未來的挖掘應用對於現代軌道的發展具有重要作用。不論對哪一個傳統行業來說,對大數據的需求,都要既懂技術又深諳內情。能夠駕馭行業大數據的人,需要比金融更懂金融,比電信更懂電信,比交通更懂交通,需要充分調查乘客的實際需求,需要對高峰期充分了解。
3. 根據 大數據在交通方面可以有哪些應用
交通方面的大數據用的還是比較多的。只是常在人們的身邊,人們忽略了而已。典型的就是網路地圖工具,那就是利用大數據分析的出來的路況信息。幾乎每個人都有用過吧?
4. 交通銀行如何應對大數據
交通銀行要學會「走出去」以應對大數據。
拓展資料:
在「大數據時代」,銀行所面臨的競爭不僅僅來自於同行業內部,外部的挑戰也日益嚴峻。互聯網、電子商務等新興企業在產品創新能力、市場敏感度和「大數據」處理經驗等方面都擁有明顯的優勢,一旦涉足金融領域,將對銀行形成較大的威脅。日前,互聯網公司阿里巴巴已開始在利用大數據技術提供金融服務,通過其掌握的電商平台阿里巴巴、淘寶網和支付寶等的各種信息數據,藉助大數據分析技術自動判定是否給予企業貸款,全程幾乎不用出現人工干預。這種基於「大數據」分析能力的競爭優勢已明鮮顯示了這種威脅的現實性和急迫性。
數據將是未來銀行的核心競爭力之一,這已成為銀行業界的共識。應該說,銀行對於傳統的結構化數據的挖掘和分析是處於領先水平的,但一方面銀行傳統的資料庫信息量並不豐富和完整,如客戶信息,銀行擁有客戶的基本身份信息,但客戶其他的信息,如性格特徵、興趣愛好、生活習慣、行業領域、家庭狀況等卻是銀行難以准確掌握的;另一方面對於多種異構數據的分析是難以處理的,如銀行有客戶的資金往來的信息、網頁瀏覽的行為信息、服務通話的語音信息、營業廳、ATM的錄像信息,但除了結構化數據外,其他數據無法進行分析,更談不上對多種信息進行綜合分析,無法打破「信息孤島」的格局。也就是說,在「大數據時代」,銀行的數據挖掘和分析能力嚴重不足。
5. 互聯網+交通」 大數據時代下的智能交通
互聯網+交通」:大數據時代下的智能交通
早上十點,張先生准備從位於城南的公司出發去城北的咖啡廳見客戶。出發之前,他打開手機導航APP,選擇了一條車流量最少、交通狀況最好的出行線路。二十分鍾後,張先生順利抵達目的地。令他感到舒心的是,咖啡廳附近新建了停車場,以往他可是因為有急事卻找不到停車位吃了好幾次罰單。和客戶寒暄的過程中,張先生得知客戶這次沒開車,而是選擇了打車軟體,原本40元的車程,他只花了十幾元。
如今,越來越多的人和張先生一樣感受著智能交通帶來的便利。但是他們可能並不知道,經常遇到的攝像頭、電子卡口、電子警察等系統,它們在保障城市安全、維持交通秩序的同時,也在不斷產生大量數據信息,不僅能夠節約時間,也能大大提高交通工具和道路的使用效率,減少能耗。
在「互聯網+」背景下,智能交通大數據技術的應用,不僅將「先知」逐漸變成現實,更建立起車、路、人之間的網路,通過整合信息,最終為人(車內的人和關注車內人的人)提供服務,使得交通更加智能、精細和人性;對管理者而言則大大提高管理者獲取數據的能力,提高他們的決策能力和管理交通的能力。
一、「互聯網+交通」的表現形式
2015年3月5日,李克強總理在政府工作報告中首次提出「互聯網+」行動計劃。互聯網與傳統行業的融合發展將從全流程上改造傳統行業,從而產生新的業態。互聯網與交通的碰撞也形成了「線上資源合理分配、線下高效優質運行」的新格局。
早在2011年底,「互聯網+交通」已初見端倪。鐵路推出了網路訂購火車票的新舉措,讓百姓利用電腦、手機,通過網路,足不出戶就能買到火車票;民航行動更快,很早就實現了網路訂票,現在通過大數據分析,通過手機APP可實現手機購票值機、查看航班動態等功能;而大力推進高速公路ETC聯網發展,則是公路方面推進網路化的措施。此外,人們平日出行開車也越來越離不開導航系統、打車軟體。
1. 事前預判
我們在生活中,總會有感覺到交通不方便的地方,如飛機晚點、延誤,超級大堵車……如此這些,已經成為我們生活中習以為常的事情。交通永遠不會有發展到最完美的時候,人類會不斷提出新的要求以改善舒適度。
以出行高峰時段的交通擁堵為例,智能交通能夠提高人們出行的計劃性,通過他人的出行數據,預備出行者可以提早知曉不久後的某時段交通預計的流量情況,以此妥善安排自身的出行。其次,智能交通可以提高出行的可靠性,即例如甲要從A地去B地,必經路線的堵車已經無法避免,提高出行可靠性就在於可以通過智能交通的技術手段,根據以往同一時段該路線的交通狀況,預估同樣出行方式下將可能多耗費的時間。再者,智能交通應用在汽車上的自動避讓和制動等功能還可以在一定程度上提高出行的安全性。
總而言之,以智能交通的技術手段提高信息採集強度及採集量,並提高其數據處理水平,繼而把所得信息通過各種不同渠道傳送給每個有需要的人,智能交通正在提高整個交通系統的應變性和個人出行的應變性。
幾年前,海康威視已經布局大數據和雲計算,並在武漢市成立了大數據和雲計算研發中心。目前,海康威視已推出了大數據的初步應用,主要在三個方面:人臉數據的大庫檢索、海量卡口數據的高效檢索分析和案事件數據的分析。
大數據的魅力在於我們可以從數據中找規律,它能使原來的「事後檢索」變成「事前預判」。海康威視大資料庫檢索,可以做到將犯罪分子人臉、作案車輛等特徵圖片放進視頻圖像庫里進行搜索比對,尋找犯罪嫌疑人的蹤跡。
例如,在南方某座特大城市,針對某系列案件,警方運用海康威視的大數據技術,通過大量信息的檢索、比對和分析,發現嫌疑人每次作案前均會到某個地方落腳的規律。當地警方提前在落腳點布防,成功抓獲了准備再次作案的嫌疑人。基於大數據的雲計算搜索,就像網路搜索關鍵詞一樣迅速找到想要的東西,不需要像從前一樣由多名警察一幀一幀盯著事發地點的監控錄像,尋找作案嫌疑人。
大數據還必須做到「秒級響應」,反應遲緩的話,大數據也就失去了價值。海康威視在多個城市的電子卡口系統中應用了大數據技術,在上百億條車輛記錄中快速搜索,幾秒鍾甚至零點幾秒鎖定結果。在此基礎上,可以更好地實現如套牌車輛研判、跟車關聯分析、違法多發時間和地點研判、交通流量分析和交通誘導等應用。
2. 調整更改
在傳統的規劃過程中,設計部門根據對現狀的判斷和經驗的積累,容易對交通項目進行個人意志和團隊意志的主觀操作,更有某些小型設計單位採用閉門造車的方式進行拿來主義的設計,這與規劃的本職形成嚴重對峙,更不符合互聯網+時代下對大數據應用的渴求。
對於城市管理者或是城市交通管理者、公路交通管理者,智能交通是幫助提高其管理的技術手段,大大提高管理者獲取數據的能力,提高他們的決策能力和管理交通的能力。
舉個最簡單的例子,道路的渠化由交通設計院規劃設計,然後施工建設。然而道路及其周邊區域的情況不是一成不變的。隨著城市的發展,道路起初的設計可能無法滿足市民的實際需求。比如城北新建了一個工業園區,那早高峰往北面上班的車會明顯增多,同時晚高峰從城北返城的車會增多。這時之前設計的道路顯然不足以滿足市民的需求,道路再次設計成潮汐車道或者是可變車道均可提升道路的通行能力,滿足市民的需求。但是二者如何選擇,抑或兩個方案一起實施,一直是困擾交通管理者的一件事情。這時,道路上安裝的電子警察、卡口和視頻檢測器所採集的過車信息和車流量數據就可以為道路的渠化提供有用的信息。
再舉個例子,城市交通中,大家最熟悉的是紅綠燈。有些城市的紅綠燈裝有信號控制系統,在所有道路資源都充分使用的條件下,紅綠燈的轉換頻率只能按時間分配,不可能讓路上的車輛變少,然而合理的紅綠燈配時可以讓道路的通行率大大提升。前端信號機配備有車檢板,支持地埋線圈的接入,同時也可以通過視頻檢測器,實現控制區域內車流量、佔有率、車速、排隊長度等交通參數的採集、處理和存儲。交通信號控制系統可根據前端獨立的車輛信息來直接調整對應信號燈的綠信比,也可根據區域整體的車流狀況對信號燈配時方案進行針對性的區域協調。同時這部分交通參數信息也可提供到其他相關聯的交通管理系統使用。比如通過大數據採集分析和交通模擬,進行區域的信號協調控制。
3.分析應用
對交通出行的大數據進行分析總結可以得出不同城市的相互聯系強度、城市流動人口的來源,指導城市對外交通建設;能夠分析出城市交通現象與重要事件之間的關系,有效預防下次突發事件造成的交通壓力;大數據能夠形象地反映居民的出行路徑、偏好,總結出居民的出行習慣從而為第三方服務平台提供參考,加快推進交通運輸由傳統產業向現代服務業轉型升級。
智能交通綜合管控平台存儲了大量的交通數據信息,如何有效充分地利用這些信息將非常重要。通過對平台存儲的數據進行智能研判分析,獲得一些潛在有價值的數據和信息,為交通管理、刑偵稽查提供重要的線索和數據信息。
比如案件刑偵分析時,某些車輛行駛軌跡可能會成為重要線索。平台行車軌跡分析功能可以輸入關注車輛號牌,選定關注的時間段,進行分析。分析結果會以列表的方式呈現在列表中按照時間先後順序顯示該車輛在此時間段內的所有過車信息。如果平台部署了電子地圖模塊。可在電子地圖模塊展現車輛行車軌跡分析結果展示,並在地圖按照車輛行駛的時間和空間順序,在地圖中描繪車輛行駛軌跡。
同時,目前機動車數量的激增,機動車車輛牌照無法憑借肉眼觀察直接判定車輛號牌真偽、套牌與否。出現部分車主為了逃避交通違法處罰,甚至進行其它不法活動時為了躲避刑偵緝查,而使用假牌和套牌的手段。智能交通綜合管控平台使用車牌識別技術,採集經過監測點車輛的信息,如車牌號碼、車身顏色、車輛類型、出現時間,根據創建的套牌分析模型,實時自動完成套牌嫌疑車輛的檢測和報警,可有效打擊使用套牌車輛的行為。
而在治安監控中,外來車輛初次入城信息將會成為外地車輛流竄作案的重要線索。可利用卡口、電子警察對車輛採集進行數據信息,可在指定時間段內,對首次經過指定路口的車輛進行查詢展示,此功能配合城市卡口包圍圈、城際卡口、電子警察採集的數據信息將發揮更大的作用。
現在在很多一二線城市,由於計程車在高峰時期供不應求,催生出了很多非法營運車輛。這些車輛雖然在一定程度內可以方便大眾的出行,但是由於其無監管部門,對於民眾的生命和財產有一定的安全隱患,而此類車輛很難從常規車輛中分辨出來。針對這類情況,可引入車輛積分制度,對符合積分細則的車輛進行積分,例如在本地案件多發地區的車輛進行高積分規則,每抓拍捕獲一次積3分,對相對涉案車輛較少地區的車輛,每次抓拍捕獲積1分。在研判中可按一定時段檢索分值排列靠前的車輛,納入視線,進行重點管控,並從中發現相關線索。積分細則可由相關部門的業務實際應用進行設定,積分細則後期可進行添加和修改,積分實行累加制,不設上限。同時可以對於重點監控區域,如學校、銀行、醫院、廣場、娛樂場所(廣場、KTV等),可以有針對性的對重點區域的卡口/路口某些時段內的車輛進行分析和觀察,分析出這些區域內頻繁出入的車輛、按照次數從高到低排行顯示車輛的詳細抓拍識別信息。對頻繁出入車輛進行關注,從而起到預警作用。
交通管理部門如何保證交通安全、交通秩序是一個重要的任務。在有限警力的條件下如何達到管理交通安全的目標,警力有的放矢的調動安排將非常重要。智能交通綜合管控平台對交通數據進行研判分析,可將違法多發地點按照違法次數從高到低的次序顯示排名靠前的違法多發地點,為交通管理部門的警力調動安排提供參考信息。為了在有限警力的條件下達到管理交通安全的目標,保證警力在最合適的時間出勤。智能交通綜合管控平台對交通數據時間特點進行分析研判,可將違法多發時段分析出來,並按照違法多發時段的違法次數排序,顯示違法多發時間段,為交通管理部門警力調度提供參考。
二、「互聯網+交通」在國內的應用
杭州市建立了「一個中心、三個系統」即交通指揮中心、交通管理信息系統、交通控制系統和交通工程類信息系統。杭州市交警支隊還實行了集中調度指揮和交通信息預報制度,在市區主幹路、主要交叉路口實行分級預警和干預機制,重點解決早晚高峰、節假日重要時段的路面交通問題。
各城市交管部門一直在探索優秀的勤務模式,以最少的警力、最小的行政成本,獲得最好的交通管理效果和最大的社會效益。杭州市通過改變交警的傳統路面巡邏執勤模式,通過交警支隊視頻作戰室、交警大隊分指揮室和交警中隊數字勤務室三級指揮系統的網路巡邏執勤模式,結合路邊重點巡邏,實施「上下聯動」機制,實現「桌面就是路面」,使科技應用直達基層民警,提升了交通管控效能,擴大了路面管理的覆蓋面,加大了路面管理的密度和力度,提高了應對交通擁堵、交通事故等交通突發事件的快速反應能力,減少了道路交通事故和交通違法行為,提高了道路通行能力,緩解了交通擁堵,確保了城市道路交通的安全、暢通、有序。
三、「互聯網+交通」的發展趨勢
首先,要大力發展綠色、便捷、高效、經濟的公共交通。通過智能交通技術手段提高公共交通系統的服務水平,引導城市居民出行方式的轉變。
其次,以智能交通技術提升道路交通管理水平,提高城市道路體系的綜合利用效率。
再次,優化區域交通組織,以先進的交通管理手段如先進的交通信號系統、交通誘導系統、交通違法自動考量系統,減少路口延誤、排隊等候,使得道路通暢、規范停車場管理等關鍵環節。
當前我國城市交通發展處於挑戰和機遇並存的關鍵歷史階段。一方面,隨著城鎮化、機動化的持續快速發展,城市交通擁堵加劇、污染嚴重、事故頻發,面臨嚴峻挑戰;另一方面,我國城市出在老城改造、新城建設的城市大發展時期,是實現生態城市、綠色交通的最佳時機,可以通過「互聯網+交通」的融合發展,通過智能交通實現我國城市綠色交通系統建設的跨越式發展。
6. 大數據,數據挖掘在交通領域有哪些應用
交通領域大數據分析和應用的場景會相當多,這裡面要注意兩點,一個是大數據本身的技術處理平台,一個是數據分析和挖掘演算法。具體場景當時寫過點內容,如下:
對於公交線路規劃和設計是一個大數據潛在的應用場景,傳統的公交線路規劃往往需要在前期投入大量的人力進行OD調查和數據收集。特別是在公交卡普及後可以看到,對於OD流量數據完全可以從公交一卡通中採集到相關的交通流量和流向數據,包括同一張卡每天的行走路線和換乘次數等詳細信息。對於一個上千萬人口的大城市而言,每天的流量數據都會相當大,單一分析一天的數據可能沒有相關的價值,而分析一個周期的數據趨勢變化則會相當有價值。結合交通流量流向數據趨勢變化,可以很好的幫助公交部門進行公交運營線路的調整,換乘站的設計等很多內容。這個方法可能很早就有人想到,但是在公交卡沒有普及或海量數據處理和計算能力沒有跟上的時候確實很難實際落地操作,而現在則是完全可以落地操作的時候了。
從單一的公交流量流向數據動態分析僅僅是一個方面,大數據往往更加強調相關性分析。比如對於在某一個時間段內公交流量和流向數據發生明細的趨勢變化的時候,這個趨勢變化的究竟和哪些潛在的大事件或其它影響因素的變化存在相關性,如何去分析這些相關性並做出正確的應對。舉個簡單的例子來說,當市中心區內的房屋租金持續增長的時候一定會影響到交通流的變化,很多人可能會搬離到更遠的地方去居住,自然會形成更多的新增公交流量和流向信息。在《大數據時代》裡面談到更多的會關心相關性而不是因果只是一個方面的內容,實際上往往探索因果仍然很重要,就拿尿片和啤酒的例子來說看起來很簡單,但是究竟是誰發現了這種相關性才更加重要,發現相關性的過程往往是從果尋因的過程,否則你也很難真正就確定是具備相關性。
其次就智能交通來說,現在的智慧交通應用往往已經能夠很方面的進行整個大城市環境下的交通狀況監控並發布相應的道路狀況信息。在GPS導航中往往也可以實時的看到相應的擁堵路況等信息,而方便駕駛者選擇新的路線。但是這仍然是一種事後分析和處理的機制,一個好的智能導航和交通流誘導系統一定是基於大量的實時數據分析為每個車輛給出最好的導航路線,而不是在事後進行處理。對於智能交通中的交通流分配和誘導等模型很復雜,而且面對大量的實時數據採集,根據模型進行實時分分析和計算,給出有價值的結果,這個在原有的信息技術下確實很難解決。隨著物聯網和車聯網,分布式計算,基於大數據的實時流處理等各種技術的不斷城市,智能的交通導航和趨勢分析預測將逐步成為可能。
還有一個在國外大片中經常能夠看到的就是實時的車輛追蹤,隨著智慧城市的建設,城市裡面到處都是攝像頭採集數據,當鎖定一個車輛後如何根據車輛的特徵或車牌號等信息,實時的追蹤到車輛的行走路線和位置。這裡面往往需要實時的視頻數據採集,採集數據的實時分析和比對,給出相應的參考信息和數據。這個個人認為是具有相當大的難度,要知道對於視頻流和圖像信息的比對和分析往往更加耗費計算資源,需要更長的計算周期,要從城市成千上萬個攝像頭裡面採集數據並進行實時分析完全滿足大數據常說的海量數據,異構數據,速度和價值等四個維度的特徵。基於車輛能夠做到,基於人當然同樣也可以做到,希望這類應用能夠逐步的出現,至少現在從硬體水平能力和技術基礎上已經具備這種大數據應用的能力。
-
7. 城市交通大數據行業發展現狀剖析
城市交通大數據行業發展現狀剖析
人們在城市中生活每天產生大量的數據,有結構化的也有非結構化的,有一些與交通出行密切相關,而有一些又看似與交通出行沒有什麼關系,這些數據分布在不同的行政管理部門、互聯網公司或者傳統運營企業。舉個例子來說,隨著智慧城市建設熱潮,很多城市中已經布滿了感測設備(交叉口進口道地磁、電子警察、卡口等),通過地磁可以採集到一定時間間隔交叉口進口道交通流量、速度以及佔有率;通過電子警察或卡口可以實時獲取經過卡口的車輛車牌號、通過時間以及地點車速,這些數據基本都匯聚在地方交警部門。互聯網公司通過為城市居民提供即時通信、導航以及共享服務,可以通過客戶終端定位實時獲取居民的位置。傳統運營企業范圍也很廣泛,包括了公交公司客運企業、計程車公司、通信運營商等,公交公司和客運企業匯聚了客流數據(IC卡、第三方支付以及零票)、車輛定位數據等,計程車公司匯聚了計程車定位數據、而通信運營商則可以匯聚客戶手機MAC地址。上述列舉的數據,都可以為城市交通規劃、政策制定、設計以及管理提供數據支持。後續筆者會結合自身十幾年的理論研究以及交通工程經驗,闡述每種數據未來的應用場景及潛在價值。
城市交通系統分析是一個復雜巨系統,尤其是在交通供需矛盾日益突出的當下,如何提高整個交通系統效率、提升居民出行品質是對每個交通管理者、研究者、工程師的挑戰。交通科學自誕生之日起,就與數據結下不解之緣,這是一門基於統計學的工程科學。
互聯網公司最早認識到了數據在交通領域的應用價值,也極大推動了雲計算、大數據等新一代信息技術在交通領域的應用。高德、滴滴擁堵排名、阿里城市大腦就是互聯網公司藉助自身的數據資源開展交通領域大數據應用的探索。
互聯網公司進軍傳統智能交通行業,一邊是互聯網公司頻頻發布基於大數據分析的各種報告,另一邊也開始產生了各種質疑的聲音。當前城市交通已經有一隻腳邁入了大數據時代,而另外一隻腳則需要傳統交通理論與移動互聯數據有效融合進行驅動。撥開當前交通大數據行業的繁華偽裝,我們以冷靜的眼光去審視,看到當前還存在很多問題,今天就略談一二:
第一、所謂的交通大數據基本還是針對單一數據源開展分析,分析精度有待進一步提高,應用場景有待進一步豐富。大部分的研究集中在基於車載GPS數據以及視頻數據提取車輛描述信息、交通流狀態信息,研究擁堵的表徵指標以及交警執法應用;
第二、城市交通感測設備布局並未從交通大數據的視角進行優化分析。城市智能交通系統規劃一個重要的任務就是研究城市交通採集設備布局方案,目前,較少有人從城市交通規劃與管理智庫頂層設計的高度,對檢測器的分布進行研究。此外,提高感測設備的適用性以及穩定性,也是有效提高當前數據質量的重要手段。
第三、城市交通大數據缺乏統一的數據標准。前面也論述了當前可以用於交通系統分析的數據,這些數據來源不同,要想未來能夠將上述數據利用起來,打破數據壁壘,形成城市交通數據池,就需要共同探討數據共享機制,並制定統一數據標准;此外,形成城市數據池後,城市交通數據治理將是一項復雜而艱巨的任務。
第四、大數據時代城市交通理論的創新面臨巨大挑戰。傳統的交通理論基本都是基於統計學,也就是基於樣本開展研究,而大數據時代的到來變革了交通理論數據來源,使得數據由抽樣變為了全樣,數據由有針對性的調查變為從大數據中抽取有用信息。因此,交通需求預測、交通通行能力分析、交通管控等基本理論將產生巨大變革,交通學者們應當既要仰望天空又要腳踏實地,在基礎領域研究中投入更多的精力,不應被當前的浮雲遮住望眼。
城市交通系統理論與大數據技術的融合發展任重而道遠,也期望與廣大交通工程師以及研究人員共同探討、共同進步。
8. 2020年交通大數據行業應用現狀
【導讀】可以說交通是國家經濟的命脈所在,而隨著大數據是的商用化普及,智能交通也得到了快速的發展,我們老百姓也可以享受到交通大數據帶來的福利,今天我們就來聊一下2020年交通大數據行業應用現狀如何?一起來看看吧!
作為人類行為的重要組成部分和重要條件之一,對大數據的感知是最為迫切的。近年來,我國的智能交通發展迅速,許多技術手段已達到國際領先水平。問題和困難,但是,非常突出,也從城市發展的角度,智能交通的潛在價值並沒有被有效的挖掘:知覺和交通信息的集合是有限的,大量的數據管理系統中存在的不能共享使用,有效的交通情況分析預測疲勞,公共交通信息服務難以滿足需求。雖然有不同的建築概念和投資在不同地區,整個智能交通的現狀特點是低效率和智能不足,這使得許多先進的技術和設備未能發揮應有的作用,還會導致大量的投資浪費。最重要的是在困難時期的損害較小的數據:管理理念和技術設備模擬時間只有在某種程度上,和關系資料庫管理系統的分析只能嚴格的特定關系,對於大規模數據,尤其是半結構化和非結構化數據。
雖然數字化已經基本實現,但是數字化和數字化並不是一回事。它只是提高了本地收集、存儲和應用的效率,但本質上沒有太大的改變。大數據時代的到來,必將為解決難題帶來巨大機遇。大數據必然要求我們改變小數據條件下的盲目和精確計算,但更好地面對困惑,把握宏觀形勢;大數據不可避免地要求我們關注的不是因果關系而是相關性,這使得處理大量的非結構化數據成為可能,促使我們將一切都數字化,最終實現方便高效的管理。
交通大數據行業的現狀是什麼?目前,大數據在交通中的應用主要有兩個方面。一方面,大數據感測器數據可以用來了解車輛的交通密度,合理的道路規劃可以包括單車道的路線規劃。另一方面,可以利用大量的實時數據實現信號量的實時調度,提高現有線路的運行能力。信號燈的科學布置是一項復雜的系統工程,需要利用大數據計算平台制定出更加合理的方案。科學信號系統將使現有道路的通行能力提高約30%。在美國,政府基於特定路段的交通事故信息增加了更多的交通信號燈,從而將事故發生率降低了50%以上。依託大數據實現機場航班起降,提高航班管理效率。航空公司可以利用大數據來增加乘客容量和降低運營成本。鐵路利用大數據有效安排客運和貨運列車,提高效率和降低成本。
以上就是小編今天給大家整理的關於「2020年交通大數據行業應用現狀」的相關內容,希望對大家有所幫助。總的來說,大數據的價值不可估量,未來發展前景也是非常可觀的,因此有興趣的小夥伴,盡早著手學習哦!
9. 大數據時代 如何利用交通數據分析的最新相關信息
大數據時代的城市來交通管理自關鍵要解決數據來源問題,打破現有部門、機構之間因為利益關系而對數據共享和交換的障礙,讓公眾參與到交通基本狀態信息的採集是一個必然有效的途徑,只是目前面臨各種法律法規的難題,以及網路覆蓋導致的速率和交通管理機構沒有提供便捷的數據採集上傳的入口。
解決了數據採集問題以後,其他的數據分析、決策分析和行政監管等工作,就看管理部門的執行力了。即便沒有行政作為的突破,借用商業運作也能對交通管理起到很好的促動作用。
10. 交通大數據分析會對智慧交通產生那些影響
隨著這些年我國城市化發展的加速,城市交通擁堵、交通污染日益嚴重,交通事故頻繁發生。眾所周知,智能交通成為改善城市交通的關鍵策略。因此,及時、准確獲取交通大數據並構建交通數據處理模型是建設智能交通的前提,而這一難題可以通過大數據技術得到解決。
交通行業現狀
我國智能交通發展始於上世紀90年代,在「十二五」規劃中,我國交通部進一步明確未來智能交通運輸的發展目標,例如,感知識別、網路傳輸、智能處理和數據挖掘等。在改善結構調整和城際溝通的支撐、引領雙重作用,成為城市交通最重要的發展領城。包括大數據等現代先進技術的應用,提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
我國新型城鎮化將需要形成城市群內部城市之間、城市內部的軌道交通系統,交通運輸環境進一步改善。包括大數據等現代先進技術的應用,目的在於提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
目前遇到的問題
1、海量數據
軌道交通系統每時每刻都在產生大量數據,來自故障維修系統、實時監控系統、項目實施進度系統、物資物料統計系統等,且數據增長速度越來越快,這些數據的價值在哪?該如何利用提升地鐵運營效率,確保項目交付的及時監控。
2.數據認知
大多數傳統系統,故障維修系統,實時監控系統,物資物料統計系統中,已有簡單的分析統計圖表,但數據格式比較單一,靈活性差,交互性低,管理者難以對數據有很好的認知。
3、管理決策
大數據運營在地鐵網路化、大客流運營常態下愈發凸現其對軌道交通安全、高效運行和乘客服務方面的重要作用,能迅速從底層數據中提取關鍵數據,以數據驅動運營方向,對決策提供科學支撐。
現在很多地方的交通大數據系統都用的BI平台,比如永洪科技,一般的大數據分析系統分為3個層次:
1、數據層以及建模層:整合交通行業各信息系統,打破信息孤島,實現數據共享。數據決策方面、銷售方面、運營方面關心的指標,建立不同分析主題集市。
2、業務層:梳理交通行業指標,將分析結果推送至展現層。
3、展現層:以豐富美觀的圖表展現方式,靈活多變的交互方式,將分析結果呈現給各角色管理人員。
基本上現在的大數據分析平台都可以做到以下幾個方面:
1、基於交通數據分析平台,決策層、管理層可能洞察軌交運行狀況。
2、應對軌交各系統數據量的迅速增長,基於明細數據,任意業務的計算及展現,可達到秒級響應。
3、運營和分析部門都能做部分自服務分析,以滿足實時探索分析需求。
4、能夠快速響應新的分析需求和變化,提高工作效率 。