導航:首頁 > 網路數據 > 大數據時代亞馬遜

大數據時代亞馬遜

發布時間:2022-12-28 18:50:26

大數據時代,企業數據蘊藏著的商業價值

如今大數據早已不再是什麼新鮮詞,它已經被大眾熟悉,可以稱作是移動互聯時代流動的黃金。

據《大數據產業發展前景與投資戰略規劃分析報告》(前瞻產業研究院發布)數據統計顯示,中國大數據產業在2017年達到4700億元的規模,同比增長30%,預計到2020年,中國大數據市場產值將突破萬億。隨著大數據市場的快速發展,企業決策人員越來越重視對大數據的利用,如何藉助大數據讓企業快速成長也成為了人們的關注重點。

大數據挖掘商業價值的方法主要分為四種:

客戶群體細分 ,然後為每個群體量定製特別的服務。

模擬現實環境 ,發掘新的需求同時提高投資的回報率。

加強部門聯系 ,提高整條管理鏈條和產業鏈條的效率。

降低服務成本 ,發現隱藏線索進行產品和服務的創新。

對於企業來說,100條理論確實不如一個成功的標桿有實踐意義,從亞馬遜、Facebook、谷歌、LinkedIn,到騰訊、阿里、網路,都因其擁有大量的用戶注冊和運營信息,成為天然的大數據公司。

如果全球哪家公司從大數據發掘出了最大價值,截至目前,答案可能非亞馬遜莫屬。

亞馬遜也要處理海量數據,這些交易數據的直接價值更大。作為一家「信息公司」(而非國內許多電商自己定位的「零售公司」),亞馬遜不僅從每個用戶的購買行為中獲得信息,還將每個用戶在其網站上的所有行為都記錄下來:頁面停留時間、用戶是否查看評論、每個搜索的關鍵詞、瀏覽的商品等等。這種對數據價值的高度敏感和重視,以及強大的挖掘能力,使得亞馬遜早已遠遠超出了它的傳統運營方式。

亞馬遜CTO Werner Vogels早期在CeBIT上關於大數據的演講,向與會者描述了亞馬遜在大數據時代的商業藍圖。

長期以來,亞馬遜一直通過大數據分析,嘗試定位客戶和和獲取客戶反饋。「在此過程中,你會發現數據越大,結果越好。為什麼有的企業在商業上不斷犯錯?那是因為他們沒有足夠的數據對運營和決策提供支持,」Vogels說, 「一旦進入大數據的世界,企業的手中將握有無限可能。」 從支撐新興技術企業的基礎設施到消費內容的移動設備,亞馬遜的觸角已觸及到更為廣闊的領域。

推薦: 亞馬遜的各個業務環節都離不開「數據驅動」的身影。在亞馬遜上買過東西的朋友可能對它的推薦功能都很熟悉,「買過X商品的人,也同時買過Y商品」的推薦功能看上去很簡單,卻非常有效,同時這些精準推薦結果的得出過程也非常復雜。

預測: 用戶需求預測(Demand Forecasting)是通過歷史數據來預測用戶未來的需求。對於書、手機、家電這些東西——亞馬遜內部叫硬需求(Hard Line)的產品,你可以認為是「標品」(但也不一定)——預測是比較準的,甚至可以預測到相關產品屬性的需求。但是對於服裝這樣軟需求(Soft Line)產品,亞馬遜幹了十多年都沒有辦法預測得很好,因為這類東西受到的干擾因素太多了,比如:用戶的對顏色款式的喜好,穿上去合不合身,愛人朋友喜不喜歡…… 這類東西太易變,買得人多反而會賣不好,所以需要更為復雜的預測模型。

測試: 你會認為亞馬遜網站上的某段頁面文字只是碰巧出現的嗎?其實,亞馬遜會在網站上持續不斷地測試新的設計方案,從而找出轉化率最高的方案。整個網站的布局、字體大小、顏色、按鈕以及其他所有的設計,其實都是在多次審慎測試後的最優結果。

記錄: 亞馬遜的移動應用讓用戶有一個流暢的無處不在的體驗的同時,也通過收集手機上的數據深入地了解了每個用戶的喜好信息;更值得一提的是Kindle Fire,內嵌的Silk瀏覽器可以將用戶的行為數據一一記錄下來。

以數據為導向的方法並不僅限於以上領域。對於亞馬遜來說,大數據意味著大銷售量。數據顯示出什麼是有效的、什麼是無效的,新的商業投資項目必須要有數據的支撐。 對數據的長期專注讓亞馬遜能夠以更低的售價提供更好的服務。

還有一個很典型的案例,就是幾年伴隨社區營銷火氣來的小紅書。

和其他電商平台不同,小紅書是從社區起家 。2016年初,小紅書將人工運營內容改成了機器分發的形式。通過大數據和人工智慧,將社區中的內容精準匹配給對它感興趣的用戶,從而提升用戶體驗。

如今的小紅書,已經不是簡單的社交分享了,更多的是基於後台的大數據分析和智能推送,最終形成了良好的正向閉環反饋。

通過以上兩個大數據服務案例,我們不難看出數據團隊其實是一個獨立性很強的團隊,因為他們需要完成的事情很多,這其中包含從數據源開始到數據的輸出。對研發而言,他們相當於紀檢委,需要組織協調數據的周轉,實現對數據的監控,同時也要配合研發完成一些數據聚合挖掘累開發。對業務而言,他們相當於研發,因為他們需要輸出報表和相應的產品,所以如何構建一個高效的數據團隊,對很多企業來說一直在探索,感覺隔霧看花,捉摸不清。

一個企業想要自主研發一個數據平台,創建一個數據分析團隊,會是一個很龐大的工程量。企業數據的類型大致可分為三類:

傳統企業數據: 包括CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。

機器和感測器數據: 包括呼叫記錄,智能儀表,工業設備感測器,交易數據等。

社交數據: 包括用戶行為記錄,反饋數據等。如微博、微信這樣的社交媒體平台。

從理論上來看,大部分企業都會從大數據的發展中受益。但由於數據缺乏以及從業人員本身的原因,對於中小型的初創企業來說,獨自開發的成本太高了。而有財力的傳統企業呢,也產生了大量的數據,但是數據源很亂,也沒有統一的存儲方式,更別說研發了。即使招人來做數據分析,也不知道從何下手。該怎麼辦呢?

其實,數據的價值就是從獲取數據,存儲,加工到挖掘分析,最終實現可視化,輔助商業決策。想真正去應用在企業的流程中,多少要依賴於專業的工具或平台,歸雲智能打造的大數據系統解決方案,可以幫助傳統企業完成數據化,智能化的升級改造。幫助企業建立穩定高效的運營機制,推動企業實現降本增效和業務的高速發展。

通過新興的智能技術,企業可以有新的視野,探索更寬廣的商業模式,實現最大的商業價值。產品部署使用方便,中小企業可以使用歸雲智能提供的雲服務,大型企業可以選擇私有化部署到自己的伺服器。 感興趣的總們可以訪問官網:  http://www.guiyum.com ,了解詳情。

② 大數據時代的大變革

大數據時代的大變革
在雲計算仍處於「雲里霧里」而亟待落地的今天,IT的浩瀚天空中突然傳來了天使的號角聲——大數據時代來了!大數據,開啟了一個徹頭徹尾的變革年代,更開啟了一個蘊含無窮多機會的年代。誰能夠「號准」大數據時代的「脈搏」,誰就能夠在全球IT業的新一輪角逐中獨領風騷。
令人充滿想像的大數據,究竟「大」在何處?
今天,我們再也不能用狹隘的視角來審視大數據了。因為今天的大數據,不僅體現為數據量的驚人增長,更前所未有地引入了正在不斷擴展中的數據類型。從量的增長來看,IDC報告顯示,未來10年全球大數據將增加50倍。而剛剛過去的2011年,就產生了1.8ZB(1.8萬億GB)的大數據,這相當於每個美國人按每分鍾發3條微博的速度,不停發布2.6976萬年。與此同時,社會上的各行各業,從電信、IT業,到金融、證券、保險、航空、酒店服務業等,地球上的各種存在,從每個人到每棵樹、每朵花乃至每粒沙子,無一例外地都在成為大數據的生成者。在量和面上的雙重積累,讓我們不難想像和接受數據大爆炸的現實——2020年的全球數據使用量將達到35.2ZB(1ZB=10億TB)。
猶如一座富礦的大數據,究竟該如何「開采」?
這是一個令人著迷的問題,因為與正確答案相伴的將是誰都渴望的巨大商業成功。當前,伴隨著變革的發生,傳統的互聯網企業已經站在了大數據時代的最前沿。作為探索的先鋒,他們能否笑到最後,是否會成為「先烈」?這一問題盡管很難回答,但至少為成功的覬覦者提供了充分的借鑒和參考。
作為後PC時代的四大巨頭,Facebook、谷歌、蘋果、亞馬遜正在成為大數據的擁有者和使用者。在自覺或不自覺間,Facebook已然成為業界第一個生成大數據的「巨鱷」,而其他三巨頭仍在努力中。蘋果依靠操作系統和顛覆性的終端,正在努力打造大數據的生成之地;谷歌主要依靠操作系統、搜索引擎和「Google+」平台整合終端產品,以儲備可以利用的大數據;亞馬遜作為雲計算的最早倡導者之一,則通過網路平台、雲計算平台和閱讀終端,期望建立起一個電子商務垂直領域的大數據匯集地。雖然巨頭們的策略各有不同,但利用種種手段整合碎片化的數據進而加以利用的趨勢,已經再明顯不過了。
相比這四大巨頭,電信運營商的探索才剛剛起步。「日內瓦的電信運營商,正在針對市民活動的可視化展開研究。」天雲科技副總雷濤在近日舉行的雲計算大會雲基地專場上指出,「通過在用戶手機上安裝感測器,就能夠記錄下大量的位置信息,從而使得市民活動可視化,這對建立一個智慧城市,進行人口規劃、區域規劃都具有重要意義。」事實上,一個個再簡單不過的位置信息背後,隱藏著巨大的、待挖掘的價值,這個價值對於各行各業都具有關鍵的作用。例如,房地產開發商就很渴望知道高端用戶最頻繁出入的區域,而這些區域就是商業地產的最佳候選地。而除了位置信息外,電信運營商能夠挖掘的信息和數據,仍有無窮無盡的空間,包括了用戶喜好、消費能力等等。
在企業的自發行為以外,國家級的戰略支持已經浮出水面。美國,作為ICT強國,嗅覺最為敏銳。2012年3月29日,奧巴馬政府公布了「大數據研發計劃」,目標在於改進當前人們從海量和復雜的數據中獲取知識的能力,而這是美國繼高速網路和超級計算中心之後的另一個重大科技項目。據悉,首批共有6個聯邦部門宣布投資2億美元,共同提高收集、儲存、保留、管理、分析和共享海量數據所需核心技術的先進性,並形成合力,同時增加大數據技術開發和應用所需人才的供給。顯然,先行一步的美國,已經把大數據當作了其ICT產業再度在全球崛起的重要契機。在找准了崛起的方向之後,富有行動力的美國,自然就會毫不拖泥帶水地實施下去。
大數據,正在撬動全世界的神經,無論是國家、企業,還是每一個獨立存在的個人,都將成為大數據時代的貢獻者和受益者。但問題是,你准備好了嗎?

③ 亞馬遜賣家如何利用數據化運營做好一款產品

大數據時代精準的信息會給亞馬遜賣家帶來很好的銷量,因此想要做好數據化運營要從以下兩大方面入手。

一、選品

1、產品質量和自身資源考慮2、市場調研了解市場需求空間3、競品分析

二、產品發布

1、Q&A分析2、關鍵詞分析3、產品發布後的數據分析統計

④ 維克托邁爾舍恩伯格《大數據時代》讀後感

當仔細品讀一部作品後,大家一定都收獲不少,是時候寫一篇讀後感好好記錄一下了。千萬不能認為讀後感隨便應付就可以,以下是我幫大家整理的維克托邁爾舍恩伯格《大數據時代》讀後感範文,僅供參考,希望能夠幫助到大家。

維克托邁爾舍恩伯格《大數據時代》讀後感 篇1

對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲,此書有如下特點。

首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。

作者認為大數據時代具有三個顯著特點。

一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。

二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。

三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。

作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。

面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。

維克托邁爾舍恩伯格《大數據時代》讀後感 篇2

如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。

他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:

一、更多:不是隨機樣本,而是全體數據。

二、更雜:不是精確性,而是混雜性。

三、更好:不是因果關系,而是相關關系。

對於第一個觀點,我不敢苟同。

一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?

我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的.方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

維克托邁爾舍恩伯格《大數據時代》讀後感 篇3

讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。

這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。

其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。

大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!

在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。

在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!

大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。

大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。

大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!

⑤ 大數據時代讀後感1000字(2)

大數據時代讀後感1000字(精選7篇)

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。

大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。

此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。

大數據時代讀後感1000字 篇2

我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--」並非原子而是信息才是一切的本源「,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字

當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。

在附上一些事例的時候,用作者提供的」本質「去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,

大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。

第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)

第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度

第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們」是什麼「而不是」為什麼「。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。,出處:短美文,否則追究其責任,謝謝你的支持,我們會給做得更好!

正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與」過去的經驗或積累的部分知識「相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。

所以作者稱之為revolution。

講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是,預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡

公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。

扯到這里,順便扯一下,書中另一段關於自由意志的描述

在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。

書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,」哎喲,我居然看過這部電影,想想心裡還是有點小激動「,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。

最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。

大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。

大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。

大數據時代讀後感1000字 篇3

「大數據」一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。

作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。

書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。

為什麼是清新的呢?因為書中的內容彷彿向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處於網路時代 ,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到「猜你喜歡」的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自於那些曾被忽略的大數據同時也在證明「預測,大數據的核心」這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像「猜你喜歡」欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網路時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。「本質上世界是由信息構成的」,面對這句話時,大數據時代彷彿就在眼前。

在感受驚嘆著大數據能為我們做到以往無法想像的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言「我們時刻暴露在『第三隻眼』下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什麼都知道」,而且利用大數據我們可以預測許多事情並且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年後就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什麼?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。

於是我繼續去探索作者對這問題的思考。「更大的數據在於人本身」,作者還說「我們是在創造更好的未來」,也說「在一個預測的時代里,人類的自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本」。人類學家克利福德吉爾茲曾說:「努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。」這些話語彷彿是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背後對人溫暖的光芒。

面對時代的變革,我會為堅守內心深處的自由意志而努力並「擁抱大數據」。

大數據時代讀後感1000字 篇4

世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺於搖籃之中—這遠勝於"防患於未然"。

《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了 "大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落於世界進程之後,所以我們必須轉變我們的思想。

"我們不再熱衷於尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯繫到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷於"精確",而是"混亂",若不接受"混亂",那麼有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之後,我們就可以從這些數據之中發掘它們的相關關系,即以"是什麼"而不是"為什麼"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。

這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年h1n1流行之時,通過檢測檢索詞條,處理34。5億個不同的數據模型,通過預測並與2007、2008年的美國疾控中心記錄的實際流感病例進行對比後,確定了45條檢索詞條組合,並將其用於一個特定的數學模型後,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。

同時,雖然大數據可為人類造福、對抗病症,但這僅限於掌握這門技術而言,若不重視這種技術,當我們的對手早於我們一步構建這種數據網路之時,便是我們的災難,想想,大數據雖核心的在於預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的.導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控於敵手,敵方甚至可以藉此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。

對於我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網路共享化的時代,通過這些數據,建立數據模型,可以准確分析並給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好准備,去應對大數據時代的一切!

大數據時代讀後感1000字 篇5

「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。

美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。

透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。

讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。

作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。

每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……

大數據時代讀後感1000字 篇6

讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。

我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。

如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。

與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。

大數據時代讀後感1000字 篇7

舍恩伯格的《大數據時代》,讓我重新審視了"大數據"這個在信息時代異軍突起的熱點詞彙,作為信息安全專業的我,對大數據這個詞本身有著更多的熱忱。

在網路上搜索到的解釋是:"大數據",或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。

而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。

本書中,主要從三個方面論述,即思維變革、商業變革和管理變革。而舍恩伯格更是著重闡明三大觀點:

一、更多:不是隨機樣本,而是全體數據。

二、更雜:不是精確性,而是混雜性。

三、更好:不是因果關系,而是相關關系。

對於觀點一,我不敢苟同,畢竟大數據的實現需要一定的技術支持,而顯然,現在這種技術還不夠成熟,同時一些簡單的事情運用大數據反倒是問題更加復雜化,因此這種大叔據的繁雜處理方式更適用於一些特定的情況,比如商業預測,人類dna的研究等。

而對第二種觀點,我是十分贊同舍恩伯格所說的"大數據的簡單演算法比小數據的簡單演算法有效"。在計算機行業迅速發展中,一種新的簡單可行的演算法的出現,遠沒有計算機在運算速度和存儲容量的發展快,而大數據演算法似乎更能迎合這種大趨勢。

觀點三中提到的相關關系在大數據中可是重量級的,它能較快找到事物規律和對應的解決措施,當然,也不能完全忽視因果關系,畢竟人們在思維上更能夠接受因果關系分析出的結果,而大數據預測的需要人們慢慢的適應才能接受。當我們完成相關關系的分析而又不滿足於只知道"是什麼"的時候,我們就可以轉而研究"為什麼"了,畢竟問題的根本在於因果。而舍恩伯格的全體數據和相關關系是大數據時代下的一種捷徑。

但是在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。

在這樣的大環境下,常引起我更多的思考和擔憂。

大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。

工業化、信息化,我們都向世界交出了一份讓世界不能小覷的答案;

大數據時代的數據化我們又將怎樣在新的風暴中所向披靡,如果大數據時代是一種必然趨勢,那這就是我們這一代人的責任,是我們新的戰場!

;

⑥ 什麼和大數據隨之在整個供應鏈中被廣泛應用

什麼和大數據隨之在整個供應鏈中被廣泛應用

什麼和大數據隨之在整個供應鏈中被廣泛應用,在數字化時代,數據分析逐步成為從業人員的必備技能之一。所以我們應該注重做好數據分析。那麼什麼和大數據隨之在整個供應鏈中被廣泛應用?

什麼和大數據隨之在整個供應鏈中被廣泛應用1

大數據時代對采購和供應鏈帶來的挑戰和機遇

1、大數據時代及其特徵

大數據(Big Data)是指所涉及的規模巨大的數據。隨著時代的不斷進步以及科技的飛速發展,互聯網、物聯網、移動通訊、管理信息化、電子商務等技術不斷相互滲透,並作用到國家、企業和民生的方方面面,今天,人們用大數據來描述和定義信息爆炸時代產生的海量數據,以及在合理時間內達到擷取、管理、處理、並整理成為幫助人們處理事務和決策等更積極目的的資訊與知識。

美國互聯網數據中心指出,互聯網上的數據每年將增長50%,每兩年便將翻一番,而目前世界上90%以上的數據都是最近幾年才產生的。2020年,全世界所產生的數據規模將達到今天的44倍。從這些數據每天增加的數量來看,世界目前已進入大數據時代。

大數據時代凸顯了數據資源的重要意義。2012年奧巴馬政府宣布投資2億美元拉動大數據相關產業的發展,將「大數據戰略」上升為國家戰略,將大數據定義為「未來的新石油」,把對數據的佔有和控制視為陸權、海權、空權之外的另一種國家核心資產。2013年,法國政府發布了其《數字化路線圖》,列出了將會大力支持的5項戰略性高新技術,「大數據」就是其中一項。

2012年,日本總務省發布2013年行動計劃,明確提出「通過大數據和開放數據開創新市場」。聯合國在2012年發布的大數據政務白皮書中指出,大數據對於聯合國和各國政府來說是一個歷史性的機遇。我國也將大數據產業看作為戰略性產業,成立了「大數據專家委員會」。

在「大數據」2014年十大趨勢預測中,包括了數據商品化與數據共享聯盟化,大數據生態環境逐步發展等內容。同時,大數據專家委員會預測,2014年大數據在互聯網和電子商務、金融(股市預測、金融分析)、健康醫療(流行病監控和預測等)、生物信息、制葯等方面將會有令人矚目的應用。

大數據時代是大數據價值充分發揮的時代。據賽門鐵克公司的調研報告,全球企業的信息存儲總量已達2.2ZB(1ZB=1024EB,1EB=1024PB),年增67%。世界上每分鍾產生1700TB 的數據,但是吸引我們的不僅僅是這個龐大的數字本身,而是我們如何利用這些數據做些什麼。

大數據可以運用到各行各業,在宏觀經濟方面,IBM日本公司建立經濟指標預測系統,從互聯網新聞中搜索影響製造業的480項經濟數據,計算采購經理人指數的預測值;印第安納大學利用谷歌公司提供的心情分析工具,從近千萬條網民留言中歸納出六種心情,進而對道瓊斯工業指數的變化進行預測,准確率達到87%;

在製造業方面,華爾街對沖基金依據購物網站的顧客評論,分析企業產品銷售狀況;一些企業利用大數據分析實現對采購和合理庫存量的管理,通過分析網上數據了解客戶需求、掌握市場動向,等等。

據麥肯錫公司測算:大數據將給美國醫療服務業帶來3000億美元的價值,使美國零售業凈利潤增長達到60%,使製造業產品開發、組裝成本下降50%,而大數據所帶來的新需求,將推動整個信息產業的創新發展;根據經濟與商業研究中心的最新研究,大數據將為英國經濟增加2160億英鎊(約合3467億美元)以上的潛在收益。

2、大數據時代對采購和供應鏈帶來的挑戰和機遇

首先,商務環境和商務模式變得越來越復雜,且更加動盪、多樣和個性化。其二,電子商務業務模式的飛速發展打破了國家疆界,使得跨境業務速增、商業活動頻繁,同時伴隨著數據量的劇增。。其三,大數據應用處理成為企業和社會競爭發展的重要焦點。其四,有效挖掘大數據成為時代面臨的重要課題。最後,許多企業對大數據的重要性認識不足,沒有充分了解其價值。

什麼和大數據隨之在整個供應鏈中被廣泛應用2

供應鏈管理中,及時和准確的數據,為什麼如此重要?

1 、供應鏈中數據的類型

數據有許多類型,其中有一種分類方法是把它分為靜態和動態數據,前者包括了公司基本信息、產品型號、采購價格、BOM等等相對固定的信息。

後者主要是一些交易性的信息,比如生產線每日的產量、客戶訂單數量、倉庫實際收貨數量、運輸所在位置等等變動的信息。

靜態數據做到准確即可,沒有實時性的要求,比如公司的名稱一般不會發生變動,只需要確保公司地址、法人和開戶銀行等信息是正確的。

動態數據的要求就很高了,不僅要准確,還要能反映出每時每刻的實際情況。

大家都有網購的經驗,在商品出庫以後,快遞公司會每隔一段時間刷新包裹所在位置,這是通過車載GPS定位實現的,然後根據卡車配送計劃,大致上能給出派送的時間。通過一台卡車上的GPS,可以跟蹤整車的貨物,這是1對N的關系,因此實現動態數據的成本並不高。

離散型製造業的情況就復雜多了,一件商品需要從原材料供應商開始追溯,進入工廠以後,需要經過若干個不同生產加工中心,然後完成組裝、檢驗,最終才能入庫,配送給下游的經銷商或零售商。

我們很少會在原材料上放置追蹤】定位裝置,除非這批貨物價值很高,或是有這方面的強制監管要求,比如葯品。

如果想要跟蹤生產進度,就需要使用工業4、0的技術,在每台設備上裝感測器,完成加工後,系統自動上傳數據。如果要在每台生產和內部搬運設備上都安裝感測器,對於一家工廠來說負擔太大,性價比不高,除了少數的行業標桿企業以外,對於大多數工廠來說,想要做實時數據的想法並不強烈。

2、 為什麼供應鏈需要及時和准確的數據?

話雖如此,供應鏈對於數據及時和准確性是有很強的需求的,因為我們要在所有的生產、分銷、采購和售後服務之間建立數據的無縫鏈接。除此之外,還有兩個關鍵因素使得我們必須獲得及時和准確性。

2、1增強供應鏈可視性

對於供應鏈上的玩家來說,關鍵的可視性問題包括了貨物的預計生產出貨時間,比如供應商承諾了30天交貨,但是實際上他需要45天,因為一些原材料漲價了,供應商需要更多的時間在市場上找到貨源,他不願意買更貴的原料,因為這會增加成本,除非客戶願意接受供應商的調價請求。

原料和零部件庫存的所處位置也屬於可視性,客戶需要根據這些信息,來安排後續的生產和銷售計劃,並且非常依賴於信息的准確性。當供應商承諾貨物將會在某日送到客戶工廠後,供應鏈就把這個信息輸入系統,並以此為依據來制定生產計劃,銷售根據生產完成日期來通知客戶,環環相扣。

一旦供應商的信息有誤,貨物晚於承諾時間到達,就會影響到供應鏈下游的安排,所謂的「計劃趕不上變化」就發生了。

追蹤交貨期和庫存位置僅是可視性的初階水平,更深層次的要求是可以預警供應鏈中斷風險。根據現有的信息,我們需要判斷何時何地會出現缺貨,以及對生產和銷售的影響是什麼。

比如,生產線缺少某種零部件,所以會停線4個小時。如果每小時產量是100套產品,每套售價是200元,那麼造成的損失就等於4*100*200=80000元。

當然在現實世界中計算的方式更加復雜,某種原料的短缺會牽涉到N多產品和N多客戶。如果我們能增強可視性,就能夠預見到未來的潛在供應短缺,並能夠在第一時間里作出反應。

要實現這點,就必須讓數據及時和准確地在供應鏈上下游之間自動傳輸,盡量減少人為的干預的環節。

2、2提高計劃的'有效性

預測計劃的重要輸入是歷史銷售記錄,以數據為基礎,結合預測模型,制定出中長期的預測。

對於製造企業來說,財務需要供應鏈提供的輸入,來制定未來的商業計劃和各類預算,比如庫存、采購金額、運費等等。

底層數據的准確性非常重要,所有的計劃都是在這些數據的基礎上,配以數據模型,然後「加工」出來的。供應鏈會花費一定的時間在數據維護上,就是要確保基礎數據的准確性。

我們知道預測有一個定律,近期的准確性高於遠期的,就像是預測天氣一樣,天氣預報上關於明天的天氣是最準的,越往後准確性越低。

供應鏈為了增強預測准確性,就需要拿到最新的數據,這樣做出來的計劃准確性就越高。現在的需求波動越來越頻繁,可能一天一個樣,想要做出最准確的判斷,必須用最新的數據。

3、 獲取及時和准確的數據的關鍵事項

考慮到以上的兩點動因,供應鏈一直在努力獲得最及時和准確的數據。這里有幾個需要特別留意的點值得大家關注。

3、1自動化數據採集

如有可能的話,應該盡量在實時情況下收集、傳輸數據。數據存儲在供應鏈內部和外部的各個節點上,為了提升數據可靠性和及時性,最好的辦法就是自動化採集。

在內部實施這點相對容易,只需要投資數字化工具,實施IT項目就可以實現。

在外部夥伴實施起來難度就高了,其中的最大阻力是害怕共享數據後的商業機密泄露。

供應商擔心客戶知道了他的上游供應商的信息,可能會跳過中間商,不讓他繼續賺差價。因此在做系統對接的時候,要確保只分享可以分享的數據,比如包裝規格之類的。

3、2控制對相關數據的訪問

根據使用者在公司中的職能,給予特定的數據訪問許可權,比如采購訂單只能由采購計劃員進行創建和修改,公司里的其他人只有查看的許可權。

對於外部夥伴也是一樣,客戶可以查看供應商的庫存商品數量信息,但他絕對不能訪問商品的成本分析等商業機密。

3、3努力提升、維護數據的准確性

我們需要不斷提升數據的准確性,其中關鍵在於數據採集和輸入。我們要定期維護數據,比如系統中庫存或是倒沖過賬出現了負數,說明某些地方的數據存在問題,流程可能有漏洞,需要我們找到問題點並且盡快處理掉。

數據是供應鏈的根基,為我們制定各類計劃提供了基礎。實現准確和及時的數據雖然有點小貴,但是在供應鏈大中斷時期(the Great Supply Chain Disruption),投資必然能帶來相應的回報。

什麼和大數據隨之在整個供應鏈中被廣泛應用3

大數據成為供應鏈利器

在中國供應鏈大數據份額中,零售業、製造業、服務業(非金融)、醫療業佔比最多,約佔83%市場份額,而能源僅佔1%。而據易觀智庫預測,2016年中國供應鏈大數據市場將達到60億左右(不含供應鏈金融部分)。

該報告把供應鏈大數據分為結構數據、非結構數據、感測器數據及新類型數據四種,涵蓋了交易數據、時間段數據、庫存數據、客戶服務數據、位置數據等各個方面。報告顯示,目前,大數據已經被廣泛應用於包括物流、服務和金融等供應鏈環節。

有效推進物流模式變革

在供應鏈中,大數據的作用首先體現在物流中。2014年12月26日,中國物流信息中心公布的數據顯示,1-11月,全國社會物流總額196.9萬億元,按可比價格計算,增長8.3%,較上年同期回落1.3個百分點。而從近五年的情況來看,物流企業資產規模增速逐步放緩,物流企業經營效益偏弱。

在這種情況下,物流企業需要從價值延伸的角度提供超過客戶預期的服務,以高效物流+增值服務的思路發展,而大數據是物流企業提供增值服務的基礎要素。另外,隨著眾多專業化物流模式的興起,降低供應鏈成本的核心將是數據資產的運用,大數據能夠有效地推進高效率的`物流模式變革,是降低物流成本費用的有效手段。

利用大數據,企業可以與中國氣象服務中心合作,收集高速公路信息,提供全國高速公路的天氣預報和道路實況服務,可以優化行車路線,並對車輛和貨物狀態進行實時監控、評估和預警,對產品的運輸進行智能追溯。

企業通過大數據,依據物流的時間、成本、服務、物流數據、客戶需要等決策因素,可以對風險進行有效預測和評估,制定出合理、准確和科學的決策。利用物流數據,企業可以進行詳細的區域和網店預測,幫助電商平台和快遞公司迅速做出決策。

例如,亞馬遜已經申請專利的「預測性物流」就是個利用大數據洞察用戶需求的典範。「預測性物流」會檢測用戶的滑鼠在商品上的停留時間,再綜合考慮用戶的購買歷史、搜索記錄、願望清單等。

從而根據這些海量數據預判用戶的購買行為,提前將這些商品運出倉庫,放到托運中心寄存,等到用戶真的下單了,就可以立即開始運送商品。通過利用大數據,亞馬遜大幅縮減了商品的送貨時間。

構建預測模式提高協同效應

根據大數據的分析,物流企業可以構建預測模式,實現對產品銷量的精準預測,進而實現對未來庫存量的精準計算,使工廠、區域市場、本地市場的庫存配置更加合理,從而提高協同效應。企業可以通過充分掌握供應鏈物流過程中的所有基礎數據,結合企業自身的資源、能力狀況,對整個供應鏈進行必要的控制和監督。

例如,神州租車的車輛租用率曾經在達到一定程度後出現了瓶頸,一部分車輛出現空置狀態。通過使用SAP推出的資料庫平台SAPHana,神州租車優化了流程,將車輛使用率再次提高了15%。

提供精準金融服務

通過大數據技術進行行業分析和價格波動分析,能夠盡早提出預警,規避信貸風險,可以對目標客戶進行資信評估、審批短期小額貸款,以及精準金融和物流服務貸款。

例如,為了實現銀行和中小外貿企業之間的對接、打破信息不對等的狀態,阿里巴巴旗下一達通公司運用自身的系統處理能力,將監管、申請、投放、還款、放貸等相關融資工作納入一個統一的信息化網路處理平台,通過全程掌控交易流程。

獲取交易環節的詳細數據和信息,以第三方服務平台的角色驗證企業貿易真實性,實現各方信息交互、業務協同、交易透明,從而為解決中小企業融資難問題找到可行的方案。

在供應鏈金融中,大數據還可以提供諸多的增值服務。利用大數據,從源頭獲取用戶需求信息,洞察潛在需求,為供應鏈提供信息咨詢;可以對供應鏈金融上下遊客戶進行全方位信用管理,形成互動的監管和控制機制,降低交易成本和風險;對供應鏈績效進行分析與預測,指導供應鏈管理,尤其是供應鏈協同數據的運營。

⑦ 《大數據時代》讀後感

導語:讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。以下是我為大家精心整理的《大數據時代》讀後感,歡迎大家參考!

【篇一:大數據時代讀後感】

對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的;話題,鍾情於務虛的觀點;新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。

首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。

作者認為大數據時代具有三個顯著特點。一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據;二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。

作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。

面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。

【篇二:大數據時代讀後感】

「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。

美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例——奧巴ma建設「前所未有的開放政府」的雄心、公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,以及雲計算、Facebook和推特等社交媒體、Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。

透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。

讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故將降到最低點。

作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。

每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……

【篇三:大數據時代讀後感】

讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。

我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。

如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。

與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的`到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。

【篇四:大數據時代讀後感】

3月11日下午兩節課後,我校全體教師和受邀而來的金南學區各友好學校的領導及教師匯聚於多媒體教室,共同分享、交流《大數據》讀後感。

老師們從:何謂大數據;立足國情對大數據進行探討;大數據在教育教學中的主要應用等幾個方面暢談了自己的感悟。

張萌老師說:大數據體量龐大、結構復雜、是產生巨大價值的數據集合。大數據這種方法在中國的國情下需要以更加科學、合適的方式進行實踐,不可生搬硬套。

董譯雯老師說:在你我感嘆《大數據》里深植於美國民眾血液中的自由、民主、嚴謹的價值觀的同時,可否想過中國教育體制下的孩子們身上還殘留多少獨立與自我意識?作為典型的八零後,我們這一代人身上最缺失的便是獨立思考能力。但願,我的學生哪怕是因為我所做的一點點努力而開始思考「我」這個字的含義,足矣!

張紅傑老師說:很感謝校長給我們推薦了《大數據》這本書。在教學工作中,應該有大數據意識,創新意識。學習一些專業的教學統計法、數據分析法,從中發現一些教育現象,並採取相應的策略。讓我們的教育教學工作少一些隨意和盲目,多一份嚴謹與科學。

白媛媛老師通過文中的三個事例,結合教學實際,談了自己教學中對數據使用的價值;結合自己的工作,談了如何實現工作的最高境界。

交流活動尾聲,身為閱讀《大數據》的倡議者、發起者、以及忠實的讀者韓校長幽默風趣的同大家分享了他讀後的感悟:我們心中要裝著學校,因為我們個人的命運依賴群體的命運;工作要追求精細化,不能做胡適書中的「差不多」先生;尊重數據,擁有數據意識,建立數據團隊!

此次活動從寒假期間倡導讀《大數據》一書,到開學伊始的分組沙龍,再到今日的閱讀共享,現已圓滿告一段落。相信此次活動定會增強我校全體教師的數據意識,掌握大數據,運用大智慧助推我校的教育教學上一個新的台階!

⑧ 什麼是大數據時代

什麼是大數據時代:

利用相關演算法對海量數據的存儲、處理與分析,從海量數據中發現價值,服務於生產和生活。

大數據無處不在,社會各行各業都可以找到大數據的印記,在金融,餐飲,電信,體育,娛樂等領域都可以感受到大數據對各行各業的影響

大數據的特點:

1、更多,更亂,但內部有關系可循。

示例:

大約20年前,亞馬遜剛成立時,傑夫·貝索斯讓50個書評員來為他賣書,他意識到不僅僅可以請人來寫書評,還可以用數據技術來提供圖書推薦。起初他使用的是小數據,不是大數據,把客戶進行分類,比如說有人對中國旅遊或者是對園藝感興趣,系統會自動提供推薦。他的同事告訴他,剛剛開始使用這個數據推薦時,使用體驗並不好;在進一步分析後,亞馬遜決定不對人進行分類,而是對用戶的需求分類。這個做法做法非常成功,以至於到今天,推薦系統為亞馬遜帶去30%的銷售收入。

這就是數據收集和再處理。亞馬遜有交易數據,每買一本書就是一個交易,然後對這個數據進行分析。但今天我們已不再滿足於交易數據了,轉而收集起溝通數據。你看了某一個書評、某一個交流會給商家更多的信息和細節。

2、數據可以被重復使用(數據的產生和收集本身並沒有直接產生服務,最具價值的部分在於:當這些數據在收集以後,會被用於不同的目的,數據被重新再次使用)

示例:

比方說這家公司實時車輛交通數據採集商Inrix,該公司目前有1億個手機端用戶。Inrix可以幫助你開車,避開堵車,為司機呈現路的熱量圖,紅的就表面堵車。如果只提供數據,這個產品沒什麼特色,

但值得一提的是,Inrix並沒有用交警的數據,這個軟體的每位用戶在使用過程中會給伺服器發送實時數據,比如走的多快,走到哪裡,這樣每個客戶都是探測器。

大數據時代的思維:

每天早上起來想一下,這么多數據我能用來干什麼,這些價值在哪裡可以找到,能不能找到一個別人以前都沒有做過的事情。你的想法和思路,是最重要的資產。

示例:

我們可以通過大數據來確定哪些地方會有火災。以前防火檢查員只有13%的時間可以准備預測,現在他們找到火災隱患的概率達到了70%,比以前提高了6倍。將效率提高6倍是一個巨大無比的進步,未來的公共服務業可以由此獲得更多便利。

⑨ 《大數據時代》的讀後感

當認真看完一本名著後,大家心中一定有很多感想,為此需要認真地寫一寫讀後感了。你想知道讀後感怎麼寫嗎?下面是我收集整理的《大數據時代》的讀後感範文(通用5篇),僅供參考,大家一起來看看吧。

《大數據時代》的讀後感1

對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。

首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。

作者認為大數據時代具有三個顯著特點。

一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。

二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。

三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。

作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。

面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。

《大數據時代》的讀後感2

如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的.預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。

在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:

一、更多:不是隨機樣本,而是全體數據。

二、更雜:不是精確性,而是混雜性。

三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。

一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?

我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。

大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。

在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的.答案。

此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。

《大數據時代》的讀後感3

讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。

這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。

其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。

大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!

在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。

在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!

大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。

大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。

大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!

《大數據時代》的讀後感4

首先,想談一談何為大數據,何為大數據時代。大數據是一種資源,也是一種工具。它提供一種新的思維方式去理解當今這個信息化世界。為何說是一種新的思維方式:在信息缺乏的時代或模擬時代,我們更傾向於精確性的思維方式,就像是」釘是釘,鉚是鉚」,而在這種傳統的思維方式下,我們得到問題的答案只有一個。

而在大數據時代下,我們打破了這種思維方式,換句話說,我們接受結果的不確定性。簡言概括之,我認為大數據是一種預測模型。在大數據時代下,我們關注的不是因果,即為什麼是這樣,而更關心」是什麼」這種相關關系。換句話說,在這種新思維的思考方式下,我們探究問題背後的原因也是不可行的。我們所做的是利用大數據這種工具,讓數據自己說話!

其次,我想談下如何利用大數據提升我軍戰鬥力。當然,大數據分析並不是精準的預測,精準的預測也是不存在的。大數據只能有利於我們理解現在和預測未來的可能性。

作為軍人,我所關注的是如何利用好大數據的工具提升我軍戰鬥力,打贏這場信息化戰爭。毫無疑問,現在我們打的不是刀對刀,槍對槍的戰爭,更不是模擬時代,當代乃是數字時代,打的是信息化戰爭!

四次戰爭的大勝,美軍的戰爭形態從機械化轉向信息化,而且相應的在戰場取勝的時間也越來越短,這正是大數據時代下的必然結果。而我軍正在轉向信息化的過程中。在此戰爭形態的過程中,我們需要更多的計算分析師,大數據分析師,數學家等高等技術性人才來打贏這場信息化戰爭。這正是大數據時代下我們不得不有的基礎。我軍戰鬥力的提升迫在眉睫!

當然大數據是一把雙刃劍,利用好了取勝也是得心應手,相反,利用不好會導致不可估量的損失。

畢竟,這只是一種預測模型,得不到精準的預測結果。我們更要讓數據為我們所用,不要被龐大的資料庫框住我們的思維。為適應時代的發展,在這個適者生存,弱肉強食的世界,大數據時代下的殘酷競爭已經給我們敲響警鍾,一場悄無聲息的信息化戰爭已經打響!

《大數據時代》的讀後感5

去年的「雲計算」炒得熱火朝天的,今年的「大數據」又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起「大數據」來了。於是乎,各企業的CIO也將熱度紛紛轉向關注「大數據」來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。

不過話又還得說回來,《大數據時代》是本好書。

當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。

看完此書,我心中的一些問題:

1、什麼是大數據?

查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity這個好像是IBM的定義吧。

以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。

2、大數據適合什麼樣的企業?

誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。

同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?

3、大數據帶來的影響

當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?

1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。

2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司

3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。

⑩ 亞馬遜大數據存在哪些問題

亞馬遜大數據存在產品損壞,產品質量問題,退貨。亞馬遜通過多種工具在雲端擴展其大數據應用,如數據儲存、數據收集、數據處理、數據分享和數據合作。

閱讀全文

與大數據時代亞馬遜相關的資料

熱點內容
ps文件損壞出現不兼容情況 瀏覽:942
為什麼iphone耗wifi 瀏覽:495
網頁寬度代碼 瀏覽:144
編程踩坑路01怎麼免費用 瀏覽:612
wps作圖教程 瀏覽:610
華為一汽奧迪app怎麼放在桌面 瀏覽:936
博途編程語言怎麼轉換 瀏覽:604
wt是什麼文件 瀏覽:75
孩子出生證能在什麼網站找到嗎 瀏覽:465
java日期compare 瀏覽:120
深州有哪個編程學校好 瀏覽:826
抖音數據中心怎麼才算合格 瀏覽:540
全棧視頻數據是什麼 瀏覽:787
網上少兒編程哪個好些 瀏覽:132
oracle資料庫優化方法 瀏覽:844
怎麼關閉網路喚醒 瀏覽:894
孤單的微信頭像動漫 瀏覽:305
有沒有哪個大學教編程 瀏覽:851
wordpress後台添加廣告位置 瀏覽:491
怎樣快速修改qq密碼 瀏覽:145

友情鏈接