導航:首頁 > 網路數據 > 大數據的技術難點

大數據的技術難點

發布時間:2022-12-28 12:35:25

⑴ 盤點2021年大數據分析常見的5大難點!

2021年已經到來,現在是深入研究大數據分析面臨的挑戰的時候了,需要調查其根本原因,本文重點介紹了解決這些問題的潛在解決方案。

1、解決方案無法提供新見解或及時的見解

(1)數據不足

有些組織可能由於分析數據不足,無法生成新的見解。在這種情況下,可以進行數據審核,並確保現有數據集成提供所需的見解。新數據源的集成也可以消除數據的缺乏。還需要檢查原始數據是如何進入系統的,並確保所有可能的維度和指標均已經公開並進行分析。最後,數據存儲的多樣性也可能是一個問題。可以通過引入數據湖來解決這一問題。

(2)數據響應慢

當組織需要實時接收見解時,通常會發生這種情況,但是其系統是為批處理而設計的。因此有些數據現在仍無法使用,因為它們仍在收集或預處理中。

檢查組織的ETL(提取、轉換、載入)是否能夠根據更頻繁的計劃來處理數據。在某些情況下,批處理驅動的解決方案可以將計劃調整提高兩倍。

(3)新系統採用舊方法

雖然組織採用了新系統。但是通過原有的辦法很難獲得更好的答案。這主要是一個業務問題,並且針對這一問題的解決方案因情況而異。最好的方法是咨詢行業專家,行業專家在分析方法方面擁有豐富經驗,並且了解其業務領域。

2、不準確的分析

(1)源數據質量差

如果組織的系統依賴於有缺陷、錯誤或不完整的數據,那麼獲得的結果將會很糟糕。數據質量管理和涵蓋ETL過程每個階段的強制性數據驗證過程,可以幫助確保不同級別(語法、語義、業務等)的傳入數據的質量。它使組織能夠識別並清除錯誤,並確保對某個區域的修改立即顯示出來,從而使數據純凈而准確。

(2)與數據流有關的系統缺陷

過對開發生命周期進行高質量的測試和驗證,可以減少此類問題的發生,從而最大程度地減少數據處理問題。即使使用高質量數據,組織的分析也可能會提供不準確的結果。在這種情況下,有必要對系統進行詳細檢查,並檢查數據處理演算法的實施是否無故障

3、在復雜的環境中使用數據分析

(1)數據可視化顯示凌亂

如果組織的報告復雜程度太高。這很耗時或很難找到必要的信息。可以通過聘請用戶界面(UI)/用戶體驗(UX)專家來解決此問題,這將幫助組織創建引人注目的用戶界面,該界面易於瀏覽和使用。

(2)系統設計過度

數據分析系統處理的場景很多,並且為組織提供了比其需要還要多的功能,從而模糊了重點。這也會消耗更多的硬體資源,並增加成本。因此,用戶只能使用部分功能,其他的一些功能有些浪費,並且其解決方案過於復雜。

確定多餘的功能對於組織很重要。使組織的團隊定義關鍵指標:希望可以准確地測量和分析什麼,經常使用哪些功能以及關注點是什麼。然後摒棄所有不必要的功能。讓業務領域的專家來幫助組織進行數據分析也是一個很好的選擇。

4、系統響應時間長

(1)數據組織效率低下

也許組織的數據組織起來非常困難。最好檢查其數據倉庫是否根據所需的用例和方案進行設計。如果不是這樣,重新設計肯定會有所幫助。

(2)大數據分析基礎設施和資源利用問題

問題可能出在系統本身,這意味著它已達到其可擴展性極限,也可能是組織的硬體基礎設施不再足夠。

這里最簡單的解決方案是升級,即為系統添加更多計算資源。只要它能在可承受的預算范圍內幫助改善系統響應,並且只要資源得到合理利用就很好。從戰略角度來看,更明智的方法是將系統拆分為單獨的組件,並對其進行獨立擴展。但是需要記住的是,這可能需要對系統重新設計並進行額外的投資。

5、維護成本昂貴

(1)過時的技術

組織最好的解決辦法是採用新技術。從長遠來看,它們不僅可以降低系統的維護成本,還可以提高可靠性、可用性和可擴展性。逐步進行系統重新設計,並逐步採用新元素替換舊元素也很重要。

(2)並非最佳的基礎設施

基礎設施總有一些優化成本的空間。如果組織仍然採用的是內部部署設施,將業務遷移到雲平台可能是一個不錯的選擇。使用雲計算解決方案,組織可以按需付費,從而顯著降低成本。

(3)選擇了設計過度的系統

如果組織沒有使用大多數系統功能,則需要繼續為其使用的基礎設施支付費用。組織根據自己的需求修改業務指標並優化系統。可以採用更加符合業務需求的簡單版本替換某些組件。

⑵ 大數據存在哪些問題

數據存儲問題:隨著技術不斷發展,數據量從TB上升至PB,EB量級,如果還用傳統內的數據存儲方式容,必將給大數據分析造成諸多不便,這就需要藉助數據的動態處理技術,即隨著數據的規律性變更和顯示需求,對數據進行非定期的處理。同時,數量極大的數據不能直接使用傳統的結構化資料庫進行存儲,人們需要探索一種適合大數據的數據儲存模式,也是當下應該著力解決的一大難題。

分析資源調度問題:大數據產生的時間點,數據量都是很難計算的,這就是大數據的一大特點,不確定性。所以我們需要確立一種動態響應機制,對有限的計算、存儲資源進行合理的配置及調度。另外,如何以最小的成本獲得最理想的分析結果也是一個需要考慮的問題。

專業的分析工具:在發展數據分析技術的同時,傳統的軟體工具不再適用。目前人類科技尚不成熟,距離開發出能夠滿足大數據分析需求的通用軟體還有一定距離。如若不能對這些問題做出處理,在不久的將來大數據的發展就會進入瓶頸,甚至有可能出現一段時間的滯留期,難以持續起到促進經濟發展的作用。

⑶ 工業大數據應用難點有

工業大數據應用難點有下面這些:

一是大數據技術的運用困難,存在數據不足、數據信噪比低以及數據分析難度高等問題;

二是大數據給信息安全帶來新挑戰,如工業大數據加大了隱私泄露的風險,對現有存儲和安全措施提出了更高要求,以及大數據正在被運用到新的攻擊手段中;

此一詞語在2012年隨著工業4.0的概念而出現,也和信息技術行銷流行的大數據有關,工業大數據也意味著工業設備產生的大量數據有其潛在的商業價值。工業大數據會配合工業互聯網的技術,利用原始資料來支援管理上的決策,例如降低維護成本以及提升對客戶的服務。

工業大數據是指在工業領域中,圍繞典型智能製造模式,從客戶需求到銷售、訂單、計劃、研發、設計、工藝、製造、采購、供應、庫存、發貨和交付、售後服務、運維、報廢或回收再製造等整個產品全生命周期各個環節所產生的各類數據及相關技術和應用的總稱。

其以產品數據為核心,極大延展了傳統工業數據范圍,同時還包括工業大數據相關技術和應用。其主要來源可分為以下三類:第一類是生產經營相關業務數據。第二類是設備物聯數據。第三類是外部數據。

⑷ 大數據時代的數據分析技術面臨的挑戰

數據分析是整個大數據處理流程的核心,大數據的價值產生於分析過程。從異構數據源抽取和集成的數據構成了數據分析的原始數據。根據不同應用的需求可以從這些數據中選擇全部或部分進行分析。小數據時代的分析技術,如統計分析、數據挖掘和機器學習等,並不能適應大數據時代數據分析的需求,必須做出調整。

大數據時代的數據分析技術面臨著一些新的挑戰,主要有以下幾點。

(1)數據量大並不一定意味著數據價值的增加,相反這往往意味著數據噪音的增多。因此,在數據分析之前必須進行數據清洗等預處理工作,但是預處理如此大量的數據,對於計算資源和處理演算法來講都是非常嚴峻的考驗。

(2)大數據時代的演算法需要進行調整。首先,大數據的應用常常具有實時性的特點,演算法的准確率不再是大數據應用的最主要指標。在很多場景中,演算法需要在處理的實時性和准確率之間取得一個平衡。其次,分布式並發計算系統是進行大數據處理的有力工具,這就要求很多演算法必須做出調整以適應分布式並發的計算框架,演算法需要變得具有可擴展性。許多傳統的數據挖掘演算法都是線性執行的,面對海量的數據很難在合理的時間內獲取所需的結果。因此需要重新把這些演算法實現成可以並發執行的演算法,以便完成對大數據的處理。最後,在選擇演算法處理大數據時必須謹慎,當數據量增長到一定規模以後,可以從小量數據中挖掘出有效信息的演算法並一定適用於大數據。

(3)數據結果的衡量標准。對大數據進行分析比較困難,但是對大數據分析結果好壞的衡量卻是大數據時代數據分析面臨的更大挑戰。大數據時代的數據量大,類型混雜,產生速度快,進行分析的時候往往對整個數據的分布特點掌握得不太清楚,從而會導致在設計衡量的方法和指標的時候遇到許多困難。

⑸ 大數據在安防領域主要有哪些應用難點在哪

一、安防大數據主要應用領域
(一)大數據是視頻智能分析基礎
在大數據應用時代,視頻因其信息含量最高、數據量最大,分析運算最復雜而成為大數據時代採集分析傳輸存儲應用最具挑戰的國際技術難題!智能視頻分析研究永無止境,分析演算法必須以監控視頻為資源,研究實時或歷史監控視頻中的目標特徵提取、增強與行為分析等關鍵技術,才能推動監控視頻應用模式從事後被動處置向事前主動預防轉變。
(二)幫助實現智慧城市智能化
我國智慧城市建設面臨的重大挑戰之一,是城市系統之間由於標准問題無法有效集成,形成信息孤島。因此,在大數據融合技術領域,一方面要加強大數據標准建設,另一方面要加強海量異構數據建模與融合、海量異構數據列存儲與索引等關鍵技術研發,為給予底層數據集成的信息共享提供標准和技術保障。大規模數據在智慧城市系統流動過程中,出於傳輸效率、數據質量與安全等因素的考慮,需要對大規模數據進行預處理。大數據處理技術往往需要與基於雲計算的並行分布式技術相結合,這也是目前國際產業界普遍採用的技術方案。大數據分析與挖掘技術為智慧城市治理提供了強大的決策支持能力。
(三)提高警務辦事效率
互聯網技術的飛速發展已經為構建一個大型全國性的專業報警運營服務平台提供了有力的技術支撐。通過這個報警平台,報警運營服務商手中會累積海量的用戶數據,例如用戶的身份信息、警情數據、消費記錄、維修記錄等,這些都是非常寶貴的資源。報警運營服務商可以在此基礎上,應用大數據技術進行分析和挖掘,充分發揮大數據的商業價值。
公安如公安系統中的圖偵技術,應用模式多樣,思維活躍,圍繞著「發現線索」的目的可衍生出多種的技戰法,只有從這些具體的技戰法中才能提煉出需求,真正告訴系統的設計者「我們要什麼」。
那麼,圖偵里的大數據應用需要哪些?像商業大數據那樣找規律的應用似乎還遠了點,目前最實在的就是從海量視頻數據里把有相同線索特徵的圖像給找出來,讓幹警發現出新的案件線索。至於「怎麼找?」這就是由公安來提的應用模式了。因此,視頻大數據的發展並不是簡單的由技術廠商做主導,而是需要公安體制內既有刑偵實戰經驗,又有科技化功底的復合型人才,共同來參與視頻大數據應用的發展。
(四)讓智能家居「聰明」起來
智能家居會產生大數據,同時也是大數據的重要應用領域,不然它極有可能將停滯不前。家庭產生的大數據能讓智能家居更「聰明」,但需要根據實際情況進行有效處理,而不是任何數據的「一鍋端」,通過大數據與雲計算技術的結合應用,智能家居系統能夠第一時間對用戶家庭中智能設備的數據、信息進行有效分析、記憶,並將得到的相應規律反過來應用於智能設備,提升智能家居的智能效果。
二、安防大數據應用難點
(一)數據整合問題
不同來源的大數據,分別存儲於相互獨立的系統中,將這些數據集中於統一的平台,是安防大數據實施的基礎性工作,但行業、部門壁壘是最大障礙。即使只是公安內部的視頻數據,各省、地市也互不相通,想採集集中也不是一件容易的事。即使集中後,如何找到這些不同類型數據之間的關系,從而挖掘出有價值的數據,也是難點。
(二)數據挖掘、分析演算法的成熟度問題
對於安防數據中最重要的視頻數據,對其進行智能視頻分析和挖掘是很困難的事情。目前,除了車牌識別、人數統計等演算法較為成熟外,對視頻進行事件分析、人臉識別、摘要等技術都還沒達到大規模的商用水平,這也極大地制約了安防大數據的實施。
(三)時效性問題
安防大數據的目的之一就是要解決現有安防系統內以事後查看、分析為主的數據(特別是視頻數據)應用形式,還要增加以事前預警、實時處理,這對大數據處理技術的實時性要求很高。這種時效性就決定了視頻安防大數據的高運算量、高傳輸帶寬的要求。
(四)信息安全與用戶隱私問題
安防行業,特別是公安行業對數據的安全性要求非常高,這也是造成數據的區域隔離的重要原因。同時,在利用安防大數據上,如何保護用戶的隱私,也是一個非常重要的課題,目前主要採用數據脫敏的辦法。當務之急就是將安防數據安全級別需要有明確的分級定義,不能一味強調安全而各自封閉,否則必將導致安防大數據分析成為無源之水。
(五)視頻圖像數據挖掘的難點
1.識別什麼特徵?一副圖像或者一段視頻可以有無數角度的標簽屬性去描述,什麼才是我們需要的屬性?這與我們需要得到的目的密切相關,這就需要公安圖偵的人才來歸納終結。
2.識別演算法開發難,由於是平面圖像,因此特徵的識別主要原理就是看圖像區域中的輪廓、顏色、紋理與特徵庫進行比較。但是在同一個物體在不同監控角度的攝像頭中顯示出的輪廓都不相同,因此無法做到識別。
3.大規模數據處理難,即使做到了識別演算法,但是如果要通過數據處理伺服器的形式對大規模的視頻進行結構化處理,這個建造成本巨大,其能源的耗費在中國這個夏季需要限電的情況里也不切實際。
(六)警務服務平台大數據難點:
1.如何將不同報警運營服務商之間的數據整合在一起?
2.我國多數報警運營網路尚未完成規模化建設,用戶規模大、跨省市運營的網路很少,每家報警運營服務商的警情並發量不大,而且報警運營服務商之間普遍存在信息孤島,很難通過大數據分析實現數據的增值。
3.大數據的挖掘是一個長期的過程,需要企業不斷的嘗試,挖掘出有意義的信息或規律,並將結果拿到市場上檢驗。
4.大數據自身也面臨著挑戰,數據的運用仍面臨多種技術難關的束縛,大數據方面的人才比較缺乏,大數據的產品尚不成熟等問題都制約著大數據在報警運營服務領域的發展。
總結
針對這些問題和難點,個人就一個方面提出自己的見解,大數據的信息採集和監測。就目前來說,大數據跟互聯網是一個互相關聯的整體。那麼,在數據挖掘方面,對論壇,貼吧,微博,微信的信息採集就變得十分必要了。數據挖掘以後,還要對數據進行篩選和處理。此時,信息的監測就發揮作用了。就目前來說,能把信息採集和信息監測結合起來,運用到實際中的企業不多,可以留意一下這家,兩個字的,快樂的「樂」,思考的「思」,在這方面具備一定的積淀和實力。大數據是一個新的行業。因此要找具備一定技術的,才能應用於安防領域,並產生應有的效果。

⑹ 大數據面臨的技術挑戰

上周在大數據的趨勢和特點中,說到了人類這次面臨的問題不是問題無法解決,而是問題過於復雜。採用機械思維,其速度和效率已經趕不上新問題的產生。正是在這種分工越來越細,協作越來越緊密,問題越來越復雜的背景下,產生了大數據思維。大數據思維也由其獨特的體量大、多樣性和完備性,使得過去看來很復雜很難處理的問題變得可以解決了。

其實早在20世紀60年代就有研究學者提出採用人工智慧的方法來解決社會問題。當時的人工智慧方法還是局限於通過首先了解人類是如何產生智能,然後讓計算機按照人的思路去做。吳軍老師在《智能時代》中說到:「在人類發明的歷史上,很多領域早期的嘗試都是模仿人或者動物的行為,因為這是我們的直覺最容易想到的方法。」 但是經過十幾年的發展,科學家們發現採用上面的思路去發展人工智慧,似乎解決不了什麼實際問題。很多科學家開始反思人工智慧的發展,而在之後的20年左右的時間,在人工智慧學術界的研究是處於低谷的。20世紀70年代,人類開始嘗試智能的另一條發展道路,即採用數據驅動和超級計算的方法。即便在10年前,那時我還在念書,也曾接觸過人工神經網路演算法。很顯然,當時對機器智能的概念大家都還是比較模糊的,人工智慧也還沒有被我們提高到現在的高度。

機器智能的概念在60多年就被提出來了,真正的突破卻在具有了大數據的今天。為什麼大數據的拐點會發生在今天?大數據到底面臨何種技術挑戰?

過去的10年,最容易看到的特徵就是全球數據量呈爆炸式增長。大數據的第一個來源是電腦本身;第二個來源是感測器;第三個來源是將那些過去已經存在的、以非數字化形式儲存的信息數字化。據2015年思科公司的統計數據顯示,從2009~2015年的6年時間內,企業級數據增長了50倍。當然數據的爆炸式增長,離不開電腦硬體、軟體、互聯網、數據儲存、數據處理等一系列配套技術的發展和支撐。大數據實際上是對計算機科學、電機工程、通信、應用數學和認知科學發展的一個綜合考量。目前這些技術難題不一定有最佳的解決方案,甚至不存在什麼絕對好的解決辦法。

一、數據收集

傳統的數據方法常常是先有一個目的,然後開始收集數據。比如,海王星的發現就是在人們發現天王星運動軌跡和牛頓力學預測出來的不一樣之後,天文學家拍了很多星空的照片後發現的;心理學研究也是在有了一個明確的研究課題後,再通過實驗的方法採集數據,如 「棉花糖測驗」系列實驗,以及關於認知失調的「追隨者案例」等等。大數據則避免了采樣之苦,因為大數據常常以全集(大數據的特徵之一)作為樣本集。

但是,如何收集到全集就是一件很有挑戰的事情了。目前一些聰明公司,比如Google, Facebook, 網路,京東都是繞一個彎子,間接地去收集數據,然後利用數據的相關性,導出自己想要的結論。但是即便是這些如此成功的公司,仍然也有很多失敗的案例。2010年,Google推出了自己的電視機頂盒Google TV,為了獲取數據為進入電視廣告做准備。但是,由於Google TV銷售得很差,最終Google徹底地放棄了這產品。到目前為止,無論是Google過去的機頂盒,還是後來的Chromecast,蘋果的Apple TV,除了統計一下收視率,計算一下可能的廣告觀眾,並沒有什麼大的作為。數據收集是一個開放性的話題,不存在唯一性或最佳方法,目前仍然面臨著很大的挑戰。

二、數據儲存

僅Google街景地圖每天產生的數據量就有1TB,假如一份數據存三個拷貝,一年下來就1PB。即使使用當今最大容量的10TB硬碟,也需要用100個。因此,不能簡單地依靠設備來解決數據儲存的問題,而是需要技術解決方案來提高儲存效率,保證不斷產生出來的數據都能存得下。目前的數據儲存手段主要是從如下2個方面考慮:去除數據冗餘和便於使用。去除數據冗餘可以簡單理解為去除數據中的重復部分,比如同一份附件在所有的郵件中只儲存一次。這樣,在去除數據冗餘的過程中,相應的數據讀寫處理就要改變。是否有比現在更有效率的儲存格式或方式,仍然是大數據所面臨的挑戰。另外,便於使用的思路是從使用者的角度就去考慮數據的儲存。大數據之前,數據在設計文件系統的數據儲存格式時,主要考慮的是規模小、維度少的結構化數據。到了大數據時代,不僅數據量和維度都劇增,而且大數據在形式上也沒有固定模式,因此需要重新設計通用、有效和便捷的數據表示方式和儲存方式。

三、數據處理

大數據由於體量大、維度多,處理起來計算量巨大,其處理效率是一大技術挑戰。並行計算是目前解決計算量巨大的重要手段,但仍然存在一些的問題。例如,任何一個問題總用一部分計算是無法並行計算的,這類計算佔比越大,並行處理的效率就越低;再次,並行計算中無法保證每一個小任務的計算量是相同的,這樣一來,並行計算的效率也會大打折扣,即完成了自己計算任務的伺服器需要等待個別尚未完成的伺服器,最終的計算速度取決於最後完成的子任務。

四、數據挖掘

如何從一堆雜亂無章的數據中挖掘出有價值的信息,是機器智能的關鍵,也是大數據的使命。數據在進行降噪處理之後,基本就可以直接使用了,接下來的關鍵一步就是機器學習。目前廣泛使用的機器學習演算法有人工神經網路演算法、最大熵模型、邏輯自回歸等。Google公司的AlphaGo的訓練演算法就是人工神經網路。機器學習的過程是一個不斷迭代、不斷進化的過程,只要事先定出一個目前,這些演算法就會不斷地優化模型,讓它越來越接近真實的情況。尋找更優演算法一直也是科學家們探索的難題。

五、數據安全

大數據應用的一個挑戰還來自數據安全的擔憂和對隱私的訴求。2014年爆出的索尼公司丟失數據時,造成的損失高達1億美元。比商業數據丟失後損失更大的是醫療數據的被盜。在中國,除了在北京建立了大數據中心,還在貴陽建立了大數據災備中心,而且正籌備在內蒙古再建立另一個數據災備中心。而關於數據隱私,我想大家應該是深有感觸,由於信息泄露而帶來的騷擾電話以及電信詐騙,就發生在我們每個人身上。據《智能時代》中記載:「在美國的黑市上,一個醫療記錄的賣家是商業數據的50倍左右」。可見,數據安全已然成為大數據發展的一大隱患和難題。

上述大數據5個方面的技術挑戰並不是獨立的,而是相輔相成、互相影響的。關於大數據的技術挑戰在此僅談談個人的一點認識,希望對大家在這方面的思考有所幫助。下周我們繼續聊,大數據給我們帶來便利以及隱患。

⑺ 大數據分析中有哪些難點

1.很難取得用戶操作行為完好日誌


現階段數據剖析以統計為主,如用戶量、使用時間點時長和使用頻率等。一是需要辨認用戶,二是記錄行為簡單引起程序運轉速度,三是開發本錢較高。


2.需要剖析人員足夠的了解產品


產品有了核心方針,拆分用戶操作任務和意圖,剖析才會有意圖,否則拿到一堆數據不知怎麼下手。比方講輸入法的核心方針設為每分鍾輸入頻率,順著這個方針可以剖分出哪些因素正向影響(如按鍵簡單點擊)和反向影響(如模糊音、誤點擊和點擊退格鍵的次數)核心方針。


3.短期內可能難以發揮作用


數據剖析需要不斷的試錯,很難在短期內證明方法的有效性,可能難以取得其他人物的支撐。


4.將剖析轉化為有指導意義的定論或者規劃


看過某使用的近四十個設置項的使用比例,修正皮膚使用率較高,而單個選項使用率不到0.1%,順次數據可以調整設置項的層級關系,重要的選項放置到一級著重顯現,低於5%的可以放置二三級。功能使用率的剖析是比較簡單的切入點。


5.明確用戶操作意圖


功能對於用戶而言,使用率不是越高越好。添加達到的方針的途徑,用戶考慮本錢添加,操作次數會添加,比方查找。在使用中使用查找可能闡明用戶沒有經過瀏覽找到想要的內容,如果用戶查找熱門內容,闡明使用展示信息的方法出現問題。


關於大數據分析中有哪些難點,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

⑻ 大數據的真正難點是什麼

大數據真正的難點,是花費了巨額成本和大量精力,得到的數據沒法轉化成實際的效果。數據向大數據轉化了,可是使用配合數據的整個行動框架沒有變化,或者還沒法跟上大數據的變化,那就形成了錯位。所以目前用的最好的大數據都是高價值實時應用場景下有明確對應關系的情況,比如安全領域、物流內部管理領域等。

⑼ 大數據分析和數據監測為什麼是難點

1、信息碎片化
在互聯網上傳播產生的信息數據量是海量的,且輿論話內語權分散,各類容數據隨手可得
2、技術更不上
大數據技術更新迭代快速,全網的數據挖掘及分析對技術要求極高
3、人力物力有限
僅靠人工搜索的方式收集、匯總、分析,難度系數堪比大海撈針
難點雖多,但也有很多方式方法可以解決,很多政企機構會藉助一些大數據監測分析系統,運用大數據技術,實現分析與監測的目的。我個人推薦幾家市面上大數據系統做的比較好龍頭公司,新浪輿情通、蟻坊、燈塔輿情等。輿情通我用過,客服很耐心解答。

⑽ 工業大數據應用難點有哪些

工業大數據應用難點有:

一是大數據技術的運用困難,存在數據不足、數據信噪比低以及數據分析難度高等問題。

二是大數據給信息安全帶來新挑戰,如工業大數據加大了隱私泄露的風險,對現有存儲和安全措施提出了更高要求,以及大數據正在被運用到新的攻擊手段中。

目前,工業大數據在產品創新設計、產品故障診斷與預測、供應鏈的分析和優化、產品銷售預測與大數據營銷、生產計劃與排程、產品質量管理與分析等場景有廣泛的應用。「數據是工業互聯網的血液。」何友如此描述大數據與工業互聯網的互為動力。

不過,由於工業大數據數據價值密度高,數據類型繁多,多源異構的機構化數據和非結構化數據並存,數據處理實行性要求也非常高,數據關系和關聯性異常復雜等特徵,企業如何從數據統計分析能力轉變為大數據分析、預測和決策能力,促進傳統工業升級改造和產業整合,是目前要解決的核心關鍵問題。

閱讀全文

與大數據的技術難點相關的資料

熱點內容
js循環添加控制項 瀏覽:615
學習計算機網路的作用 瀏覽:235
access資料庫最新內容怎麼調 瀏覽:203
上古世紀新版本跑商 瀏覽:267
iphone5國際漫遊設置 瀏覽:107
ipodwatch如何安裝app 瀏覽:114
誰有微信搶紅包的群號 瀏覽:872
word07頁碼從任意頁開始 瀏覽:791
js禁止滑動事件 瀏覽:800
蘋果查序號怎麼看不是 瀏覽:61
linux在txt文件 瀏覽:568
ps如何導入文件匹配 瀏覽:201
轉轉app怎麼把自己的賬號租出去 瀏覽:828
福昕閱讀器合並照片pdf文件 瀏覽:591
vhd文件有什麼用 瀏覽:482
編程小朋友看什麼書 瀏覽:623
經營如何讓數據說話 瀏覽:258
如何在手機上升級opop 瀏覽:614
coreldrawx5免費視頻教程 瀏覽:725
網站引導頁面源碼 瀏覽:234

友情鏈接