㈠ 工業大數據是什麼,及其對企業未來發展的作用
我國工業大數據處於起步階段
工業大數據是指在工業領域信息化應用中所產生的數據,是工業互聯網的核心,是工業智能化發展的關鍵。工業大數據是基於網路互聯和大數據技術,貫穿於工業的設計、工藝、生產、管理、服務等各個環節,使工業系統具備描述、診斷、預測、決策、控制等智能化功能的模式和結果。
工業大數據從類型上主要分為現場設備數據、生產管理數據和外部數據。
——以上數據來源於前瞻產業研究院《中國工業大數據產業發展前景與投資戰略規劃分析報告》。
㈡ 一文讀懂工業大數據的脈絡
一文讀懂工業大數據的脈絡
工業大數據不同於大數據,具有自己獨特的特徵。本文著重從工業大數據的定義與范疇、來源、特徵、技術及應用領域、面臨的問題等,全面剖析工業大數據的方方面面,讓你一文讀懂工業大數據的脈絡!
工業大數據是指在工業領域中,圍繞典型智能製造模式,從客戶需求到銷售、到訂單、計劃、研發、設計、工藝、製造、采購、供應、庫存、發貨和交付、售後服務、運維、報廢或回收再製造等整個產品全生命各個環節所產生的各類數據及相關技術和應用的總稱,其以產品數據為核心,極大延展了傳統工業數據范圍,同時還包括工業大數據相關技術和應用。
——工業大數據來源——
我們所談的工業大數據,不完全等同於企業信息化軟體中流淌的數據,從業界的共識看,主要來源有三類,第一類是企業經營相關的業務數據,這類數據來自企業信息化范疇,包括企業資源計劃(ERP)、產品生命周期管理(PLM)、供應鏈管理(SCM)、客戶關系管理(CRM)和環境管理系統(EMS)等,此類數據是工業企業傳統的數據資產。
第二類是機器設備互聯數據,主要是指工業生產過程中,裝備、物料及產品加工過程的工況狀態、環境參數等運營情況數據,通過MES系統實時傳遞,目前在智能裝備大量應用的情況下,此類數據量增長最快。
第三類是企業外部數據,這包括了工業企業產品售出之後的使用、運營情況的數據,同時還包括了大量客戶、供應商、互聯網等數據狀態。
——工業大數據特徵——
筆者曾就工業大數據特徵及數據驅動工業價值創造等話題,專門采訪過工業大數據領域知名專家——美國科學基金會(NSF)智能維護系統(IMS)中心主任李傑教授,他表示:工業大數據與互聯網大數據最大的區別在於工業大數據有非常強的目的性,而互聯網大數據更多的是一種關聯的挖掘,是更加發散的一種分析。
除此之外,兩者在數據的特徵和面臨的問題方面也有不同。有別於互聯網大數據,工業大數據的分析技術核心要解決「3B」問題:
1)Below Surface —— 隱匿性,即需要洞悉背後的意義
工業環境中的大數據與互聯網大數據相比,最重要的不同在於對數據特徵的提取上面,工業大數據注重特徵背後的物理意義以及特徵之間關聯性的機理邏輯,而互聯網大數據則傾向於僅僅依賴統計學工具挖掘屬性之間的相關性。
2)Broken —— 碎片化,即需要避免斷續、注重時效性
相對於互聯網大數據的量,工業大數據更注重數據的全,即面向應用要求具有盡可能全面的使用樣本,以覆蓋工業過程中的各類變化條件、保障從數據中能夠提取以反映對象真實狀態的信息全面性。因此,工業大數據一方面需要在後端的分析方法上克服數據碎片化帶來的困難,利用特徵提取等手段將這些數據轉化為有用的信息,另一方面,更是需要從數據獲取的前端設計中以價值需求為導向制定數據標准,進而在數據與信息流通的平台中構建統一的數據環境。
3)Bad Quality —— 低質性,即需要提高數據質量、滿足低容錯性
數據碎片化缺陷來源的另一方面也顯示出對於數據質量的擔憂,即數據的數量並無法保障數據的質量,這就可能導致數據的低可用率,因為低質量的數據可能直接影響到分析過程而導致結果無法利用,但互聯網大數據則不同,其可以只針對數據本身做挖掘、關聯而不考慮數據本身的意義,即挖掘到什麼結果就是什麼結果,最典型的就是經過超市購物習慣的數據挖掘後啤酒貨架就可以擺放在尿不濕貨架的對面,而不用考慮他們之間有什麼機理性的邏輯關系;
換句話說,相比於互聯網大數據通常並不要求有多麼精準的結果推送,工業大數據對預測和分析結果的容錯率遠遠比互聯網大數據低的多。互聯網大數據在進行預測和決策時,僅僅考慮的是兩個屬性之間的關聯是否具有統計顯著性,其中的雜訊和個體之間的差異在樣本量足夠大時都可以被忽略,這樣給出的預測結果的准確性就會大打折扣。比如當我覺得有70%的顯著性應該給某個用戶推薦A類電影,即使用戶並非真正喜歡這類電影也不會造成太嚴重的後果。但是在工業環境中,如果僅僅通過統計的顯著性給出分析結果,哪怕僅僅一次的失誤都可能造成嚴重的後果。
——工業大數據技術:演算法與模型——
有了工業數據的大量積累,但並不等於直接的商業收益,中間隔著一道非常關鍵的通道——工業大數據技術。近幾年,很多大數據專家和行業專家也在爭執:數據量重要還是大數據演算法更重要,雙方各執一詞。比如Googole就認為數據量的多寡至關重要,甚至直言:更多的數據勝過更好的演算法。這種觀點與我們意識認知中的「信息越多,就越靠近真相」類似。
而如《The Signal and the Noise》(信號與雜訊,作者NateSilver),這本書裡面的一個觀點是「更多的數據意味著更多的雜訊。信號是真相,雜訊卻使我們離真相越來越遠。」所以,人們需要構建有效的演算法和模型,去識別和認知何為真相。
在這里暫不討論到底是數據量重要還是演算法模型更重要,但針對工業大數據的有效利用,肯定離不開工業大數據的分析技術。
——工業大數據應用領域(場景)——
一、研發設計:主要用於提高研發人員的研發創新能力,研發效率和質量,支持協同設計,具體體現在:(1)、基於模型和模擬的研發設計;(2)、基於產品生命周期的設計;(3)、融合消費者反饋的設計
二、在復雜生產過程優化的應用:(1)、工業物聯網生產線;(2)、生產質量控制;(3)、生產計劃與排程;
三、在產品需求預測中的應用
四、在工業供應鏈優化中的應用
——工業大數據應用發展存在的主要問題——
《工業大數據白皮書2017年版》指出,研究與應用工業大數據,產品大數據是核心,物聯大數據是實現手段,集成貫通是基礎(業務模式、商業和價值驅動、關鍵抽取和應用)。而在實踐過程中,這三個方面都存在不同程度的難點。
《工業大數據白皮書2017年版》封面
1、產品大數據:產品大數據是工業大數據的根源與核心,但工業製造業領域涵蓋十分廣泛,行業種類繁多,產品種類數量龐大且仍在不斷增長,如何規范產品大數據的定義與分類方法,建立規范的、屬性明確的、可查詢可追溯可定位的產品大數據,將是順利應用工業大數據的前提。
2、物聯接入設備:物聯大數據是實現工業大數據暢通流動的必要手段,但在工業實際應用中,工業軟體、高端物聯設備不具備國產自主可控性,物聯接入的高端設備的讀寫不開放,形成設備信息的孤島,數據流通不暢,突破這種束縛是實現工業大數據的關鍵。
3、信息集成貫通:集成貫通的難點在於商業驅動、打通關鍵點和環節,掌控產品源和設備,持續優化。
㈢ 《工業大數據工業4.0時代的工業轉型與價值創造》pdf下載在線閱讀全文,求百度網盤雲資源
《工業大數據工業4.0時代的工業轉型與價值創造》網路網盤pdf最新全集下載:
鏈接:https://pan..com/s/1CHYfMkMPGbQdHpcr6uKuVw
㈣ 工業大數據包括哪些工業大數據應用在哪些方面
【導讀】眾所周知,第二次世界大戰也稱為工業革命,可見工業在生活中是多麼的重要,現在工業也已經趨於人工智慧化,不過還是處於前期的觀望試運行階段,今天我們就來了解一下大數據在工業方面的應用有哪些,一起來看看吧!
大數據在工業中的應用有哪些?
從需求角度來看,目前國內製造企業對大數據的需求較為明顯,但很多用戶仍處於觀望和試驗階段,不知道如何進行。因此,對於大數據服務提供商來說,有必要結合行業業務,尋找合適的應用場景。
工業大數據的應用有哪些?
互聯網給傳統製造業帶來了挑戰,而互聯網大數據可以為企業管理者和參與者提供一個新的視角,通過技術創新和開發,以及對數據的全面感知、收集、分析和共享,來審視製造業價值鏈。所帶來的巨大價值正在被傳統企業所認可。
然而,不同於目前互聯網大數據的火熱,工業大數據的應用對於企業來說有著很高的門檻。與互聯網不同,行業大數據與行業業務密切相關。因此,對企業的行業積累和對行業業務的深入了解都有很高的要求。此外,行業內的大數據分析比較准確,邏輯關系非常清晰。
工業大數據的應用有哪些?大數據在工業中的應用有哪些?通過大數據分析,企業可以使部門之間的數據更加協調,從而准確預測市場需求缺口。同時,通過更加靈活的工藝管理和更加自動化的生產設備裝配調度,實現智能化生產。然而,據我們所知,在中國從事大數據應用的公司並不多。然而,擁有自主知識產權和核心技術的企業並不多。要做好工業大數據的應用,需要有一套嚴謹的數據推理邏輯,以及平台和工具。目前,國內大數據應用企業還沒有足夠的能力滿足這一需求。
然而,仍有一些大型工業企業處於應用的前沿。以唐山鋼鐵集團為例,通過引進國際最先進的生產線,實現實時數據採集,與涵宇等企業合作,深入挖掘行業大數據價值,實時生產監控、生產調度、產品質量管理、能源控制等。此外,先進製造企業基於大數據在行業中的應用,將產品、機器、資源、人有機結合,推動基於大數據分析和應用的製造業智能化轉型。
綜上所述,在「互聯網+」時代,用戶需求具有實時性、小批量、碎片化、更新快等特點,對傳統製造業提出了挑戰。工業大數據有其鮮明的特點。隨著信息化和工業化的融合,產業大數據的應用為製造業轉型升級開辟了一條新途徑。深入探討工業大數據在製造過程中的應用場景和應用,將有利於更好地發揮其支撐作用。
以上就是小編今天給大家整理的關於「工業大數據包括哪些?工業大數據應用在哪些方面?」的相關內容,希望對大家有所幫助。總的來說,大數據的價值不可估量,未來發展前景也是非常可觀的,因此有興趣的小夥伴,盡早著手學習哦!
㈤ 工業大數據是什麼,及其對企業未來發展的作用
1、工業大數據是什麼?
工業大數據是指涵蓋工業領域中整個產品的全生命周期,所產生的各類數據及相關技術和應用的總稱。
2、這些數據對未來企業的作用
在這里就舉兩個例子來說明,當然也是鑒於篇幅的關系,不能把所有的工業數據的應用都分享出來。
首先是產品的生產流程和進度的工業數據,這個工業數據主要是提供給生產計劃部門和銷售部門使用的,例如生產計劃部門可以根據一個產品的生產流程制定詳細的生產結合,並評估每個流程節點的生產周期,生產成本等等,以便快速的協調生產計劃,合理控制生產周期。
而生產進度的工業數據可以讓銷售部門的銷售人員更加對客戶的產品形成控制力,同時也可以實時的將這些生產進度數據分享給客戶知悉,從而堅定客戶對我們的信心,這對於生產訂單的實施和後續訂單的吸引都有非常大的好處。
再例如產品質量的工業數據,我們可以通過對每個產品,以及產品對應的工藝流程來分門別類的統計與質量相關的合格率,廢品率,不合格類型,報廢類型等等,通過這些數據來提升企業生產能力,從而提升企業的產品質量和縮短企業的產品生產周期,甚至大幅度的降低企業生產成本。
而如果是傳統的製造企業的話,雖然很多企業也在對一些工業數據進行手工採集和製表歸類,但是如何更好的去應用就是一個非常大是問題了,甚至根本就從來都沒有使用過。
㈥ 《大數據標准化白皮書》pdf下載在線閱讀全文,求百度網盤雲資源
《大數據標准化白皮書》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1yzbozSv4oW6S2pcwUTeGMQ
㈦ 工業大數據有哪些特徵
數據容量大(volume):數據的大小決定所考慮的數據的價值和潛在的信息。工業數據體量比較大,大量機器設備的高頻數據和互聯網數據持續湧入,大型工業企業的數據集將達到PB級甚至EB級別。
多樣(variety):指數據類型的多樣性和來源廣泛。工業數據分布廣泛,分布於機器設備、工業產品、管理系統、互聯網等各個環節,並且結構復雜,既有結構化和半結構化的感測數據,也有非結構化數據。
快速(velocity):指獲得和處理數據的速度。工業數據處理速度需求多樣,生產現場級要求分析時限達到毫秒級,管理與決策應用需要支持互動式或批量數據分析。
價值密度低(value):工業大數據更強調用戶價值驅動和數據本身的可用性,包括:提升創新能力和生產經營效率及促進個性化定製、服務化轉型等智能製造新模式變革。
時序性(sequence):工業大數據具有較強的時序性,如訂單、設備狀態數據等。
強關聯性(strong-relevance):一方面,產品生命周期同一階段的數據具有強關聯性,如產品零部件組成、工況、設備狀態、維修情況、零部件補充采購等;另一方面,產品生命周期的研發設計、生產、服務等不同環節的數據之間需要進行關聯。
准確性(accuracy):主要指數據的真實性、完整性和可靠性,更加關注數據質量以及處理、分析技術和方法的可靠性。對數據分析的置信度要求較高,僅依靠統計相關性分析不足以支撐故障診斷、預測預警等工業應用,需要將物理模型與數據模型結合,挖掘因果關系。
閉環性(closed-loop):包括產品全生命周期橫向過程中數據鏈條的封閉和關聯以及智能製造縱向數據採集和處理過程中,需要支撐狀態感知、分析、反饋、控制等閉環場景下的動態持續調整和優化。
關於工業大數據有哪些特徵,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
㈧ 工業大數據是什麼工業大數據對企業發展有何作用
工業大數據對於製造業而言,不僅是提高運行效率降低企業成本的一個重要組成部分,更是版幫助企業整合產業鏈、權升級商業模式、布局企業戰略的一個可靠資源。藉助徐工信息漢雲在江銅集團中的應用案例,可以充分了解到工業大數據對於企業的作用。
㈨ "大數據"的PDF文件格式是什麼意思
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
注意這里的多樣性,大數據的數據包含很多種格式,不限於PDF,MP4,word等。這里的PDF只是大數據的數據中的一種格式。大數據是數據量大,數據的種類復雜,有用信息少,通常來說是大海撈針的找有用信息。