❶ 分析數據的軟體有哪些
1、Excel
Excel作為入門級的工具,是最基礎也是最主要的數據分析工具,它可以進行各種數據的處理、統計分析和輔助決策操作,數據透視圖是Excel中最重要的工具,如果不考慮性能和數據量,它可以處理絕大部分的分析工作。正所謂初級學圖表,中級學函數透視表,高級學習VBA。EXCEL功能的強大隻有那些正真學過它的人才能知道
2、SQL
毫不誇張地說,SQL是數據方向所有崗位的必備技能,入門比較容易,概括起來就是增刪改查。SQL需要掌握的知識點主要包括數據的定義語言、數據的操縱語言以及數據的控制語言;在數據的操縱語言中,理解SQL的執行順序和語法順序,熟練掌握SQL中的重要函數,理解SQL中各種join的異同。總而言之,要想入行數據分析,SQL是必要技能。
3、Smartbi
Smartbi是專業的BI工具,基於統一架構實現數據採集、查詢、報表、自助分析、多維分析、移動分析、儀表盤、數據挖掘以及其他輔助功能,並且具有分析報告、結合AI進行語音分析等特色功能。十多年的發展歷史,國產BI軟體中最全面和成熟穩定的產品。廣泛應用於金融、政府、電信、企事業單位等領域。完善的在線文檔和教學視頻,操作簡便易上手。
4、Tableau
Tableau這款軟體 與 Excel 的數據透視圖有異曲同工之處,都是可以直接用滑鼠來選擇行、列標簽來生成各種不同的圖形圖表。但Tableau的設計、色彩及操作界面給人一種簡單,清新的感覺,做出來的圖比 excel 的更美觀。
5、SPSS
SPSS界面操作比較簡單,只要認識軟體基本界面和功能,准備好數據輸入進行分析,軟體會就自動給你算出分析結果。但要想讀透SPSS給出的分析結果,需要比較扎實的統計學知識。側重於統計分析類模型,能解決絕大部分統計學問題。
❷ 常用的大數據分析軟體有哪些
目前市場上的數據分析工具還是比較多的,國內跟國外都有,我就介紹幾款主流的給樓主。版
國外:
Tableau:自身定位是權一款可視化工具,與Qlikview的定位差不多,可視化功能很強大,對計算機的硬體要求較高,部署較復雜。目前移動端只支持IOS系統。
Qlikview:最大的競爭者是Tableau,同Tableau和國內眾多BI一樣,是屬於新一代的輕量化BI產品,體現在建模、部署和使用上。只能運行在windows系統,C/S的產品架構。採用內存動態計算,數據量小時,速度很快;數據量大時,吃內存很厲害性能偏慢。
Cognos:傳統BI工具中最被廣泛使用的,已被IBM收購。擁有強大的資料庫平台、在數據管理、數據整合以及中間件領域專業功底深厚。偏操作型,手工建模,一旦需求變化需要 重新建模,學習要求較高。
國內:
FineBI:帆軟旗下的自助性BI產品,輕量化的BI工具,部署方便,走多維分析方向。後期採用jar包升級換代,維護方便,最具性價比。
永洪BI:敏捷BI軟體,產品穩定性較高。利用sql處理數據,不支持程序介面,實施交由第三方外包。
❸ 常見的數據分析軟體有哪些
好的數據分析工具可以讓數據分析事半功倍,更容易處理數據。分析一下市面上流行的四款大數據分析軟體:
一、Excel
Excel使用人群眾多是新手入門級數據分析工具,也是最基本的數據分析工具之一。Excel主要學習使用常用函數、快捷鍵操作、基本圖表製作、數據透視表等。Excel具有多種強大的功能,可以滿足大多數數據分析工作的需要。而且Excel提供了相當友好的操作界面,對於有基本統計理論的用戶來說更容易上手。
二、SQL軟體
SQL是一種資料庫語言,它具有數據操作和數據定義功能,交互性強,能給用戶帶來很大方便。SQL專注於Select、聚合函數和條件查詢。關聯庫是目前應用較廣的資料庫管理系統,技術較為成熟。這類資料庫包括mysql.SQLServer.Oracle.Sybase.DB2等等。
SQL作為一種操作命令集,以其豐富的功能受到業界的廣泛歡迎,成為提高資料庫運行效率的保證。SQLServer資料庫的應用可以有效提高數據請求和返回速度,有效處理復雜任務,是提高工作效率的關鍵。
三、Python軟體
Python提供了能夠簡單有效地對對象進行編程的高級數據結構。Python語法和動態類型,以及解釋性語言的本質,使它成為大多數平台上寫腳本和快速開發應用的編程語言,並可用於可定製軟體中的擴展程序語言。豐富的Python標准庫提供了源代碼或機器代碼,適用於各種主要系統平台。Python有極其簡單的解釋文檔,所以更容易上手。
四、BI工具
BI工具是商業智能(Busines Inteligence)分析工具的英文縮寫。它是一個完整的大數據分析解決方案,可以有效地整合企業中現有的數據,快速准確地提供報表和幫助領導作出決策的數據依據,幫助企業做出明智的業務決策。BI工具是根據數據分析過程設計的。首先是數據處理,數據清理,然後是數據建模,最後是數據可視化,用圖表識別問題,影響決策。
在思邁特軟體Smartbi的例子中,Smartbi以工作流的形式為庫表提取數據模型的語義,通過可視化工具來處理數據,使其成為具有語義一致性和完整性的數據模型;它也增強了自助式數據集建立數據模型的能力。該系統支持的數據預處理方法有:采樣、分解、過濾與映射、列選擇、空值處理、合並列、合並行、元數據編輯、線選擇、重復值清除、排序等等。
它能通過表格填寫實現數據採集和補錄,並能對數據源進行預先整合和處理,通過簡單的拖放產生各種可視圖。同時,提供了豐富的圖標組件,可實時顯示相關信息,便於利益相關者對整個企業進行評估。
目前市場上的大數據分析軟體很多,如何選擇取決於企業自身的需求。因此,企業在購買數據分析軟體之前,首先要了解企業數據分析的目的是什麼。假如你是數據分析的新手,對需求了解不多,不妨多試試BI工具,BI工具在新手數據分析方面還是比較有優勢的。
❹ 常見的大數據分析工具有哪些
大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。
首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告。
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash
❺ 大數據分析到底需要多少種工具
一、hadoop
Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
Hadoop帶有用 Java 語言編寫的框架,因此運行在 Linux 生產平台上是非常理想的。Hadoop 上的應用程序也可以使用其他語言編寫,比如 C++。
二、HPCC
HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與 通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
三、Storm
Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來,其它知名的應用企業包括Groupon、淘寶、支付寶、阿里巴巴、樂元素、 Admaster等等。
Storm有許多應用領域:實時分析、在線機器學習、不停頓的計算、分布式RPC(遠過程調用協議,一種通過網路從遠程計算機程序上請求服務)、 ETL(Extraction-Transformation-Loading的縮寫,即數據抽取、轉換和載入)等等。Storm的處理速度驚人:經測 試,每個節點每秒鍾可以處理100萬個數據元組。Storm是可擴展、容錯,很容易設置和操作。
四、Apache Drill
為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。Apache Drill 實現了 Google's Dremel。該項目將會創建出開源版本的谷歌Dremel Hadoop工具(谷歌使用該工具來為Hadoop數據分析工具的互聯網應用提速)。而「Drill」將有助於Hadoop用戶實現更快查詢海量數據集的目的。
通過開發「Drill」Apache開源項目,組織機構將有望建立Drill所屬的API介面和靈活強大的體系架構,從而幫助支持廣泛的數據源、數據格式和查詢語言。
五、RapidMiner
RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
六、 Pentaho BI
Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。
Pentaho BI 平台構建於伺服器,引擎和組件的基礎之上。這些提供了系統的J2EE 伺服器,安全,portal,工作流,規則引擎,圖表,協作,內容管理,數據集成,分析和建模功能。這些組件的大部分是基於標準的,可使用其他產品替換之。
❻ 常用的大數據分析軟體有哪些
數據分析軟體有Excel、SAS、R、SPSS、Tableau Software。
1、Excel
為Excel微軟辦公套裝軟體的一個重要的組成部分,它可以進行各種回數據的處理、答統計分析和輔助決策操作,廣泛地應用於管理、統計財經、金融等眾多領域。
5、Tableau Software
Tableau Software用來快速分析、可視化並分享信息。Tableau Desktop 是基於斯坦福大學突破性技術的軟體應用程序。它可以以在幾分鍾內生成美觀的圖表、坐標圖、儀表盤與報告。
❼ 企業如何進行大數據分析
1、數據存儲和管理
MySQL資料庫:部門和Internet公司通常使用MySQL存儲數據,優點是它是免費的,並且性能,穩定性和體系結構也都比較好。
SQLServer:SQLServer2005或更高版本集成了商業智能功能,可為中小型企業提供數據管理,存儲,數據報告和數據分析。
DB2和Oracle資料庫是大型資料庫,適用於擁有大量數據資源的企業。
2、數據清理類
EsDataClean是一種在線數據清理工具,不管是規則定義還是流程管理都無需編寫sql或代碼,通過圖形化界面進行簡單配置即可,使得非技術用戶也能對定義過程和定義結果一目瞭然。
3、數據分析挖掘
豌豆DM更適合初學者。它易於操作且功能強大。它提供了完整的可視化建模過程,從訓練數據集選擇,分析索引欄位設置,挖掘演算法,參數配置,模型訓練,模型評估,比較到模型發布都可以通過零編程和可視化配置操作,可以輕松簡便地完成。
4.數據可視化類
億信ABI是具有可視化功能的代表性工具。當然,它不僅是可視化工具,而且還是集數據分析、數據挖掘和報表可視化的一站式企業級大數據分析工具。
關於企業如何進行大數據分析,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❽ 數據分析需要掌握些什麼知識
數據分析需要掌握的知識:
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、分析思維
比如結構化思維、思維導圖、或網路腦圖、麥肯錫式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、資料庫知識
大數據大數據,就是數據量很多,Excel就解決不了這么大數據量的時候,就得使用資料庫。如果是關系型資料庫,比如Oracle、mysql、sqlserver等等,你還得要學習使用SQL語句,篩選排序,匯總等等。非關系型資料庫也得要學習,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起碼常用的了解一兩個,比如Hbase,Mongodb,redis等。
5、開發工具及環境
比如:Linux OS、Hadoop(存儲HDFS,計算Yarn)、Spark、或另外一些中間件。目前用得多的開發工具Java、python等等語言工具。
❾ SQLSERVER大資料庫解決方案
在微軟的大數據解決方案中,數據管理是最底層和最基礎的一環。
靈活的數據管理層,可以支持所有數據類型,包括結構化、半結構化和非結構化的靜態或動態數據。
在數據管理層中主要包括三款產品:SQLServer、SQLServer並行數據倉庫和
Hadoop on Windows。
針對不同的數據類型,微軟提供了不同的解決方案。
具體來說,針對結構化數據可以使用SQLServer和SQLServer並行數據倉庫處理。
非結構化數據可以使用Windows Azure和WindowsServer上基於Hadoop的發行版本處理;而流數據可以使用SQLServerStreamInsight管理,並提供接近實時的分析。
1、SQLServer。去年發布的SQLServer2012針對大數據做了很多改進,其中最重要的就是全面支持Hadoop,這也是SQLServer2012與SQLServer2008最重要的區別之一。今年年底即將正式發布的SQLServer2014中,SQLServer進一步針對大數據加入內存資料庫功能,從硬體角度加速數據的處理,也被看為是針對大數據的改進。
2、SQLServer並行數據倉庫。並行數據倉庫(Parallel Data Warehouse Appliance,簡稱PDW)是在SQLServer2008 R2中推出的新產品,目前已經成為微軟主要的數據倉庫產品,並將於今年發布基於SQLServer2012的新款並行數據倉庫一體機。SQLServer並行數據倉庫採取的是大規模並行處理(MPP)架構,與傳統的單機版SQLServer存在著根本上的不同,它將多種先進的數據存儲與處理技術結合為一體,是微軟大數據戰略的重要組成部分。
3、Hadoop on Windows。微軟同時在Windows Azure平台和WindowsServer上提供Hadoop,把Hadoop的高性能、高可擴展與微軟產品易用、易部署的傳統優勢融合到一起,形成完整的大數據解決方案。微軟大數據解決方案還通過簡單的部署以及與Active Directory和System Center等組件的集成,為Hadoop提供了Windows的易用性和可管理性。憑借Windows Azure上基於Hadoop的服務,微軟為其大數據解決方案在雲端提供了靈活性。