導航:首頁 > 網路數據 > 金融業行業大數據論壇

金融業行業大數據論壇

發布時間:2022-12-27 17:44:33

大數據技術在金融行業中的典型應用

大數據技術在金融行業中的典型應用
近年來,我國金融科技快速發展,在多個領域已經走在世界前列。大數據、人工智慧、雲計算、移動互聯網等技術與金融業務深度融合,大大推動了我國金融業轉型升級,助力金融更好地服務實體經濟,有效促進了金融業整體發展。在這一發展過程中,又以大數據技術發展最為成熟、應用最為廣泛。從發展特點和趨勢來看,「金融雲」快速建設落地奠定了金融大數據的應用基礎,金融數據與其他跨領域數據的融合應用不斷強化,人工智慧正在成為金融大數據應用的新方向,金融行業數據的整合、共享和開放正在成為趨勢,給金融行業帶來了新的發展機遇和巨大的發展動力。
大數據在金融行業的典型應用場景
大數據涉及的行業過於廣泛,除金融外,還包括政治、教育、傳媒、醫學、商業、工農業、互聯網等多個方面,各行業對大數據的定義目前尚未統一。大數據的特點可歸納為「4V」。第一,數據體量大(Volume),海量性也許是與大數據最相關的特徵。第二,數據類型繁多(Variety),大數據既包括以事務為代表的傳統結構化數據,還包括以網頁為代表的半結構化數據和以視頻、語音信息為代表的非結構化數據。第三,價值密度低(Value),大數據的體量巨大,但數據中的價值密度卻很低。比如幾個小時甚至幾天的監控視頻中,有價值的線索或許只有幾秒鍾。第四,處理速度快(Velocity),大數據要求快速處理,時效性強,要進行實時或准實時的處理。
金融行業一直較為重視大數據技術的發展。相比常規商業分析手段,大數據可以使業務決策具有前瞻性,讓企業戰略的制定過程更加理性化,實現生產資源優化分配,依據市場變化迅速調整業務策略,提高用戶體驗以及資金周轉率,降低庫存積壓的風險,從而獲取更高的利潤。
當前,大數據在金融行業典型的應用場景有以下幾個方面:
在銀行業的應用主要表現在兩個方面:一是信貸風險評估。以往銀行對企業客戶的違約風險評估多基於過往的信貸數據和交易數據等靜態數據,內外部數據資源整合後的大數據可提供前瞻性預測。二是供應鏈金融。利用大數據技術,銀行可以根據企業之間的投資、控股、借貸、擔保及股東和法人之間的關系,形成企業之間的關系圖譜,利於企業分析及風險控制。
在證券行業的應用主要表現為:一是股市行情預測。大數據可以有效拓寬證券企業量化投資數據維度,幫助企業更精準地了解市場行情,通過構建更多元的量化因子,投研模型會更加完善。二是股價預測。大數據技術通過收集並分析社交網路如微博、朋友圈、專業論壇等渠道上的結構化和非結構化數據,形成市場主觀判斷因素和投資者情緒打分,從而量化股價中人為因素的變化預期。三是智能投資顧問。智能投資顧問業務提供線上投資顧問服務,其基於客戶的風險偏好、交易行為等個性化數據,依靠大數據量化模型,為客戶提供低門檻、低費率的個性化財富管理方案。
在互聯網金融行業的應用,一是精準營銷。大數據通過用戶多維度畫像,對客戶偏好進行分類篩選,從而達到精準營銷的目的。二是消費信貸。基於大數據的自動評分模型、自動審批系統和催收系統可降低消費信貸業務違約風險。
金融大數據的典型案例分析
為實時接收電子渠道交易數據,整合銀行內系統業務數據。中國交通銀行通過規則欲實現快速建模、實時告警與在線智能監控報表等功能,以達到實時接收官網業務數據,整合客戶信息、設備畫像、位置信息、官網交易日誌、瀏覽記錄等數據的目的。
該系統通過為交通銀行卡中心構建反作弊模型、實時計算、實時決策系統,幫助擁有海量歷史數據,日均增長超過兩千萬條日誌流水的銀行卡中心,形成電子渠道實時反欺詐交易監控能力。利用分布式實時數據採集技術和實時決策引擎,幫助信用卡中心高效整合多系統業務數據,處理海量高並發線上行為數據,識別惡意用戶和欺詐行為,並實時預警和處置;通過引入機器學習框架,對少量數據進行分析、挖掘構建並周期性更新反欺詐規則和反欺詐模型。
系統上線後,該銀行迅速監控電子渠道產生的虛假賬號、偽裝賬號、異常登錄、頻繁登錄等新型風險和欺詐行為;系統穩定運行,日均處理逾兩千萬條日誌流水、實時識別出近萬筆風險行為並進行預警。數據接入、計算報警、案件調查的整體處理時間從數小時降低至秒級,監測時效提升近3000倍,上線3個月已幫助卡中心挽回數百萬元的風險損失。
網路的搜索技術正在全面注入網路金融。網路金融使用的梯度增強決策樹演算法可以分析大數據高維特點,在知識分析、匯總、聚合、提煉等多個方面有其獨到之處,其深度學習能力利用數據挖掘演算法能夠較好地解決大數據價值密度低等問題。網路「磐石」系統基於每日100億次搜索行為,通過200多個維度為8.6億賬號精確畫像,高效劃分人群,能夠為銀行、互聯網金融機構提供身份識別、反欺詐、信息檢驗、信用分級等服務。該系統累計為網路內部信貸業務攔截數十萬欺詐用戶,攔截數十億不良資產、減少數百萬人力成本,累計合作近500家社會金融機構,幫助其提升了整體風險防控水平。
金融大數據應用面臨的挑戰及對策
大數據技術為金融行業帶來了裂變式的創新活力,其應用潛力有目共睹,但在數據應用管理、業務場景融合、標准統一、頂層設計等方面存在的瓶頸也有待突破。
一是數據資產管理水平仍待提高。主要體現在數據質量不高、獲取方式單一、數據系統分散等方面。
二是應用技術和業務探索仍需突破。主要體現在金融機構原有的數據系統架構相對復雜,涉及的系統平台和供應商較多,實現大數據應用的技術改造難度很大。同時,金融行業的大數據分析應用模型仍處於起步階段,成熟案例和解決方案仍相對較少,需要投入大量的時間和成本進行調研和試錯。系統誤判率相對較高。
三是行業標准和安全規范仍待完善。金融大數據缺乏統一的存儲管理標准和互通共享平台,對個人隱私的保護上還未形成可信的安全機制。
四是頂層設計和扶持政策還需強化。體現在金融機構間的數據壁壘較為明顯,各自為戰問題突出,缺乏有效的整合協同。同時,行業應用缺乏整體性規劃,分散、臨時、應激等特點突出,信息價值開發仍有較大潛力。
以上問題,一方面需要國家出台促進金融大數據發展的產業規劃和扶持政策,同時,也需要行業分階段推動金融數據開放、共享和統一平台建設,強化行業標准和安全規范。只有這樣,大數據技術才能在金融行業中穩步應用發展,不斷推動金融行業的發展提升。

❷ 大數據金融專業就業前景怎麼樣

就目前的市場發展趨勢,和熱度來看,建議你可以學習一下大數據。我們可以從兩個方面來看一下大數據的發展趨勢。

❸ 大數據怎樣影響著金融業

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,花旗、富國、UBS等先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行360度評價,計算動態違約概率和損失率,提高貸款決策的可靠性。

❹ 大數據怎樣影響著金融業

大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向。

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。

中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。

首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。


其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。


第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。

當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。

一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。

二是大數據的基礎設施和安全管理亟待加強。在大數據時代,除傳統的賬務報表外,金融機構還增加了影像、圖片、音頻等非結構化數據,傳統分析方法已不適應大數據的管理需要,軟體和硬體基礎設施建設都亟待加強。同時,金融大數據的安全問題日益突出,一旦處理不當可能遭受毀滅性損失。近年來,國內金融企業一直在數據安全方面增加投入,但業務鏈拉長、雲計算模式普及、自身系統復雜度提高等,都進一步增加了大數據的風險隱患。

三是大數據的技術選擇存在決策風險。當前,大數據還處於運行模式的探索和成長期,分析型資料庫相對於傳統的事務型資料庫尚不成熟,對於大數據的分析處理仍缺乏高延展性支持,而且它主要仍是面向結構化數據,缺乏對非結構化數據的處理能力。在此情況下,金融企業相關的技術決策就存在選擇錯誤、過於超前或滯後的風險。大數據是一個總體趨勢,但過早進行大量投入,選擇了不適合自身實際的軟硬體,或者過於保守而無所作為都有可能給金融機構的發展帶來不利影響。

應該怎樣將大數據應用於金融企業呢?

盡管大數據在金融企業的應用剛剛起步,目前影響還比較小,但從發展趨勢看,應充分認識大數據帶來的深遠影響。在制訂發展戰略時,董事會和管理層不僅要考慮規模、資本、網點、人員、客戶等傳統要素,還要更加重視對大數據的佔有和使用能力,以及互聯網、移動通訊、電子渠道等方面的研發能力;要在發展戰略中引入和踐行大數據的理念和方法,推動決策從「經驗依賴」型向「數據依靠」型轉化;要保證對大數據的資源投入,把渠道整合、信息網路化、數據挖掘等作為向客戶提供金融服務和創新產品的重要基礎。

(一)推進金融服務與社交網路的融合

我國金融企業要發展大數據平台,就必須打破傳統的數據源邊界,注重互聯網站、社交媒體等新型數據來源,通過各種渠道獲取盡可能多的客戶和市場資訊。首先要整合新的客戶接觸渠道,充分發揮社交網路的作用,增強對客戶的了解和互動,樹立良好的品牌形象。其次是注重新媒體客服的發展,利用各種聊天工具等網路工具將其打造成為與電話客服並行的服務渠道。三是將企業內部數據和外部社交數據互聯,獲得更加完整的客戶視圖,進行更高效的客戶關系管理。四是利用社交網路數據和移動數據等進行產品創新和精準營銷。五是注重新媒體渠道的輿情監測,在風險事件爆發之前就進行及時有效的處置,將聲譽風險降至最低。

(二)處理好與數據服務商的競爭、合作關系

當前各大電商平台上,每天都有大量交易發生,但這些交易的支付結算大多被第三方支付機構壟斷,傳統金融企業處於支付鏈末端,從中獲取的價值較小。為此,金融機構可考慮自行搭建數據平台,將核心話語權掌握在自己的手中。另一方面,也可以與電信、電商、社交網路等大數據平台開展戰略合作,進行數據和信息的交換共享,全面整合客戶有效信息,將金融服務與移動網路、電子商務、社交網路等融合起來。從專業分工角度講,金融機構與數據服務商開展戰略合作是比較現實的選擇;如果自辦電商,沒有專業優勢,不僅費時費力,還可能喪失市場機遇。
(三)增強大數據的核心處理能力

首先是強化大數據的整合能力。這不僅包括金融企業內部的數據整合,更重要的是與大數據鏈條上其他外部數據的整合。目前,來自各行業、各渠道的數據標准存在差異,要盡快統一標准與格式,以便進行規范化的數據融合,形成完整的客戶視圖。同時,針對大數據所帶來的海量數據要求,還要對傳統的數據倉庫技術,特別是數據傳輸方式ETL(提取、轉換和載入)進行流程再造。其次是增強數據挖掘與分析能力,要利用大數據專業工具,建立業務邏輯模型,將大量非結構化數據轉化成決策支持信息。三是加強對大數據分析結論的解讀和應用能力,關鍵是要打造一支復合型的大數據專業團隊,他們不僅要掌握數理建模和數據挖掘的技術,還要具備良好的業務理解力,並能與內部業務條線進行充分地溝通合作。

(四)加大金融創新力度,設立大數據實驗室

可以在金融企業內部專門設立大數據創新實驗室,統籌業務、管理、科技、統計等方面的人才與資源,建立特殊的管理體制和激勵機制。實驗室統一負責大數據方案的制定、實驗、評價、推廣和升級。每次推行大數據方案之前,實驗室都應事先進行單元試驗、穿行測試、壓力測試和返回檢驗;待測試通過後,對項目的風險收益作出有數據支撐的綜合評估。實驗室的另一個任務是對「大數據」進行「大分析」,不斷優化模型演算法。在「方法論上。

(五)加強風險管控,確保大數據安全。

大數據能夠在很大程度上緩解信息不對稱問題,為金融企業風險管理提供更有效的手段,但如果管理不善,「大數據」本身也可能演化成「大風險」。大數據應用改變了數據安全風險的特徵,它不僅需要新的管理方法,還必須納入到全面風險管理體系,進行統一監控和治理。為了確保大數據的安全,金融機構必須抓住三個關鍵環節:一是協調大數據鏈條中的所有機構,共同推動數據安全標准,加強產業自我監督和技術分享;二是加強與監管機構合作交流,藉助監管服務的力量,提升自身的大數據安全水準;三是主動與客戶在數據安全和數據使用方面加強溝通,提升客戶的數據安全意識,形成大數據風險管理的合力效應。

❺ 金融行業如何「把握」大數據

在企業信息化建設及互聯網行業的發展過程中,數據量的增長已經達到了前所未有的速度。廠商、分析師以及技術專家認為「大數據」(Big Data)時代已經到來,針對大數據的相關技術已經被IT部門提上了議事日程。除了如何存儲管理大數據,更為重要的問題是如何利用大數據為企業服務,通過商業智能以及高級分析應用將其價值發揮到最大。 新概念是新技術的催化劑,在大數據領域中,一些新技術包括Hadoop、MapRece都得到了更廣泛的應用,Hadoop、MapRece為通用計算與分布式架構架起了一座橋梁,而傳統的企業數據倉庫技術則遭遇了前所未有的挑戰。 數據大集中目前「數據大集中」的發展趨勢已在中國金融業獲得了廣泛的認同,一些大型的證券商和銀行已紛紛走上了這條道路。作為數據及業務應用的核心, 數據中心對於用戶的重要性就相當於心臟之於人體。目前,越來越多的金融企業已經投入到對資料中心的建設。事實上,對於眾多用戶而言,確保每周24小時持續運行已經不再是對資料中心的惟一要求了,先進的資料中心解決方案還應在靈活性、可擴展性、安全性、冗餘備份、環境控制以及業務延續性管理等方面有著更為出色的表現,而這一出色表現必須建立在「靈活、健康、高性能的綜合布線系統」的基礎之上。 不同於其他的行業的是,金融行業已經將網路系統作為其生產機器而並非是一般的辦公室運作工具,網路的暢通與可靠運行已經成為金融業正常運轉的首要條件。日益復雜的應用系統、海量的數據交換以及不斷的更新使得數據中心在其網路系統中占據及其重要的位置。安全:金融業永恆的話題信息安全是金融行業永遠的話題。如何利用信息技術的優勢加強金融機構的內部控制,提高金融監管和服務水平,防範和化解金融風險,促進金融改革和創新,從而推動我國經濟社會的發展,是當前我國金融業信息化建設面臨的重大問題。金融信息系統外應用系統相互牽連、使用對象多樣化、安全風險的多方位、信息可靠性、保密性要求高等特徵構成了金融系統的突出特點。 國際金融危機以來,金融系統的風險控制和監管被提到了前所未有的高度。 史立談道:「金融行業對網路的安全性、穩定性要求很高,系統要能夠高速處理數據,還可以提供冗餘備份和容錯功能,保證系統在任何情況下都能夠正常運行,否則就會給用戶帶來巨大的損失,同時系統需要提供非常好的管理能力和靈活性,以應對復雜的應用。」 當然,大數據在金融行業一切都還處於初級階段,但是,金融企業每天處理的數據規模依然在保持增長,大數據分析使得商務決策越來越接近原生數據,信息的質量也變得愈加重要。如果同樣復雜的分析可以運用到相關安全數據上面,那麼大數據甚至可以用來改善信息安全。 大數據應該說是具有相當大的價值,但同時它又存在巨大的安全隱患,金融行業是不能容忍任何安全問題,一旦出現問題,必然會對企業和個人造成巨大的損失。也許當大數據真的能夠解決安全以及穩定性的問題時,大數據才能真正融入金融行業當中。

❻ 大數據金融前景

一、大數據金融的含義
大數據金融指的是將巨量非結構化數據通過互聯網和雲計算等方式進行挖掘和處理後與傳統金融服務相結合的一種新的金融模式,它是一種相比於傳統金融更加透明、參與度更加廣泛、體驗更好、效率更高的新興金融模式。
廣義的大數據金融包括整個互聯網金融在內的所有需要依靠發掘和處理海量信息的線上金融服務。也就是說,我們所提到的不管是P2P還是眾籌等互聯網金融行為,其核心都是大數據金融,因為互聯網金融如果沒有大數據的支撐,就成了一個單純意義上的平台。而互聯網金融得以在互聯網誕生之日起,到今天人類社會進入「PB(1024TB)」時代,歷年來數據信息的記錄與積累,以及雲計算技術的不斷成熟,使得大數據金融在互聯網誕生數十年後終於可以一展風采。持續高增長的電子交易數量和網路零售服務,使得依賴於商務需求的金融體系能夠在線上尋求到數據支撐。

狹義上的大數據金融指的是依靠對商家和企業在網路上歷史數據的分析,對其進行線上資金融通和信用評估的行為。我們可以很直觀地看到,最初在互聯網平台上尋求到金融服務的商家和企業,一類是在互聯網平台上留下了一定數量的歷史信用信息的商家或企業,另一類是在相關產業之內積累了相當程度的歷史信用的商家或企業。而從未在線上或實際交易中產生過信息的全新商家和企業在沒有建立足夠的交易基礎之前是不太容易通過單純的信用方式進行這種融資的。無論是廣義還是狹義的定義,大數據金融的核心內容都是對商家和客戶的海量數據進行收集、儲存、發掘和整理歸納,使得互聯網金融機構能夠得到客戶的全方位信息,掌握客戶的消費習慣並准確預測客戶行為。這樣的做法不管是作為評級認定標准,還是作為目標客戶進行營銷宣傳的理由,都能夠使互聯網金融機構對自己的風險進行控制,對自己的發展策略進行更詳盡的規劃。作為大數據的使用者,互聯網金融機構必須為數據的採集和使用付出成本,如果不是同時作為數據的收集方,進行原始數據的採集和整理,那就要向數據來源的第三方支付使用費用。
二、大數據金融的發展機遇
1.互聯網企業自身轉型需要。隨著電商競爭愈演愈烈,最初的零售領域與支付領域的競爭已逐漸延伸到了整個供應鏈的其他環節,包括物流、倉儲,自然也包含了最重要的金融服務。盡快發展自身原有業務引申出來的大數據金融服務,有利於建立用戶黏性。積極地進行專業化、個性化定製金融服務對未來電商領域的全方位競爭有著十分重要的意義。
2.實體產業需要大數據金融的支持。大數據金融通過各種方式給市場帶來了活性,整個產業鏈的效率提升、資源配置優化是有目共睹的,虛擬經濟與實體產業的下一步發展,必定都離不開大數據金融的支持。打通上下游環節,使資金更有效率,無論是對電商的未來發展還是對傳統金融的突破都大有益處。
三、大數據金融面臨的挑戰
大數據使得互聯網金融得到空前的發展,同時也帶來了一系列的問題。原來的互聯網非金融機構從事類金融服務,給傳統的金融體系帶來了一定的沖擊,如何協調和處理好這兩者之間的關系,成了未來大數據金融發展至關重要的環節。未來,大數據金融的發展必將基於傳統金融行業與互聯網大數據技術的進一步融入和整合,這就要求金融服務與互聯網及大數據的關聯程度必須不斷加強。
1.必須推進金融服務與社交網路的進一步融合。使金融業的數據來源能夠脫離早期呆板滯後的提交、審批、盡職調查等來源方式。要使金融信息的獲取渠道能夠直接深入金融服務本身,就要利用互聯網、社交媒體等新的數據來源,從多渠道獲取實時客戶信息和市場信息,充分了解自標客戶的需求和資質情況,建立更高效的客戶關系與更完整的客戶視圖,並利用社交網路對忠實客戶和潛在客戶進行精準營銷和定製化金融服務的方案。

2.傳統金融機構要進行互聯網、大數據金融的轉型,必須要處理好與數據服務商的競爭、合作關系。目(下轉80頁)(上接76頁)前,線上互聯網企業由於占據極大的平台優勢,壟斷從交易發生到交易結算的各個環節以及這其中產生的各項數據信息,使傳統金融企業想要介入十分困難。要想在實際過程中重新組建自己的數據平台,從時間方面來看,已經處於劣勢。因此,傳統金融機構與數據服務商開展戰略合作是比較現實的選擇。
四、大數據金融的發展趨勢
大數據技術還遠未成熟,而大數據金融帶給我們的變化已足以讓人驚訝,大數據金融的未來也是一片光明。未來,隨著大數據技術的不斷成熟,大數據金融的發展也必將進一步改變人們的生活生產方式。
1.大數據金融跨界發展。由於互聯網技術的開放性,信息不對稱將顯著減少,金融在日後也許就不是少數傳統的金融從業者的專屬領域了。從供應鏈要求的技術來看,互聯網企業、軟體企業都紛紛加入大數據金融的開發中,大數據進入跨界發展的趨勢越來越明顯,金融業的競爭也將由於未來力量的沖擊變得更加激烈。這也可能導致將來金融業內部混業經營的進一步發展,銀行金融與非銀行金融的界限、證券公司與非證券公司之間的界限都可能變得非常模糊。

2.大數據金融服務多樣化。大數據金融從電商平台發展出來以後,不斷地整合發展傳統產業,從零售的日用百貨發展到電子產品,再到汽車,甚至是大宗商品交易,未來也會發展到房地產、醫療等方面,日常的金融服務也將不斷地擴展,綜合化、社會化、日常化。
3.大數據金融服務專業化。隨著涉足領域越來越廣泛,大數據金融必將產生專業化趨勢,產生更明確的產業鏈分工,根據不同的環節或者是不同的行業,其服務內容都將產生一系列的變化。同時隨著發展水平的提高,必定會有高要求的定製化服務、個性化服務要求,未來的大數據金融企業必將以客戶為中心,高度精準與定位客戶需求來制定專業的個性化服務。總而言之,大數據金融憑借高度數據化的管理和運作模式,在互聯網發展的今天有著不可替代的地位,將來大數據金融必將是金融業發展的中流砥柱,它將進一步滲透到各行各業的每一個角落,不斷地促進金融生態的發展。在不久的將來,每個人都將能夠切身體會到大數據金融帶來的變化,都能從大數據金融的發展中獲得益處。

❼ 大數據助推金融業發展

大數據助推金融業發展
專家表示,對於金融行業來說,尤其是以銀行、保險為主的金融行業都是非常注重數據應用的,很多企業已經在利用大數據去服務其風險管理、客戶營銷和運營管理等工作。大數據未來將成為全球金融業競爭的主要「陣地」之一。對大數據的應用能力已經成為金融企業的核心競爭力,未來有競爭力的金融企業一定是有深厚大數據文化的企業。
今年《政府工作報告》明確提出要「發展壯大新動能。做大做強新興產業集群,實施大數據發展行動」。近年來,以信息通信技術的創新為基礎,互聯網、大數據和人工智慧等蓬勃發展,新的經濟形態展現出強勁的生命力。接受《金融時報》記者專訪的畢馬威中國大數據團隊學科帶頭人魏秋萍博士表示,對於金融行業來說,尤其是以銀行、保險為主的金融行業都是非常注重數據應用的,很多企業已經在利用大數據去服務其風險管理、客戶營銷和運營管理等工作。
金融大數據值得關注
魏秋萍表示,金融行業本身是一個自帶很大流量的行業。比如一個規模較大的銀行,都擁有海量的客戶。銀行可以利用大數據技術,針對不同的客戶群體制定不同的個性化服務方案,可以創建出很多不同的場景。同時,銀行擁有很多的數據維度,這些數據項又比一般的網路行為大數據擁有更高的價值密度,可以發揮很大的業務價值。因此,金融行業充分利用自己的流量、數據,有效結合外部數據,再配套先進的技術和理念,必然可以成為一個生態體系中的核心組織。
大數據已經被廣受關注,但到底什麼是大數據,並沒有一個被大家普遍認可的定義。魏秋萍認為,要認識大數據,可以從數據和技術兩大層面來看。在大數據這個熱詞沒有出現之前,金融行業早就開始了商務智能分析和數據挖掘,不過這時被分析的數據往往是企業內部的結構化數據。目前,金融企業分析的數據已經不再拘泥於此,而是大大拓寬了數據的廣度,除了結構化數據外,也會根據實際的分析需要來引入非結構化數據,同時也會結合企業內部數據和企業外部數據來開展分析。在技術層面,也有了很大的變革,包括存儲能力、計算能力和演算法種類等,都有長足的進步。在10多年前做數據挖掘的時候,往往由於樣本量龐大需要做采樣技術,現在有了高性能存儲和內存計算等技術的更新,采樣基本不再是必需的了。
魏秋萍預計,大數據未來將成為全球金融業競爭的主要「陣地」之一。與互聯網企業相比,雖然金融行業踐行大數據戰略的起步要晚了一些,但是金融行業利用大數據的進程也發展得很快。對大數據的應用能力,已經成為金融企業的核心競爭力,未來有競爭力的金融企業一定是有深厚大數據文化的企業。大數據提供了全新的溝通渠道和客戶經營手段,可以加深企業和客戶的互動,更及時精準地洞察客戶。大數據也可以幫助金融企業滋生新型的金融業態參與市場競爭,用大數據來武裝自己的金融企業未來一定是某個生態鏈中的關鍵組件。
風控需同步跟上
魏秋萍表示,應用大數據必須要重視數據質量和技術創新。舉例來說,把大數據應用於風險控制是金融業應用大數據最典型的場景之一。在這一場景的應用中,有以下兩點必須注意:一是對於數據的整合和數據的治理。風控是一個復雜的過程,要利用數據對風險進行穿透式管控,必須實現用真實的數據再現業務流程,因此,數據的可獲得性和數據質量非常關鍵。二是先進技術的應用和創新。風控是魔高一尺道高一丈的游戲,「小偷」的伎倆層出不窮,作為「警察」的風控必須要有不斷創新的能力,不斷優化風控的技術。她還表示,從大數據風控技術的角度看,國內和國際的差異並不大,中國也走在了技術的前沿。但是,國外的金融企業對創新技術的容錯會比國內好,他們有一些機制來鼓勵創新技術的試錯。這一點值得國內企業學習。
魏秋萍還認為,應用大數據的時候,數據安全也要同步跟上。保障數據安全的方法主要是三大手段:第一,需要依靠健全的法律制度來保障和約束數據交易的買賣雙方;第二,需要加強數據買賣雙方的道德約束;第三,需要通過安全技術來保障數據的安全。
金融企業應用大數據是一個逐步發展的過程,大數據的價值釋放也必然是循序漸進的。企業內部一致的大數據理念和數據驅動決策的文化,也是大數據助推金融企業發展的保障。

❽ 大數據技術在金融行業有哪些應用前景

大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到回10年,金答融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。

❾ 大數據在金融行業的應用與挑戰

大數據在金融行業的應用與挑戰
A 具有四大基本特徵
金融業基本是全世界各個行業中最依賴於數據的,而且最容易實現數據的變現。全球最大的金融數據公司Bloomberg在1981年成立時「大數據」概念還沒有出現。Bloomberg的最初產品是投資市場系統(IMS),主要向各類投資者提供實時數據、財務分析等。
隨著信息時代降臨,1983年估值僅1億美元的Bloomberg以30%股份的代價換取美林3000萬美元投資,先後推出Bloomberg Terminal、News、Radio、TV等各類產品。1996年Bloomberg身價已達20億美元,並以2億美元從美林回購了10%的股份。2004年Bloomberg在紐約曼哈頓中心建成246米摩天高樓。到2008年次貸危機,美林面臨崩盤,其剩餘20%的Bloomberg股份成為救命稻草。Bloomberg趁美林之危贖回所有股份,估值躍升至225億美元。2016年Bloomberg全球布局192個辦公室,擁有1.5萬名員工,年收入約100億美元,估值約1000億美元,超過同年市值為650億美元的華爾街標桿高盛。
大數據概念形成於2000年前後,最初被定義為海量數據的集合。2011年,美國麥肯錫公司在《大數據的下一個前沿:創新、競爭和生產力》報告中最早提出:大數據指大小超出典型資料庫軟體工具收集、存儲、管理和分析能力的數據集。
具體來說,大數據具有四大基本特徵:
一是數據體量大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量。
二是數據類別大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據。
三是處理速度快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是數據的真實性高,隨著社交數據、企業內容、交易與應用數據等新數據源的興起,傳統數據源的局限被打破,信息的真實性和安全性顯得極其重要。
而相比其他行業,金融數據邏輯關系緊密,安全性、穩定性和實時性要求更高,通常包含以下關鍵技術:數據分析,包括數據挖掘、機器學習、人工智慧等,主要用於客戶信用、聚類、特徵、營銷、產品關聯分析等;數據管理,包括關系型和非關系型數據、融合集成、數據抽取、數據清洗和轉換等;數據使用,包括分布式計算、內存計算、雲計算、流處理、任務配置等;數據展示,包括可視化、歷史流及空間信息流展示等,主要應用於對金融產品健康度、產品發展趨勢、客戶價值變化、反洗錢反欺詐等監控和預警。
B 重塑金融行業競爭新格局
「互聯網+」之後,隨著世界正快速興起「大數據+」,金融行業悄然出現以下變化:
大數據特徵從傳統數據的「3個V」增加到「5個V」。在數量(Volume)、速度(Velocity)、種類(Variety)基礎上,進一步完善了價值(Value)和真實性(Veracity),真實性包括數據的可信性、來源和信譽、有效性和可審計性等。
金融業按經營產品分類變為按運營模式分類。傳統金融業按經營產品劃分為銀行、證券、期貨、保險、基金五類,隨著大數據產業興起和混業經營的發展,現代金融業按運營模式劃分為存貸款類、投資類、保險類三大類別。
大數據市場從壟斷演變為充分市場競爭。全球大數據市場企業數量迅速增多,產品和服務的差異增大,技術門檻逐步降低,市場競爭日益激烈。行業解決方案、計算分析服務、存儲服務、資料庫服務和大數據應用成為市場份額排名最靠前的五大細分市場。
大數據形成新的經濟增長點。Wikibon數據顯示,2016年,全球大數據硬體、軟體和服務整體市場增長22%達到281億美元,預計到2027年,全球在大數據硬體、軟體和服務上的整體開支的復合年增長率為12%,將達到大約970億美元。
數據和IT技術替代「重復性」業務崗位。數據服務公司Eurekahedge通過追蹤23家對沖基金,發現5位對沖基金經理薪金總額為10億美元甚至更高。過去10年,靠數學模型分析金融市場的物理學家和數學家「寬客」一直是對沖基金的寵兒,其實大數據+人工智慧更精於此道。高盛的紐約股票現金交易部門2000年有600名交易員而如今只剩兩人,其任務全由機器包辦,專家稱10年後高盛員工肯定比今天還要少。
美國大數據發展走在全球前列。美國政府宣稱:「數據是一項有價值的國家資本,應對公眾開放,而不是將其禁錮在政府體制內。」作為大數據的策源地和創新引領者,美國大數據發展一直走在全球最前列。自20世紀以來,美國先後出台系列法規,對數據的收集、發布、使用和管理等做出具體的規定。2009年,美國政府推出Data.gov政府數據開放平台,方便應用領域的開發者利用平台開發應用程序,滿足公共需求或創新創業。2010年,美國國會通過更新法案,進一步提高了數據採集精度和上報頻度。2012年3月,奧巴馬政府推出《大數據研究與開發計劃》,大數據迎來新一輪高速發展。
英國是歐洲金融中心,大數據成為其領先科技之一。2013年,英國投資1.89億英鎊發展大數據。2015年,新增7300萬英鎊,創建了「英國數據銀行」data.gov.uk網站。2016年,倫敦舉辦了超過22000場科技活動,同年,英國數字科技投資逾68億英鎊,而收入則超過1700億英鎊。另外,英國統計局利用政府資源開展「虛擬人口普查」,僅此一項每年節省5億英鎊經費。
C 打造高效金融監管體系
大數據用已發生的總體行為模式和關聯邏輯預測未來,決策未來,作為現代數字科技的核心,其靈魂就是——預測。
偵測、打擊逃稅、洗錢與金融詐騙
全球每年因欺詐造成的經濟損失約3.7萬億美元,企業因欺詐受損通常為年營收額的5%。全球最大軟體公司之一美國SAS公司與稅務、海關等政府部門和全球各國銀行、保險、醫療保健等機構合作,有效應對日益復雜化的金融犯罪行為。如在發放許可之前,通過預先的數據分析檢測客戶是否有過行受賄、欺詐等前科,再確定是否發放借貸或海關通關。SAS開發的系統已被國際公認為統計分析的標准軟體,在各領域廣泛應用。英國政府利用大數據檢測行為模式檢索出200億英鎊的逃稅與詐騙,追回了數十億美元損失。被福布斯評為美國最佳銀行的德克薩斯資本銀行(TCBank),不斷投資大數據技術,反金融犯罪系統與銀行發展同步,近3年資產從90億美元增至210億美元。荷蘭第三大人壽保險公司CZ依靠大數據對騙保和虛假索賠行為進行偵測,在支付賠償金之前先期阻斷,有效減少了欺詐發生後的司法補救。
大數據風控建立客戶信用評分、監測對照體系
美國注冊舞弊審核師協會(ACFE)統計發現,缺乏反欺詐控制的企業會遭受高額損失。美國主流個人信用評分工具FICO能自動將借款人的歷史資料與資料庫中全體借款人總體信用習慣相比較,預測借款人行為趨勢,評估其與各類不良借款人之間的相似度。美國SAS公司則通過集中瀏覽和分析評估客戶銀行賬戶的基本信息、歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎(如搜索到該客戶從新出現的國家為特有用戶轉賬,或在新位置在線交易等),進行實時反欺詐分析。
美國一家互聯網信用評估機構通過分析客戶在Facebook、Twitter等社交平台留下的信息,對銀行的信貸和投保申請客戶進行風險評估,並將結果出售給銀行、保險公司等,成為多家金融機構的合作夥伴。
D 數據整合困難
應用經濟指標預測系統分析市場走勢
IBM使用大數據信息技術成功開發了「經濟指標預測系統」,該系統基於單體數據進行提煉整合,通過搜索、統計、分析新聞中出現的「新訂單」等與股價指標有關的單詞來預測走勢,然後結合其他相關經濟數據、歷史數據分析其與股價的關系,從而得出行情預測結果。
追蹤社交媒體上的海量信息評估行情變化
當今搜索引擎、社交網路和智能手機上的微博、微信、論壇、新聞評論、電商平台等每天生成幾百億甚至千億條文本、音像、視頻、數據等,涵蓋廠商動態、個人情緒、行業資訊、產品體驗、商品瀏覽和成交記錄、價格走勢等,蘊含巨大財富價值。
2011年5月,規模為4000萬美元的英國對沖基金DC Markets,通過大數據分析Twitter的信息內容來感知市場情緒指導投資,首月盈利並以1.85%的收益率一舉戰勝其他對沖基金僅0.76%的平均收益率。
美國佩斯大學一位博士則利用大數據追蹤星巴克、可口可樂和耐克公司在社交媒體的圍觀程度對比其股價,證明Facebook、Twitter和 Youtube上的粉絲數與股價密切相關。
提供廣泛的投資選擇和交易切換
日本個人投資理財產品Money Design在應用程序Theo中使用演算法+人工智慧,最低門檻924美元,用戶只需回答風險承受水平、退休計劃等9個問題,就可使用35種不同貨幣對65個國家的1.19萬只股票進行交易和切換,年度管理費僅1%。Money Design還能根據用戶投資目標自動平衡其賬戶金額,預計2020年將超過2萬億美元投資該類產品。
利用雲端資料庫為客戶提供記賬服務
日本財富管理工具商Money Forward提供雲基礎記賬服務,可管理工資、收付款、寄送發票賬單、針對性推送理財新項目等,其軟體系統連接並整合了2580家各類金融機構的各類型帳戶,運用大數據分析的智能儀表盤顯示用戶當前財富狀況,還能分析用戶以往的數據以預測未來的金融軌跡。目前其已擁有50萬商家和350萬個體用戶,並與市值2.5萬億美元的山口金融集團聯合開發新一款APP。
為客戶定製差異化產品和營銷方案
金融機構迫切需要掌握更多用戶信息,繼而構建用戶360度立體畫像,從而對細分客戶進行精準營銷、實時營銷、智慧營銷。
一些海外銀行圍繞客戶「人生大事」,分析推算出大致生活節點,有效激發其對高價值金融產品的購買意願。如一家澳大利亞銀行通過大數據分析發現,家中即將誕生嬰兒的客戶對壽險產品的潛在需求最大,於是通過銀行卡數據監控准媽媽開始購買保胎葯品和嬰兒相關產品等現象,識別出即將添丁的家庭,精準推出定製化金融產品套餐,受到了客戶的積極響應,相比傳統的簡訊群發模式大幅提高了成功率。
催生並支撐人工智慧交易
「量化投資之王」西蒙斯被公認為是最能賺錢的基金經理人,自1988年創立文藝復興科技公司的旗艦產品——大獎章基金以來,其憑借不斷更新完善的大數據分析系統,20年中創造出35%的年均凈回報率,比索羅斯同期高10%,比股神巴菲特同期高18%,成為有史以來最成功的對沖基金,並於1993年基金規模達2.7億美元時停止接受新投資。在美國《Alpha》雜志每年公布的對沖基金經理排行榜上,西蒙斯2005年、2006年分別以15億美元、17億美元凈收入穩居全球之冠,2007年以13億美元位列第五,2008年再以25億美元重返榜首。
推動金融產品和服務創新
E 面臨三大挑戰
目前,全球各行業數據量的增長速度驚人,在我國尤其集中在金融、交通、電信、製造業等重點行業,信息化的不斷深入正在進一步催生更多新的海量數據。
據統計,2015年中國的數據總量達到1700EB以上,同比增長90%,預計到2020年這一數值將超過8000EB。以銀行業為例,每創收100萬元,銀行業平均產生130GB的數據,數據強度高踞各行業之首。但在金融企業內部數據處於割裂狀態,業務條線、職能部門、渠道部門、風險部門等各個分支機構往往是數據的真正擁有者,缺乏順暢的共享機制,導致海量數據往往處於分散和「睡眠」狀態,雖然金融行業擁有的數據量「富可敵國」,但真正利用時卻「捉襟見肘」。
數據安全暗藏隱患
大數據本質是開放與共享,但如何界定、保護個人隱私權卻成為法律難題。大數據存儲、處理、傳輸、共享過程中也存在多種風險,不僅需要技術手段保護,還需相關法律法規規范和金融機構自律。多項實際案例表明,即使無害的數據大量囤積也會滋生各種隱患。安全保護對象不僅包括大數據自身,也包含通過大數據分析得出的知識和結論。在線市場平台英國Handshake.uk.com就嘗試允許用戶協商個人數據被品牌分享所得的報酬。
人才梯隊建設任重道遠
人才是大數據之本。與信息技術其他細分領域人才相比,大數據發展對人才的復合型能力要求更高,需要掌握計算機軟體技術,並具備數學、統計學等方面知識以及應用領域的專業知識。

閱讀全文

與金融業行業大數據論壇相關的資料

熱點內容
python3刪除文件內容 瀏覽:754
如何優化seo數據分析 瀏覽:132
64位win7下部分32位程序不能運行 瀏覽:206
dnf90版本劍魂鈍器流 瀏覽:649
陌秀直播蘋果怎麼下載ipad 瀏覽:732
簡述網路直接市場調查方式有哪些 瀏覽:683
怎麼連接移動網路設置 瀏覽:781
電腦網卡怎麼連接網路連接不上網嗎 瀏覽:838
刷子公司網站怎麼做 瀏覽:272
86版本艾爾文測試 瀏覽:714
深宮曲文件夾是哪個 瀏覽:618
蘋果u盤修復工具哪個好用 瀏覽:124
微信動態表情包搞笑 瀏覽:436
可以去哪裡找編程老師問問題 瀏覽:608
win10lol全屏 瀏覽:25
qq圖片動態動漫少女 瀏覽:122
sai繪圖教程視頻 瀏覽:519
如何分析載入減速法數據 瀏覽:672
手機怎麼免費轉換pdf文件格式 瀏覽:668
在哪個網站可以駕照年檢 瀏覽:89

友情鏈接