導航:首頁 > 網路數據 > 大數據架構開發內容

大數據架構開發內容

發布時間:2022-12-27 13:41:08

大數據工程師要學習哪些技術

1.大數據架構東西來與組件自


企業大數據結構的搭建,多是挑選根據開源技能結構來實現的,這其中就包含Hadoop、Spark、Storm、Flink為主的一系列組件結構,及其生態圈組件。


2.深化了解SQL和其它資料庫解決方案


大數據工程師需要了解資料庫辦理體系,深化了解SQL。相同其它資料庫解決方案,例如Cassandra或MangoDB也須了解,由於不是每個資料庫都是由可識別的標准來構建。


3.數據倉庫和ETL東西


數據倉庫和ETL才能對於大數據工程師至關重要。像Redshift或Panoply這樣的數據倉庫解決方案,以及ETL東西,比方StitchData或Segment都十分有用。


4.根據Hadoop的剖析


對根據Apache Hadoop的數據處理結構,需要有深化的了解,至少HBase,Hive和MapRece的知識存儲是必需的。


5.編碼


編碼與開發才能是作為大數據工程師的重要要求,主要掌握java、Scala、Python三門語言,這在大數據當中十分關鍵。

㈡ 大數據平台架構如何進行 包括哪些方面

【導語】大數據平台將互聯網使用和大數據產品整合起來,將實時數據和離線數據打通,使數據能夠實現更大規模的相關核算,挖掘出數據更大的價值,然後實現數據驅動事務,那麼大數據平台架構如何進行?包括哪些方面呢?

1、事務使用:

其實指的是數據收集,你經過什麼樣的方法收集到數據。互聯網收集數據相對簡略,經過網頁、App就能夠收集到數據,比方許多銀行現在都有自己的App。

更深層次的還能收集到用戶的行為數據,能夠切分出來許多維度,做很細的剖析。但是對於涉及到線下的行業,數據收集就需要藉助各類的事務體系去完成。

2、數據集成:

指的其實是ETL,指的是用戶從數據源抽取出所需的數據,經過數據清洗,終究依照預先定義好的數據倉庫模型,將數據載入到數據倉庫中去。而這兒的Kettle僅僅ETL的其中一種。

3、數據存儲:

指的便是數據倉庫的建設了,簡略來說能夠分為事務數據層(DW)、指標層、維度層、匯總層(DWA)。

4、數據同享層:

表明在數據倉庫與事務體系間提供數據同享服務。Web Service和Web
API,代表的是一種數據間的銜接方法,還有一些其他銜接方法,能夠依照自己的情況來確定。

5、數據剖析層:

剖析函數就相對比較容易理解了,便是各種數學函數,比方K均值剖析、聚類、RMF模型等等。

6、數據展現:

結果以什麼樣的方式呈現,其實便是數據可視化。這兒建議用敏捷BI,和傳統BI不同的是,它能經過簡略的拖拽就生成報表,學習成本較低。

7、數據訪問:

這個就比較簡略了,看你是經過什麼樣的方法去查看這些數據,圖中示例的是因為B/S架構,終究的可視化結果是經過瀏覽器訪問的。

關於大數據平台架構內容,就給大家介紹到這里了,不知道大家是不是有所了解呢,未來,大數據對社會發展的重大影響必將會決定未來的發展趨勢,所以有想法考生要抓緊時間學起來了。

㈢ 入門大數據需要學習什麼內容

作為一名零基礎學習者,請不要將大數據開發看做一門與Java、python等相似的IT語言,大數據更像是一門技術,其所包含的內容相對比較多。在正式開始學習之前,可以買一些大數據相關書籍或者找一些網上的學習資料,先建立對行業以及對大數據相關職位的了解。

比如,大數據分為哪些發展方向,不同的發展方向對應哪些發展職位,各個職位的發展所要求的核心技能點是什麼,企業對於大數據人才的需求是什麼樣的,了解清楚了這些,才能真正考慮清楚,學什麼怎麼學。

以大數據開發來說,其中涉及到的主要是大數據應用開發,要求一定的編程能力,在學習階段,主要需要學習掌握大數據技術框架,包括hadoop、hive、oozie、flume、hbase、kafka、scala、spark等等……

以大數據分析來說,有主攻業務運營方面的數據分析師,也有主攻機器學習、深度學習等的數據挖掘師,具體到其中的各個職位,更是有著更加具體的技能要求,那麼在學習階段就要先做好相關的准備了。

關於入門大數據需要學習什麼內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈣ 大數據具體是學習什麼內容呢主要框架是什麼

首先,學習大數據是需要有java,python和R語言的基礎。
1) Java學習到什麼樣的程度才可以學習大數據呢?
java需要學會javaSE即可。javaweb,javaee對於大數據用不到。學會了javase就可以看懂hadoop框架。
2) python是最容易學習的,難易程度:python java Scala 。
python不是比java更直觀好理解么,因為會了Python 還是要學習java的,你學會了java,再來學習python會很簡單的,一周的時間就可以學會python。
3) R語言也可以學習,但是不推薦,因為java用的人最多,大數據的第一個框架Hadoop,底層全是Java寫的。就算學會了R還是看不懂hadoop。
java在大數據中的作用是構成大數據的語言,大數據的第一個框架Hadoop以及其他大數據技術框架,底層語言全是Java寫的,所以推薦首選學習java
大數據開發學習路線:
第一階段:Hadoop生態架構技術
1、語言基礎
Java:多理解和實踐在Java虛擬機的內存管理、以及多線程、線程池、設計模式、並行化就可以,不需要深入掌握。
linux系統安裝、基本命令、網路配置、Vim編輯器、進程管理、Shell腳本、虛擬機的菜單熟悉等等。
Python:基礎語法,數據結構,函數,條件判斷,循環等基礎知識。
2、環境准備
這里介紹在windows電腦搭建完全分布式,1主2從。
VMware虛擬機、Linux系統(Centos6.5)、Hadoop安裝包,這里准備好Hadoop完全分布式集群環境。
3、MapRece
MapRece分布式離線計算框架,是Hadoop核心編程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的數據訪問,適合大規模數據集上的應用。
5、Yarn(Hadoop2.0)
Yarn是一個資源調度平台,主要負責給任務分配資源。
6、Hive
Hive是一個數據倉庫,所有的數據都是存儲在HDFS上的。使用Hive主要是寫Hql。
7、Spark
Spark 是專為大規模數據處理而設計的快速通用的計算引擎。
8、SparkStreaming
Spark Streaming是實時處理框架,數據是一批一批的處理。
9、SparkHive
Spark作為Hive的計算引擎,將Hive的查詢作為Spark的任務提交到Spark集群上進行計算,可以提高Hive查詢的性能。
10、Storm
Storm是一個實時計算框架,Storm是對實時新增的每一條數據進行處理,是一條一條的處理,可以保證數據處理的時效性。
11、Zookeeper
Zookeeper是很多大數據框架的基礎,是集群的管理者。
12、Hbase
Hbase是一個Nosql資料庫,是高可靠、面向列的、可伸縮的、分布式的資料庫。
13、Kafka
kafka是一個消息中間件,作為一個中間緩沖層。
14、Flume
Flume常見的就是採集應用產生的日誌文件中的數據,一般有兩個流程。
一個是Flume採集數據存儲到Kafka中,方便Storm或者SparkStreaming進行實時處理。
另一個流程是Flume採集的數據存儲到HDFS上,為了後期使用hadoop或者spark進行離線處理。
第二階段:數據挖掘演算法
1、中文分詞
開源分詞庫的離線和在線應用
2、自然語言處理
文本相關性演算法
3、推薦演算法
基於CB、CF,歸一法,Mahout應用。
4、分類演算法
NB、SVM
5、回歸演算法
LR、DecisionTree
6、聚類演算法
層次聚類、Kmeans
7、神經網路與深度學習
NN、Tensorflow
以上就是學習Hadoop開發的一個詳細路線,如果需要了解具體框架的開發技術,可咨詢加米穀大數據老師,詳細了解。
學習大數據開發需要掌握哪些技術呢?
(1)Java語言基礎
Java開發介紹、熟悉Eclipse開發工具、Java語言基礎、Java流程式控制制、Java字元串、Java數組與類和對象、數字處理類與核心技術、I/O與反射、多線程、Swing程序與集合類
(2)HTML、CSS與Java
PC端網站布局、HTML5+CSS3基礎、WebApp頁面布局、原生Java交互功能開發、Ajax非同步交互、jQuery應用
(3)JavaWeb和資料庫
資料庫、JavaWeb開發核心、JavaWeb開發內幕
Linux&Hadoop生態體系
Linux體系、Hadoop離線計算大綱、分布式資料庫Hbase、數據倉庫Hive、數據遷移工具Sqoop、Flume分布式日誌框架
分布式計算框架和Spark&Strom生態體系
(1)分布式計算框架
Python編程語言、Scala編程語言、Spark大數據處理、Spark—Streaming大數據處理、Spark—Mlib機器學習、Spark—GraphX 圖計算、實戰一:基於Spark的推薦系統(某一線公司真實項目)、實戰二:新浪網(www.sina.com.cn)
(2)storm技術架構體系
Storm原理與基礎、消息隊列kafka、Redis工具、zookeeper詳解、大數據項目實戰數據獲取、數據處理、數據分析、數據展現、數據應用
大數據分析—AI(人工智慧)Data
Analyze工作環境准備&數據分析基礎、數據可視化、Python機器學習
以上的回答希望對你有所幫助

㈤ 大數據開發學起來難嗎

大數據專業的發展前景我們現在都是可以體會得到,相比其他行業來說是比較棒的,大數據的時代在國內也才剛剛起步沒有幾年,未來有很大的發展空間,而且一些政策也是支持大數據技術的研發的。所以,很多企業也都紛紛開始引進大數據技術,之前沒有開始進入大數據時代,企業數字化比較低,但是同這幾年的發展已經提高了很多。
相信很快全會有更多的企業進入數化轉型,那麼大數據人才的需求也會凸顯出來,市場需求不斷提升,供應難以跟上節奏,大量的大數據培訓機構就會涌現,通過培訓的方式讓學員快速的掌握大數據技術,從而達到企業的需求,完成進入大數據行業的目的。
不過,大數據培訓學習相比較其他的編程會有一定的難度,需要前提滿足倆個方面的條件。
一是,年齡要滿足國家規定的法定工作年齡,不能夠小於這個年齡,但也不能年齡太大,年齡太大的話可能不太符合企業要求,找工作就會很難。
二是,學歷要滿足本科,因為現在很多地方的相關企業招聘大數據技術人才基本上都是本科起步,這方面也要多加註意。
如果,各方面的條件比較滿足的話,其實大數據的學習也並不像大家說的那麼難,只要感興趣適合學習大數據就可以一試。

㈥ 關於大數據架構的相關知識

隨著科技的發展和社會的進步,大數據、人工智慧等新興技術開始進入了我們的生活。我們已經從信息時代跨入了大數據時代,而大數據是一個十分火熱的技術,現如今大數據已經涉及到了各行各業的方方面面。但是目前而言,很多人對於大數據不是十分清楚,下面我們就給大家講一講大數據的架構知識。
1.大數據架構的特點
一般來說,大數據的架構是比較復雜的,大數據的應用開發過於偏向底層,具有學習難度大,涉及技術面廣的問題,這制約了大數據的普及。所以我們必須開發一種技術,把大數據開發中一些通用的,重復使用的基礎代碼、演算法封裝為類庫,降低大數據的學習門檻,降低開發難度,提高大數據項目的開發效率。
2.大數據在工作的應用
大數據在工作中的應用有三種,第一種就是與業務相關,比如用戶畫像、風險控制等。第二種就是與決策相關,數據科學的領域,了解統計學、演算法,這是數據科學家的范疇。第三種就是與工程相關,如何實施、如何實現、解決什麼業務問題,這是數據工程師的工作。由此可見大數據是一門高深的學問。
3.對數據源的分類
根據數據源的特點,我們可以把數據源分為四大類。第一類就是從來源來看分為內部數據和外部數據,第二類就是從結構來看分為非結構化數據和結構化數據,第三類就是從可變性來看分為不可變可添加數據和可修改刪除數據,第四類就是從規模來看分為大量數據和小量數據。這四類將大數據的數據源表達的淋漓盡致。完善了大數據的數據源。
4.為什麼重視數據源?
為什麼大數據平台十分重視數據源呢?這是因為大數據平台第一個要素就是數據源,我們要處理的數據源往往是在業務系統上,數據分析的時候可能不會直接對業務的數據源進行處理,而是先經過數據採集、數據存儲,之後才是數據分析和數據處理。所以大數據平台十分重視數據源。
在這篇文章中我們給大家介紹了大數據架構的具體知識,大體包括大數據架構的特點、大數據在工作的應用、對數據源的分類、為什麼重視數據源,希望這篇文章能夠幫助大家更好地理解大數據。

㈦ 數據開發是什麼

一、大數據開發工作內容

從大數據開發的工作內容來看大數據開發主要負責大數據的大數據挖掘,數據清洗的發展,數據建模工作。

主要負責處理和大數據應用,結合大數據可視化分析工程師,挖掘出價值的數據,為企業提供業務發展支持。大數據開發工程師偏重建設和優化系統。

第一類是編寫一些Hadoop、Spark的應用程序,第二類是對大數據處理系統本身進行開發。第二類工作的話通常大公司里才有,一般他們都會搞自己的系統或者再對開源的做些二次開發。

這種工作的話對理論和實踐要求的都更深一些,也更有技術含量。隨手截了一些招聘信息的圖,關於大數據開發崗位具體的工作內容,現如今企業的要求基本如下:

大數據開發學習有一定難度,零基礎入門首先要學習Java語言打基礎,一般而言,Java學習SE、EE,需要一段時間;然後進入大數據技術體系的學習,主要學習Hadoop、Spark、Storm等。

除此之外,學習大數據開發需要學習的內容包括三大部分,分別是:

大數據基礎知識、大數據平台知識、大數據場景應用。

大數據基礎知識有三個主要部分:數學、統計學和計算機;

大數據平台知識:是大數據開發的基礎,往往以搭建Hadoop、Spark平台為主;

目前,一個大數據工程師的月薪輕松過萬,一個有幾年工作經驗的工程師薪酬在40萬~160萬元之間不等,而更頂尖的大數據技術人才則是年薪輕松超百萬。

二、大數據方面技術

一是大數據平台本身,一般是基於某些Hadoop產品如CDH的產品部署後提供服務。部署的產品裡面有很多的組件,如HIVE、HBASE、SPARK、ZOOKEEPER等。

二是ETL,即數據抽取過程,大數據平台中的原始數據一般是來源於公司內的其它業務系統,如銀行裡面的信貸、核心等,這些業務系統的數據每天會從業務系統抽取到大數據平台中,然後進行一系列的標准化、清理等操作,再然後經過一些建模生成一些模型給下游系統使用。

三是數據分析,在數據收集完成後基於這些數據要做一些什麼樣的處理,典型的如報表應用,那每天可能就是寫SQL開發報表了;還有一些如風險監測等平台,都要基於大數據平台收集的數據來進行處理。

三、從事大數據,需掌握哪些技術

1、Java編程

Java語言是基礎,可以編寫Web應用、桌面應用、分布式系統、嵌入式系統應用等。Java語言有很多優點,它的跨平台能力贏得了很多工程師的喜愛。

2、Linux基礎操作命令

大數據開發一般在Linux環境下進行。大數據工程師使用的命令主要在三方面:查看進程,包括CPU、內存;排查故障,定位問題;排除系統慢的原因等。

3、Hadoop

Hadoop中使用最多的是HDFS集群和MapRece框架。HDFS存儲數據,並優化存取過程。

MapRece方便了工程師編寫應用程序。

4、HBase

HBase可以隨機、實時讀寫大數據,更適合於非結構化數據存儲,核心是分布式的、面向列的Apache HBase資料庫。HBase作為Hadoop的數據看,它的應用、架構和高級用法對大數據開發來說非常重要。

5、Hive

Hive作為Hadoop的一個數據倉庫工具,方便了數據匯總和統計分析。

6、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要組件,可以協調為分布式應用程序。ZooKeeper的功

㈧ 大數據架構師崗位的主要職責概述

大數據架構師崗位的主要職責概述 篇1

職責:

1、負責大數據平台及BI系統框架設計、規劃、技術選型,架構設計並完成系統基礎服務的開發;

2、負責海量埋點規則、SDK標准化、埋點數據採集、處理及存儲,業務數據分布存儲、流式/實時計算等應用層架構搭建及核心代碼實現;

3、開發大數據平台的核心代碼,項目敏捷開發流程管理,完成系統調試、集成與實施,對每個項目周期技術難題的解決,保證大數據產品的上線運行;

4、負責大數據平台的架構優化,代碼評審,並根據業務需求持續優化數據架構,保證產品的可靠性、穩定性;

5、指導開發人員完成數據模型規劃建設,分析模型構建及分析呈現,分享技術經驗;

6、有效制定各種突發性研發技術故障的應對預案,有清晰的隱患意識;

7、深入研究大數據相關技術和產品,跟進業界先進技術;

任職要求

1、統計學、應用數學或計算機相關專業大學本科以上學歷;

2、熟悉互聯網移動端埋點方法(點擊和瀏覽等行為埋點),無埋點方案等,有埋點SDK獨立開發經驗者優選;

3、熟悉Hadoop,MR/MapRece,Hdfs,Hbase,Redis,Storm,Python,zookeeper,kafka,flinkHadoop,hive,mahout,flume,ElasticSearch,KafkaPython等,具備實際項目設計及開發經驗;

4、熟悉數據採集、數據清洗、分析和建模工作相關技術細節及流程

5、熟悉Liunx/Unix操作系統,能熟練使用shell/perl等腳本語言,熟練掌握java/python/go/C++中一種或多種編程語言

6、具備一定的演算法能力,了解機器學習/深度學習演算法工具使用,有主流大數據計算組件開發和使用經驗者優先

7、熟悉大數據可視化工具Tableau/echarts

8、具有較強的執行力,高度的責任感、很強的學習、溝通能力,能夠在高壓下高效工作;

大數據架構師崗位的主要職責概述 篇2

職責:

根據大數據業務需求,設計大數據方案及架構,實現相關功能;

搭建和維護大數據集群,保證集群規模持續、穩定、高效平穩運行;

負責大數據業務的設計和指導具體開發工作;

負責公司產品研發過程中的數據及存儲設計;

針對數據分析工作,能夠完成和指導負責業務數據建模。

職位要求:

計算機、自動化或相關專業(如統計學、數學)本科以上學歷,3年以上大數據處理相關工作經驗;

精通大數據主流框架(如Hadoop、hive、Spark等);

熟悉MySQL、NoSQL(MongoDB、Redis)等主流資料庫,以及rabbit MQ等隊列技術;

熟悉hadoop/spark生態的原理、特性且有實戰開發經驗;

熟悉常用的數據挖掘演算法優先。

大數據架構師崗位的主要職責概述 篇3

職責:

1、大數據平台架構規劃與設計;

2、負責大數據平台技術框架的選型與技術難點攻關;

3、能夠獨立進行行業大數據應用的整體技術框架、業務框架和系統架構設計和調優等工作,根據系統的業務需求,能夠指導開發團隊完成實施工作;

4、負責數據基礎架構和數據處理體系的升級和優化,不斷提升系統的穩定性和效率,為相關的業務提供大數據底層平台的支持和保證;

5、培養和建立大數據團隊,對團隊進行技術指導。

任職要求:

1、計算機相關專業的背景專業一類院校畢業本科、碩士學位,8年(碩士5年)以上工作經驗(至少擁有3年以上大數據項目或產品架構經驗);

2、精通Java,J2EE相關技術,精通常見開源框架的架構,精通關系資料庫系統(Oracle MySQL等)和noSQL數據存儲系統的原理和架構;

3、精通SQL和Maprece、Spark處理方法;

4、精通大數據系統架構,熟悉業界數據倉庫建模方法及新的建模方法的發展,有DW,BI架構體系的專項建設經驗;

5、對大數據體系有深入認識,熟悉Kafka、Hadoop、Hive、HBase、Spark、Storm、greenplum、ES、Redis等大數據技術,並能設計相關數據模型;

6、很強的學習、分析和解決問題能力,可以迅速掌握業務邏輯並轉化為技術方案,能獨立撰寫項目解決方案、項目技術文檔;

7、具有較強的內外溝通能力,良好的團隊意識和協作精神;

8、機器學習技術、數據挖掘、人工智慧經驗豐富者優先考慮;

9、具有能源電力行業工作經驗者優先。

大數據架構師崗位的主要職責概述 篇4

職責:

1.參與公司數據平台系統規劃和架構工作,主導系統的架構設計和項目實施,確保項目質量和關鍵性能指標達成;

2.統籌和推進製造工廠內部數據系統的構建,搭建不同來源數據之間的邏輯關系,能夠為公司運營診斷、運營效率提升提供數據支持;

3.負責數據系統需求對接、各信息化系統數據對接、軟體供應商管理工作

5.根據現狀制定總體的數據治理方案及數據體系建立,包括數據採集、接入、分類、開發標准和規范,制定全鏈路數據治理方案;深入挖掘公司數據業務,超強的數據業務感知力,挖掘數據價值,推動數據變現場景的落地,為決策及業務賦能;

6.定義不同的數據應用場景,推動公司的數據可視化工作,提升公司數據分析效率和數據價值轉化。

任職要求:

1.本科以上學歷,8年以上軟體行業從業經驗,5年以上大數據架構設計經驗,熟悉BI平台、大數據系統相關技術架構及技術標准;

2.熟悉數據倉庫、熟悉數據集市,了解數據挖掘、數據抽取、數據清洗、數據建模相關技術;

3.熟悉大數據相關技術:Hadoop、Hive、Hbase、Storm、Flink、Spark、Kafka、RabbitMQ;

4.熟悉製造企業信息化系統及相關資料庫技術;

5.具備大數據平台、計算存儲平台、可視化開發平台經驗,具有製造企業大數據系統項目開發或實施經驗優先;

6.對數據敏感,具備優秀的業務需求分析和報告展示能力,具備製造企業數據分析和數據洞察、大數據系統的架構設計能力,了解主流的報表工具或新興的前端報表工具;

7.有較強的溝通和組織協調能力,具備結果導向思維,有相關項目管理經驗優先。

大數據架構師崗位的.主要職責概述 篇5

職責:

1.負責產品級業務系統架構(如業務數據對象識別,數據實體、數據屬性分析,數據標准、端到端數據流等)的設計與優化。協助推動跨領域重大數據問題的分析、定位、解決方案設計,從架構設計上保障系統高性能、高可用性、高安全性、高時效性、分布式擴展性,並對系統質量負責。

2.負責雲數據平台的架構設計和數據處理體系的優化,推動雲數據平台建設和持續升級,並制定雲數據平台調用約束和規范。

3.結合行業應用的需求負責數據流各環節上的方案選型,主導雲數據平台建設,參與核心代碼編寫、審查;數據的統計邏輯回歸演算法、實時交互分析;數據可視化方案等等的選型、部署、集成融合等等。

4.對雲數據平台的關注業內技術動態,持續推動平台技術架構升級,以滿足公司不同階段的數據需求。

任職要求:

1.熟悉雲計算基礎平台,包括Linux(Ubuntu/CentOS)和KVM、OpenStack/K8S等基礎環境,熟悉控制、計算、存儲和網路;

2.掌握大型分布式系統的技術棧,如:CDN、負載均衡、服務化/非同步化、分布式緩存、NoSQL、資料庫垂直及水平擴容;熟悉大數據應用端到端的相關高性能產品。

3.精通Java,Python,Shell編程語言,精通SQL、NoSQL等資料庫增刪改查的操作優化;

4.PB級別實戰數據平台和生產環境的實施、開發和管理經驗;

5.熟悉Docker等容器的編排封裝,熟悉微服務的開發和日常調度;

6.計算機、軟體、電子信息及通信等相關專業本科以上學歷,5年以上軟體工程開發經驗,2年以上大數據架構師工作經驗。

大數據架構師崗位的主要職責概述 篇6

職責描述:

1、負責集團大數據資產庫的技術架構、核心設計方案,並推動落地;

2、帶領大數據技術團隊實現各項數據接入、數據挖掘分析及數據可視化;

3、新技術預研,解決團隊技術難題。

任職要求:

1、在技術領域有5年以上相關經驗,3年以上的架構設計或產品經理經驗;

2、具有2年以上大數據產品和數據分析相關項目經驗;

3、精通大數據分布式系統(hadoop、spark、hive等)的架構原理、技術設計;精通linux系統;精通一門主流編程語言,java優先。

大數據架構師崗位的主要職責概述 篇7

崗位職責:

1、基於公司大數據基礎和數據資產積累,負責大數據應用整體技術架構的設計、優化,建設大數據能力開放平台;負責大數據應用產品的架構設計、技術把控工作。

2、負責制定大數據應用系統的數據安全管控體系和數據使用規范。

3、作為大數據技術方案到產品實現的技術負責人,負責關鍵技術點攻堅工作,負責內部技術推廣、培訓及知識轉移工作。

4、負責大數據系統研發項目任務規劃、整體進度、風險把控,有效協同團隊成員並組織跨團隊技術協作,保證項目質量與進度。

5、負責提升產品技術團隊的技術影響力,針對新人、普通開發人員進行有效輔導,幫助其快速成長。

任職資格:

1、計算機、數學或相關專業本科以上學歷,5—20xx年工作經驗,具有大型系統的技術架構應用架構數據架構相關的實踐工作經驗。

2、有分布式系統分析及架構設計經驗,熟悉基於計算集群的軟體系統架構和實施經驗。

3、掌握Hadoop/Spark/Storm生態圈的主流技術及產品,深入了解Hadoop/Spark/Storm生態圈產品的工作原理及應用場景。

4、掌握Mysql/Oracle等常用關系型資料庫,能夠對SQL進行優化。

5、熟悉分布式系統基礎設施中常用的技術,如緩存(Varnish、Memcache、Redis)、消息中間件(Rabbit MQ、Active MQ、Kafka、NSQ)等;有實踐經驗者優先。

6、熟悉Linux,Java基礎扎實,至少3—5年以上Java應用開發經驗,熟悉常用的設計模式和開源框架。

大數據架構師崗位的主要職責概述 篇8

崗位職責:

1、負責公司大數據平台架構的技術選型和技術難點攻關工作;

2、依據行業數據現狀和客戶需求,完成行業大數據的特定技術方案設計與撰寫;

3、負責研究跟進大數據架構領域新興技術並在公司內部進行分享;

4、參與公司大數據項目的技術交流、解決方案定製以及項目的招投標工作;

5、參與公司大數據項目前期的架構設計工作;

任職要求:

1、計算機及相關專業本科以上,5年以上數據類項目(數據倉庫、商務智能)實施經驗,至少2年以上大數據架構設計和開發經驗,至少主導過一個大數據平台項目架構設計;

2、精通大數據生態圈的技術,包括但不限於MapRece、Spark、Hadoop、Kafka、Mongodb、Redis、Flume、Storm、Hbase、Hive,具備數據統計查詢性能優化能力。熟悉星環大數據產品線及有過產品項目實施經驗者優先;

3、優秀的方案撰寫能力,思路清晰,邏輯思維強,能夠根據業務需求設計合理的解決方案;

4、精通ORACLE、DB2、mySql等主流關系型資料庫,熟悉數據倉庫建設思路和數據分層架構思想;

5。熟練掌握java、R、python等1—2門數據挖掘開發語言;

6。熟悉雲服務平台及微服務相關架構思想和技術路線,熟悉阿里雲或騰訊雲產品者優先;

7、有煙草或製造行業大數據解決方案售前經驗者優先;

8、能適應售前支持和項目實施需要的短期出差;

大數據架構師崗位的主要職責概述 篇9

崗位職責:

1、負責相關開源系統/組件的性能、穩定性、可靠性等方面的深度優化;

2、負責解決項目上線後生產環境的各種實際問題,保障大數據平台在生產上的安全、平穩運行;

3、推動優化跨部門的業務流程,參與業務部門的技術方案設計、評審、指導;

4、負責技術團隊人員培訓、人員成長指導。

5、應項目要求本月辦公地址在錦江區金石路316號新希望中鼎國際辦公,月底項目結束後在總部公司辦公

任職要求:

1、熟悉linux、JVM底層原理,能作為技術擔當,解決核心技術問題;

2、3年以上大數據平台項目架構或開發經驗,對大數據生態技術體系有全面了解,如Yarn、Spark、HBase、Hive、Elasticsearch、Kafka、PrestoDB、Phoenix等;

3、掌握git、maven、gradle、junit等工具和實踐,注重文檔管理、注重工程規范優先;

4、熟悉Java後台開發體系,具備微服務架構的項目實施經驗,有Dubbo/Spring cloud微服務架構設計經驗優先;

5、性格開朗、善於溝通,有極強的技術敏感性和自我驅動學習能力,注重團隊意識。

大數據架構師崗位的主要職責概述 篇10

職責描述:

1、負責大數據平台框架的規劃設計、搭建、優化和運維;

2、負責架構持續優化及系統關鍵模塊的設計開發,協助團隊解決開發過程中的技術難題;

3、負責大數據相關新技術的調研,關注大數據技術發展趨勢、研究開源技術、將新技術應用到大數據平台,推動數據平台發展;

4、負責數據平台開發規范制定,數據建模及核心框架開發。

任職要求:

1、計算機、數學等專業本科及以上學歷;

2、具有5年及以上大數據相關工作經驗;

3、具有扎實的大數據和數據倉庫的理論功底,負責過大數據平台或數據倉庫設計;

4、基於hadoop的大數據體系有深入認識,具備相關產品(hadoop、hive、hbase、spark、storm、 flume、kafka、es等)項目應用研發經驗,有hadoop集群搭建和管理經驗;

5、熟悉傳統數據倉庫數據建模,etl架構和開發流程,使用過kettle、talend、informatic等至少一種工具;

6、自驅力強、優秀的團隊意識和溝通能力,對新技術有好奇心,學習能力和主動性強,有鑽研精神,充滿激情,樂於接受挑戰;

㈨ 大數據開發是做什麼的

問題一:大數據能做什麼用? ke./...laddin
大數據的作用在於通過對數據的分析,達成兩種目的:
一了解事物的發展規律。
二預測事務的發展方向。

問題二:大數據開發人員到企業幹些什麼工作 大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
有人把數據比喻為蘊 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的價值體現在以下幾個方面:
1)對大量消費者提 *** 品或服務的企業可以利用大數據進行精準營銷;
2) 做小而美模式的中長尾企業可以利用大數據做服務轉型;
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

問題三:大數據開發要懂大數據的哪些東西 大講台大數據培訓為你解答:首先大數據開發以Java為基礎的,基礎階段:Linux、Docker、KVM、MySQL基礎、Oracle基礎、MongoDB、redis。hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、歷史,HDFS工作原理,YARN介紹及組件介紹。大數據存儲階段:hbase、hive、sqoop。大數據架構設計階段:Flume分布式、Zookeeper、Kafka。大數據實時計算階段:Mahout、Spark、storm。大數據數據採集階段:Python、Scala。大數據商業實戰階段:實操企業大數據處理業務場景,分析需求、解決方案實施,綜合技術實戰應用。

問題四:大數據可以做什麼 可以用幾個關鍵詞對大數據做一個界定。
首先,「規模大」,這種規模可以從兩個維度來衡量,一是從時間序列累積大量的數據,二是在深度上更加細化的數據。
其次,「多樣化」,可以是不同的數據格式,如文字、圖片、視頻等,可以是不同的數據類別,如人口數據,經濟數據等,還可以有不同的數據來源,如互聯網、感測器等。
第三,「動態化」。數據是不停地變化的,可以隨著時間快速增加大量數據,也可以是在空間上不斷移動變化的數據。
這三個關鍵詞對大數據從形象上做了界定。
但還需要一個關鍵能力,就是「處理速度快」。如果這么大規模、多樣化又動態變化的數據有了,但需要很長的時間去處理分析,那不叫大數據。從另一個角度,要實現這些數據快速處理,靠人工肯定是沒辦法實現的,因此,需要藉助於機器實現。
最終,我們藉助機器,通過對這些數據進行快速的處理分析,獲取想要的信息或者應用的整套體系,才能稱為大數據。

問題五:做大數據方向還是做互聯網方向的開發好 計算機網路技術分,開發,維護,運營,產品經理。
至於移動互聯網的方向好不好,我只能說,
未來的十年是移動互聯網的十年。

問題六:什麼是大數據,大數據可以做什麼 大數據,指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據可以對;數據進行收集和存儲,在這基礎上,再進行分析和應用,形成我們的產品和服務,而產品和服務也會產生新的數據,這些新數據會循環進入我們的流程中。
當這整個循環體系成為一個智能化的體系,通過機器可以實現自動化,那也許就會成為一種新的模式,不管是商業的,或者是其他。

問題七:什麼是大數據和大數據平台 大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據平台是為了計算,現今社會所產生的越來越大的數據量。以存儲、運算、展現作為目的的平台。

問題八:大數據是什麼意思,大數據概念怎麼理解? 大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托・邁爾-舍恩伯格及肯尼斯・庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。

大 數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、 GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到 其內在規律。

大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個獸雞的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
大數據的應用
大數據應用在生活中可以幫助我們獲取到有用的價值。
隨著大數據的應用越來越廣泛,應用的行業也越來越低,我們每日都可以看到大數據的一些新穎的應用,從而幫助人們從中獲取到真正有用的價值。許多組織或者個人都會受到大數據的剖析影響,但是大數據是怎樣幫助人們挖掘出有價值的信息呢?下面就讓我們一起來看看九個價值極度高的大數據的應用,這些都是大數據在剖析應用上的關鍵領域:

1.理解客戶、滿足客戶服務需求
大數據的應用現在在這領域是最廣為人知的。重點是怎......>>

問題九:大數據可以從事什麼崗位 和大數據相關的工作崗位越來越多了的。大數據研發,大數據運維,大數據工程師,大數據分析師等等等等。目前來看,整體的還不算是很多的,但是隨著以後行業的越來越成熟,大數據的崗位也是會越來越多的。慢慢的期待的吧,所以現在學習大數據的人越來越多了。

問題十:數據開發工程師(大數據開發工程師) 有什麼區別 相當於大數據是數據的哥哥,就是這個意思

閱讀全文

與大數據架構開發內容相關的資料

熱點內容
metro軟體在哪個文件夾 瀏覽:69
怎麼用手機登錄編程貓 瀏覽:400
文本md204顯示器如何編程 瀏覽:705
如何將表中重復數據標記 瀏覽:859
中級資料庫系統工程師應用技術考什麼 瀏覽:404
博途編程如何設置停止鍵 瀏覽:409
python3刪除文件內容 瀏覽:754
如何優化seo數據分析 瀏覽:132
64位win7下部分32位程序不能運行 瀏覽:206
dnf90版本劍魂鈍器流 瀏覽:649
陌秀直播蘋果怎麼下載ipad 瀏覽:732
簡述網路直接市場調查方式有哪些 瀏覽:683
怎麼連接移動網路設置 瀏覽:781
電腦網卡怎麼連接網路連接不上網嗎 瀏覽:838
刷子公司網站怎麼做 瀏覽:272
86版本艾爾文測試 瀏覽:714
深宮曲文件夾是哪個 瀏覽:618
蘋果u盤修復工具哪個好用 瀏覽:124
微信動態表情包搞笑 瀏覽:436
可以去哪裡找編程老師問問題 瀏覽:608

友情鏈接