① 大數據在智慧交通中起了哪些作用
大數據用於智能交通的積極意義
第一,大數據的虛擬性可以解決跨越行政區域的限制。交通大數據的虛擬性,有利於其信息跨越區域管理,只要多方共同遵照相關的信息共享原則,就能在已有的行政區域下解決跨域管理問題。
第二,大數據具有信息集成優勢和組合效率。大數據有助於建立綜合性立體的交通信息體系,通過將不同范圍、不同區域、不同領域的「數據倉庫」加以綜合,構建公共交通信息集成利用模式,發揮整體**通功能,這樣才能發現新價值,帶來新機會。例如氣象、交通、保險部門的數據結合起來,可高效率地研究交通領域防災減災;IC卡數據結合抽樣調查,能更快捷、更精確測得城市交通流分布狀況。
第三,大數據的智能性能較好的配置交通資源。通過對大數據的分析處理,可以輔助交通管理制定出較好的統籌與協調解決方案。一方面減少各個交通部門運營的人力和物力,另一方面可有些提升道理交通資源的合理利用。如根據大數據結果確定多模式地面公交網路高效配置和客流組織方案,多層次地面公交主幹網路綠波通行控制以及交通信號自適應控制。
第四,大數據的快速性和可預測性能提升交通預測的水平。在對各個部門的數據進行准確提煉和構建合適的交通預測模型後,可以有效模擬交通未來運行狀態,驗證技術方案的可行性。而在實時交通預測領域,大數據的快速信息處理能力,對於車輛碰撞、車輛換道、駕駛員行為狀態檢測等實時預測也有非常高的可靠性。
第五,提高交通運行效率。大數據技術能促進提高交通運營效率、道路網的通行能力、設施效率和調控交通需求分析。交通的改善所涉及工程量較大,而大數據的大體積特性有助於解決這種困境。
大數據的實時性,使處於靜態閑置的數據被處理和需要利用時,即可被智能化利用,使交通運行的更加合理。大數據技術具有較高預測能力,可降低誤報和漏報的概率,隨時針對交通的動態性給予實時監控。因此,在駕駛者無法預知交通的擁堵可能性時,大數據亦可幫助用戶預先了解。
第六,提高交通安全水平。主動安全和應急救援系統的廣泛應用有效改善了交通安全狀況,而大數據技術的實時性和可預測性則有助於提高交通安全系統的數據處理能力。在駕駛員自動檢測方面,駕駛員疲勞視頻檢測、酒精檢測器等車載裝置將實時檢測駕車者是否處於警覺狀態,行為、身體與精神狀態是否正常。同時,聯合路邊探測器檢查車輛運行軌跡,大數據技術快速整合各個感測器數據,構建安全模型後綜合分析車輛行駛安全性,從而可以有效降低交通事故的可能性。在應急救援方面,大數據以其快速的反應時間和綜合的決策模型,為應急決策指揮提供輔助,提高應急救援能力,減少人員傷亡和財產損失。
第七,提供環境監測方式。大數據技術在減輕道路交通堵塞、降低汽車運輸對環境的影響等方面有重要的作用。通過建立區域交通排放的監測及預測模型,共享交通運行與環境數據,建立交通運行與環境數據共享試驗系統,大數據技術可有效分析交通對環境的影響。同時,分析歷史數據,大數據技術能提供降低交通延誤和減少排放的交通信號智能化控制的決策依據,建立低排放交通信號控制原型系統與車輛排放環境影響模擬系統。
② 大數據室如何應用的有什麼大數據平台的推薦呢
一、醫療大數據 看病更高效
除了較早前就開始利用大數據的互聯網公司,醫療行業是讓大數據分析最先發揚光大的傳統行業之一。醫療行業擁有大量的病例,病理報告,治癒方案,葯物報告等等。如果這些數據可以被整理和應用將會極大地幫助醫生和病人。我們面對的數目及種類眾多的病菌、病毒,以及腫瘤細胞,其都處於不斷的進化的過程中。在發現診斷疾病時,疾病的確診和治療方案的確定是最困難的。
在未來,藉助於大數據平台我們可以收集不同病例和治療方案,以及病人的基本特徵,可以建立針對疾病特點的資料庫。如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診,明確定位疾病。在制定治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制定出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業開發出更加有效的葯物和醫療器械。
醫療行業的數據應用一直在進行,但是數據沒有打通,都是孤島數據,沒有辦法進行大規模應用。未來需要將這些數據統一收集起來,納入統一的大數據平台,為人類健康造福。政府和醫療行業是推動這一趨勢的重要動力。
二、生物大數據 改良基因
自人類基因組計劃完成以來,以美國為代表,世界主要發達國家紛紛啟動了生命科學基礎研究計劃,如國際千人基因組計劃、DNA網路全書計劃、英國十萬人基因組計劃等。這些計劃引領生物數據呈爆炸式增長,目前每年全球產生的生物數據總量已達EB級,生命科學領域正在爆發一次數據革命,生命科學某種程度上已經成為大數據科學。
我們來看看今天的准媽媽們,除了要准備尿布、奶瓶和嬰兒裝,她們還會把基因測試列入計劃單。基因測試能讓未來的父母對於他們未出生的baby的健康有更多的了解。對基因攜帶者篩查和胚胎植入前診斷,使一個家庭孕育小孩的過程產生了巨大改變。
當下,我們所說的生物大數據技術主要是指大數據技術在基因分析上的應用,通過大數據平台人類可以將自身和生物體基因分析的結果進行記錄和存儲,利用建立基於大數據技術的基因資料庫。大數據技術將會加速基因技術的研究,快速幫助科學家進行模型的建立和基因組合模擬計算。基因技術是人類未來戰勝疾病的重要武器,藉助於大數據技術的應用,人們將會加快自身基因和其它他生物的基因的研究進程。未來利用生物基因技術來改良農作物,利用基因技術來培養人類器官,利用基因技術來消滅害蟲都即將實現。
與全球蒸蒸日上的生物大數據創新發展熱潮相比,中國的研發及應用才拉開帷幕。我國有四大方面非常欠缺:其一,國內現有的生物大數據分析能力雖然與歐美相差不大,但是在數據分析構架、軟體系統與先進的IT技術接軌上有待提升。其二,國外在生物大數據領域的領先人才多,盡管我們也有國際頂級刊物上發表的論文和成果,總體而言,國內高水準團隊還是少。其三,歐美講求成果應用,層出不窮的分析軟體可被實驗室、臨床、產業多方應用。其四,在生物大數據理論研究、標准制定和廣泛應用上,中國都亟待全面跟進。
三、金融大數據 理財利器
金融行業的大數據面臨的往往是同樣的問題,但是情況可能要好點,類似企業和個人的一些信用記錄現在有全國性質的統一資料庫能夠拿到部分數據。但是對於單個銀行來說,同樣是無法拿到用戶在其他銀行的行為記錄數據的,其二銀行本身在做很多信貸風險分析的時候,確實需要大量數據做相關性分析,但是很多數據來源於政府各個職能部門,包括工商稅務,質量監督,檢察院法院等,這些數據短期仍然是無法拿到。還有就是企業或個人本事日常產生的各種行為數據更難拿到,那麼對客戶的風險性評估還是得借用原來的老方法而已。
大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品;美國銀行利用客戶點擊數據集為客戶提供特色服務,如有競爭的信用額度;招商銀行利用客戶刷卡、存取款、電子銀行轉帳、微信評論等行為數據進行分析,每周給客戶發送針對性廣告信息,裡面有顧客可能感興趣的產品和優惠信息。
可見,大數據在金融行業的應用可以總結為以下五個方面:
(1)精準營銷:依據客戶消費習慣、地理位置、消費時間進行推薦
(2)風險管控:依據客戶消費和現金流提供信用評級或融資支持,利用客戶社交行為記錄實施信用卡反欺詐
(3)決策支持:利用抉策樹技術進抵押貸款管理,利用數據分析報告實施產業信貸風險控制
(4)效率提升:利用金融行業全局數據了解業務運營薄弱點,利用大數據技術加快內部數據處理速度
(5)產品設計:利用大數據計算技術為財富客戶推薦產品,利用客戶行為數據設計滿足客戶需求的金融產品
四、零售大數據 最懂消費者
零售行業大數據應用有兩個層面,一個層面是零售行業可以了解客戶消費喜好和趨勢,進行商品的精準營銷,降低營銷成本。另一層面是依據客戶購買產品,為客戶提供可能購買的其它產品,擴大銷售額,也屬於精準營銷范疇。另外零售行業可以通過大數據掌握未來消費趨勢,有利於熱銷商品的進貨管理和過季商品的處理。零售行業的數據對於產品生產廠家是非常寶貴的,零售商的數據信息將會有助於資源的有效利用,降低產能過剩,廠商依據零售商的信息按實際需求進行生產,減少不必要的生產浪費。
未來考驗零售企業的不再只是零供關系的好壞,而是要看挖掘消費者需求,以及高效整合供應鏈滿足其需求的能力,因此信息科技技術水平的高低成為獲得競爭優勢的關鍵要素。不論是國際零售巨頭,還是本土零售品牌,要想頂住日漸微薄的利潤率帶來的壓力,在這片紅海中立於不敗之地,就必須思考如何擁抱新科技,並為顧客們帶來更好的消費體驗。
想像一下這樣的場景,當顧客在地鐵候車時,牆上有某一零售商的巨幅數字屏幕廣告,可以自由瀏覽產品信息,對感興趣的或需要購買的商品用手機掃描下單,約定在晚些時候送到家中。而在顧客瀏覽商品並最終選購商品後,商家已經了解顧客的喜好及個人詳細信息,按要求配貨並送達顧客家中。未來,甚至顧客都不需要有任何購買動作,利用之前購買行為產生的大數據,當你的沐浴露剩下最後一滴時,你中意的沐浴露就已送到你的手上,而雖然顧客和商家從未謀面,但已如朋友般熟識。
五、電商大數據 精準營銷法寶
電商是最早利用大數據進行精準營銷的行業,除了精準營銷,電商可以依據客戶消費習慣來提前為客戶備貨,並利用便利店作為貨物中轉點,在客戶下單15分鍾內將貨物送上門,提高客戶體驗。馬雲的菜鳥網路宣稱的24小時完成在中國境內的送貨,以及京的劉強東宣傳未來京東將在15分鍾完成送貨上門都是基於客戶消費習慣的大數據分析和預測。
電商可以利用其交易數據和現金流數據,為其生態圈內的商戶提供基於現金流的小額貸款,電商業也可以將此數據提供給銀行,同銀行合作為中小企業提供信貸支持。由於電商的數據較為集中,數據量足夠大,數據種類較多,因此未來電商數據應用將會有更多的想像空間,包括預測流行趨勢,消費趨勢、地域消費特點、客戶消費習慣、各種消費行為的相關度、消費熱點、影響消費的重要因素等。依託大數據分析,電商的消費報告將有利於品牌公司產品設計,生產企業的庫存管理和計劃生產,物流企業的資源配製,生產資料提供方產能安排等等,有利於精細化社會化大生產,有利於精細化社會的出現。
六、農牧大數據 量化生產
大數據在農業應用主要是指依據未來商業需求的預測來進行農牧產品生產,降低菜賤傷農的概率。同時大數據的分析將會更見精確預測未來的天氣氣候,幫助農牧民做好自然災害的預防工作。大數據同時也會幫助農民依據消費者消費習慣決定來增加哪些品種的種植,減少哪些品種農作物的生產,提高單位種植面積的產值,同時有助於快速銷售農產品,完成資金迴流。牧民可以通過大數據分析來安排放牧范圍,有效利用牧場。漁民可以利用大數據安排休漁期、定位捕魚范圍等。
由於農產品不容易保存,因此合理種植和養殖農產品對十分重要。如果沒有規劃好,容易產生菜賤傷農的悲劇。過去出現的豬肉過剩、捲心菜過剩、香蕉過剩的原因就是農牧業沒有規劃好。藉助於大數據提供的消費趨勢報告和消費習慣報告,政府將為農牧業生產提供合理引導,建議依據需求進行生產,避免產能過剩,造成不必要的資源和社會財富浪費。農業關乎到國計民生,科學的規劃將有助於社會整體效率提升。大數據技術可以幫助政府實現農業的精細化管理,實現科學決策。在數據驅動下,結合無人機技術,農民可以採集農產品生長信息,病蟲害信息。相對於過去僱傭飛機成本將大大降低,同時精度也將大大提高。
七、交通大數據 暢通出行
交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。近年來,我國的智能交通已實現了快速發展,許多技術手段都達到了國際領先水平。但是,問題和困境也非常突出,從各個城市的發展狀況來看,智能交通的潛在價值還沒有得到有效挖掘:對交通信息的感知和收集有限,對存在於各個管理系統中的海量的數據無法共享運用、有效分析,對交通態勢的研判預測乏力,對公眾的交通信息服務很難滿足需求。這雖然有各地在建設理念、投入上的差異,但是整體上智能交通的現狀是效率不高,智能化程度不夠,使得很多先進技術設備發揮不了應有的作用,也造成了大量投入上的資金浪費。這其中很重要的問題是小數據時代帶來的硬傷:從模擬時代帶來的管理思想和技術設備只能進行一定范圍的分析,而管理系統的那些關系型資料庫只能刻板的分析特定的關系,對於海量數據尤其是半結構、非結構數據無能為力。
盡管現在已經基本實現了數字化,但是數字化和數據化還根本不是一回事,只是局部的提高了採集、存儲和應用的效率,本質上並沒有太大的改變。而大數據時代的到來必然帶來破解難題的重大機遇。大數據必然要求我們改變小數據條件下一味的精確計算,而是更好的面對混雜,把握宏觀態勢;大數據必然要求我們不再熱衷因果關系而是相關關系,使得處理海量非結構化數據成為可能,也必然促使我們努力把一切事物數據化,最終實現管理的便捷高效。
目前,交通的大數據應用主要在兩個方面,一方面可以利用大數據感測器數據來了解車輛通行密度,合理進行道路規劃包括單行線路規劃。另一方面可以利用大活數據來實現即時信號燈調度,提高已有線路運行能力。科學的安排信號燈是一個復雜的系統工程,必須利用大數據計算平台才能計算出一個較為合理的方案。科學的信號燈安排將會提高30%左右已有道路的通行能力。在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。機場的航班起降依靠大數據將會提高航班管理的效率,航空公司利用大數據可以提高上座率,降低運行成本。鐵路利用大數據可以有效安排客運和貨運列車,提高效率、降低成本。
八、教育大數據 因材施教
隨著技術的發展,信息技術已在教育領域有了越來越廣泛的應用。考試、課堂、師生互動、校園設備使用、家校關系……只要技術達到的地方,各個環節都被數據包裹。
在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。美國利用數據來診斷處在輟學危險期的學生、探索教育開支與學生學習成績提升的關系、探索學生缺課與成績的關系。舉一個比較有趣的例子,教師的高考成績和所教學生的成績有關嗎?究竟如何,不妨藉助數據來看。比如美國某州公立中小學的數據分析顯示,在語文成績上,教師高考分數和學生成績呈現顯著的正相關。也就是說,教師的高考成績與他們現在所教語文課上的學生學習成績有很明顯的關系,教師的高考成績越好,學生的語文成績也越好。這個關系讓我們進一步探討其背後真正的原因。其實,教師高考成績高低某種程度上是教師的某個特點在起作用,而正是這個特點對教好學生起著至關重要的作用,教師的高考分數可以作為挑選教師的一個指標。如果有了充分的數據,便可以發掘更多的教師特徵和學生成績之間的關系,從而為挑選教師提供更好的參考。
大數據還可以幫助家長和教師甄別出孩子的學習差距和有效的學習方法。比如,美國的麥格勞-希爾教育出版集團就開發出了一種預測評估工具,幫助學生評估他們已有的知識和達標測驗所需程度的差距,進而指出學生有待提高的地方。評估工具可以讓教師跟蹤學生學習情況,從而找到學生的學習特點和方法。有些學生適合按部就班,有些則更適合圖式信息和整合信息的非線性學習。這些都可以通過大數據搜集和分析很快識別出來,從而為教育教學提供堅實的依據。
在國內尤其是北京、上海、廣東等城市,大數據在教育領域就已有了非常多的應用,譬如像慕課、在線課程、翻轉課堂等,其中就應用了大量的大數據工具。
毫無疑問,在不遠的將來,無論是針對教育管理部門,還是校長、教師,以及學生和家長,都可以得到針對不同應用的個性化分析報告。通過大數據的分析來優化教育機制,也可以做出更科學的決策,這將帶來潛在的教育革命。不久的將來個性化學習終端,將會更多的融入學習資源雲平台,根據每個學生的不同興趣愛好和特長,推送相關領域的前沿技術、資訊、資源乃至未來職業發展方向,等等,並貫穿每個人終身學習的全過程。
九、體育大數據 奪冠精靈
從《點球成金》這部電影開始,體育界的有識之士們終於找到了嚮往已久的道路,那就是如何利用大數據來讓團隊發揮最佳水平。從足球到籃球,數據似乎成為贏得比賽甚至是獎杯的金鑰匙。
大數據對於體育的改變可以說是方方面面,從運動員本身來講,可穿戴設備收集的數據可以讓自己更了解身體狀況。媒體評論員,通過大數據提供的數據更好的解說比賽,分析比賽。數據已經通過大數據分析轉化成了洞察力,為體育競技中的勝利增加籌碼,也為身處世界各地的體育愛好者隨時隨地觀賞比賽提供了個性化的體驗。
盡管鮮有職業網球選手願意公開承認自己利用大數據來制定比賽策劃和戰術,但幾乎每一個球員都會在比賽前後使用大數據服務。有教練表示:「在球場上,比賽的輸贏取決於比賽策略和戰術,以及賽場上連續對打期間的快速反應和決策,但這些細節轉瞬即逝,所以數據分析成為一場比賽最關鍵的部分。對於那些擁護並利用大數據進行決策的選手而言,他們毋庸置疑地將贏得足夠競爭優勢。」
十、環保大數據 對抗PM2.5
前年7月21日北京遭遇特大暴雨,在一天之內,平均降雨量達164毫米,也是北京市61年以來最大規模暴雨。此次暴雨因來勢兇猛而給廣大市民生活帶來巨大影響。其實,攤上這種事兒,最主要的還是需要氣象部門及時、准確地做出預警,並協同其他運營商部門,將這種預警信息第一時間下發到北京市民(包括在京旅行的人士)。也正是如此,前年的那場暴雨不僅暴露出了管理工作上的漏洞,也引起了業內人士關於一場「大數據」的探討。
氣象對社會的影響涉及到方方面面。傳統上依賴氣象的主要是農業、林業和水運等行業部門,而如今,氣象儼然成為了二十一世紀社會發展的資源,並支持定製化服務滿足各行各業用戶需要。藉助於大數據技術,天氣預報的准確性和實效性將會大大提高,預報的及時性將會大大提升,同時對於重大自然災害,例如龍卷風,通過大數據計算平台,人們將會更加精確地了解其運動軌跡和危害的等級,有利於幫助人們提高應對自然災害的能力。天氣預報的准確度的提升和預測周期的延長將會有利於農業生產的安排。
尤其是進入秋冬季以來,我國多個城市爆發霧霾天氣,空氣污染嚴重。隨著PM2.5對於人體健康的危害日益被公眾熟知,人們對於「霧霾假」的呼聲也越來越高。有人調侃,重度污染天走在上班路上就是一台「人肉吸塵器」。
由此看來,依靠大數據分析北京或其他城市空氣污染的形成及對策,任重道遠。一是數據的來源。高耗能企業的生產規模、排放量這些數據是否層層上報,准確統計?掌握此數據的部門是否能向社會公開?北京500萬輛汽車所加汽油到底有哪些成分,產生的尾氣對空氣污染指數的「貢獻」率到底多大?二是要沖破數據挖掘分析應用的技術壁壘,當然前提就是數據公開。
在美國NOAA(國家海洋暨大氣總署)其實早就在使用大數據業務。每天通過衛星、船隻、飛機、浮標、感測器等收集超過35億份觀察數據。收集完畢後,NOAA會匯總大氣數據,海洋數據,以及地質數據,進行直接測定,繪制出復雜的高保真預測模型,將其提供給NWS(國家氣象局)做出氣象預報的參考數據。目前,NOAA每年新增管理的數據量就高達30PB。由NWS生成的最終分析結果,就呈現在日常的天氣預報和預警報道上。
十一、食品大數據 舌尖上的安全
民以食為天,食品安全問題直是國家的重點關注問題,關系著人們的身體健康和國家安全。近幾年,毒膠囊、鎘大米、瘦肉精、洋奶粉等食品安全事件不斷考驗著消費者的承受力,讓消費者對食品安全產生了擔憂。
近幾年外國旅遊者減少了到中國旅遊,進口食品大幅度增加,這其中一個主要原因就是食品安全問題。隨著科學技術和生活水平的不斷提高,食品添加劑及食品品種越來越多,傳統手段難以滿足當前復雜的食品監管需求,從不斷出現的食品安全問題來看,食品監管成了食品安全的棘手問題。此刻,通過大數據管理將海量數據聚合在一起,將離散的數據需求聚合能形成數據長尾,從而滿足傳統中難以實現的需求。在數據驅動下,採集人們在互聯網上提供的舉報信息,國家可以掌握部分鄉村和城市的死角信息,挖出不法加工點,提高執法透明度,降低執法成本。國家可以參考醫院提供的就診信息,分析出涉及食品安全的信息,及時進行監督檢查,第一時間進行處理,降低已有不安全食品的危害。參考個體在互聯網的搜索信息,掌握流行疾病在某些區域和季節的爆發趨勢,及時進行干預,降低其流行危害。政府可以提供不安全食品廠商信息,不安全食品信息,幫助人們提高食品安全意識。
當然,有專業人士認為食品安全涉及到從田頭到餐桌的每一個環節,需要覆蓋全過程的動態監測才能保障食品安全,以稻米生產為例,產地、品種、土壤、水質、病蟲害發生、農葯種類與數量、化肥、收獲、儲藏、加工、運輸、銷售等環節,無一不影響稻米安全狀況,通過收集、分析各環節的數據,可以預測某產地將收獲的稻穀或生產的稻米是否存在安全隱患。
大數據不僅能帶來商業價值,亦能產生社會價值。隨著信息技術的發展,食品監管也面臨著眾多的各種類型的海量數據,如何從中提取有效數據成為關鍵所在。可見,大數據管理是一項巨大挑戰,一方面要及時提取數據以滿足食品安全監管需求;另一方面需在數據的潛在價值與個人隱私之間進行平衡。相信大數據管理在食品監管方面的應用,可以為食品安全撐起一把有力的保護傘。
十二、政府調控和財政支出 大數據令其有條不紊
政府利用大數據技術可以了解各地區的經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據數據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。大數據還還可以幫助政府進行監控自然資源的管理,無論是國土資源、水資源、礦產資源、能源等,大數據通過各種感測器來提高其管理的精準度。同時大數據技術也能幫助政府進行支出管理,透明合理的財政支出將有利於提高公信力和監督財政支出。
大數據及大數據技術帶給政府的不僅僅是效率提升、科學決策、精細管理,更重要的是數據治國、科學管理的意識改變,未來大數據將會從各個方面來幫助政府實施高效和精細化管理。政府運作效率的提升,決策的科學客觀,財政支出合理透明都將大大提升國家整體實力,成為國家競爭優勢。大數據帶個國家和社會的益處將會具有極大的想像空間。
十三、輿情監控大數據 名探柯南
《黑貓警長》大家都很熟悉,它講述的是「黑貓警長」如何精明能幹、對壞人窮追不舍、跌宕起伏的故事情節。拿到大數據時代背景下的話,雖然它也能體現「黑貓警長」的盡職盡責、聰明能幹,但更多的會歸結到一個問題:為何還是如此的被動、低效?疾病可以預防,難道犯罪不能預防么?
答案是肯定的。美國密歇根大學研究人員就設計出一種利用「超級計算機以及大量數據」來幫助警方定位那些最易受到不法份子侵擾片區的方法。具體做法是,研究人員通過大量的多類型數據(從人口統計數據到毒品犯罪數據到各區域所出售酒的種類、治安狀況、流動人口數據等等),創建一張波士頓犯罪高發地區熱點圖。同時,還將相鄰片區等各種因素加入到數據模型中,並根據歷史犯罪記錄和地點統計並不斷修正所得出的預測數據。
國家正在將大數據技術用於輿情監控,其收集到的數據除了解民眾訴求,降低群體事件之外,還可以用於犯罪管理。大量的社會行為正逐步走向互聯網,人們更願意藉助於互聯網平台來表述自己的想法和宣洩情緒。社交媒體和朋友圈正成為追蹤人們社會行為的平台,正能量的東西有,負能量的東西也不少。一些好心人通過微博來幫助別人尋找走失的親人或提供可能被拐賣人口的信息,這些都是社會群體互助的例子。國家可以利用社交媒體分享的圖片和交流信息,來收集個體情緒信息,預防個體犯罪行為和反社會行為。最近警方通過微搏信息抓獲了聚眾吸毒的人,處罰了虐待小孩的家長。
大數據技術的發展帶來企業經營決策模式的轉變,驅動著行業變革,衍生出新的商機和發展契機。駕馭大數據的能力已被證實為領軍企業的核心競爭力,這種能力能夠幫助企業打破數據邊界,繪制企業運營全景視圖,做出最優的商業決策和發展戰略。其實,不論是哪個行業的大數據分析和應用場景,可以看到一個典型的特點還是無法離開以人為中心所產生的各種用戶行為數據,用戶業務活動和交易記錄,用戶社交數據,這些核心數據的相關性再加上可感知設備的智能數據採集就構成一個完整的大數據生態環境。
③ 大數據應用案例有哪些
案例如下:
1、交通大數據暢通出行
交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。近年來,我國的智能交通已實現了快速發展,許多技術手段都達到了國際領先水平。交通的大數據應用主要在兩個方面,一方面可以利用大數據感測器數據來了解車輛通行密度,合理進行道路規劃包括單行線路規劃。另一方面可以利用大活數據來實現即時信號燈調度,提高已有線路運行能力。
2、教育大數據因材施教
在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。利用數據來診斷處在輟學危險期的學生、探索教育開支與學生學習成績提升的關系、探索學生缺課與成績的關系。
3、環保大數據對抗PM2.5
在美國NOAA(國家海洋暨大氣總署)其實早就在使用大數據業務。每天通過衛星、船隻、飛機、浮標、感測器等收集超過35億份觀察數據。收集完畢後,NOAA會匯總大氣數據,海洋數據,以及地質數據,進行直接測定,繪制出復雜的高保真預測模型,將其提供給NWS(國家氣象局)做出氣象預報的參考數據。
大數據特點
1、大容量
例如,IDC最近的報告預測到2020年,世界數據量將擴大50倍.目前,大數據的規模仍然是不斷變化的指標,單一數據集的規模範圍從數十TB到數PB不同.簡單來說,存儲1PB數據需要2萬台配備50GB硬碟的PC.此外,各種意想不到的來源可以產生數據。
2、多樣性
數據多樣性的增加主要是由於網路日誌、社交媒體、網路檢索、手機通話記錄、感測器網路等數據類型。
3、高速
高速描述的是數據創建和移動的速度.在高速網路時代,通過實現軟體性能優化的高速計算機處理器和伺服器,創建實時數據流已成為流行趨勢.企業不僅要知道如何快速創建數據,還要知道如何快速處理、分析和返回用戶,以滿足他們的實時需求。
④ 互聯網 大數據在智能交通上有哪些應用
之前有看過一篇有關商業智能在公交領域的文章,主要體現在公交的智能化信息管內理方面
具體的應用容如下:
(1)應用功能不能實現完全自動化。
(2)網路負載大,應用開發和維護繁瑣。
(3)由於系統存在功能不足,需要大量人手進行分析報表工作。
(4)系統本身的技術架構己經落後,不能滿足用戶不斷提出的對數據應用的要求。
(5)近十年累積的改動和擴展,使到系統過於龐大,介面很多,多種技術和平台混合使用,應用和維護成本高。
(6)信息系統間共享數據的需求客觀存在,但由於各系統的開發時間、開發工具、部門要求以及在資料庫的選擇等不同原因,分布在網路中的不同系統中的數據相互獨立,無法實現真正的信息資源共享。
(7)每個信息系統都有私有的資料庫,對於同一事物,可能在不同的系統中被賦予不同的意義,帶來語義混亂。不同系統中存儲格式存在差異,這些在綜合處理時都會帶來很大的麻煩同時,跨系統調用數據也會嚴重影響性能。
這是有關FineBI的應用,具體的你可以查一下
⑤ 大數據和智慧交通有哪些應用的案例
智能交通成為改善城市交通的關鍵所在。為此,及時、准確獲取交通數據並構建交通數據處理模型是建設智能交通的前提,而這一難題可以通過大數據技術得到解決。
智能交通整體框架主要包括物理感知層、軟體應用平台及分析預測及優化管理的應用。其中物理感知層主要是對交通狀況和交通數據的感知採集;軟體應用平台是將各感知終端的信息進行整合、轉換處理,以支撐分析預警與優化管理的應用系統建設;分析預測及優化管理應用主要包括交通規劃、交通監控、智能誘導、智能停車等應用系統。
系統利用先進的視頻監控、智能識別和信息技術手段,增加可管理空間、時間和范圍,不斷提升管理廣度、深度和精細度。整個系統由信息綜合應用平台、信號控制系統、視頻監控系統、智能卡口系統、電子警察系統、信息採集系統、信息發布系統等組成。以達到四方面的目標:提高通行能力、減少交通事故、打擊違章事件、出行信息服務。
在各城市建設智慧交通的過程中,將產生越來越多的視頻監控、卡口電警、路況信息、管控信息、營運信息、GPS定位信息、RFID識別信息等數據,每天產生的數據量可以達到PB級別,並且呈現指數級增長。
⑥ 大數據和智慧交通有哪些應用的案例
大數據方面的應用案例
在醫療方面,紐約的mountsinai醫院利用數千名患者的數據、歷年匯報的流感爆發數據等數據與病毒的變異過程做交叉比對。通過這種工作,科學家和醫生可以預測病毒如何傳播,以及對抗這些病毒的最佳途徑;甚至有可能使用預測分析來判斷病毒的傳播方式,然後採取行動來限制這一傳播。據說這家醫院有望在未來阻止流感的發生。
在交通方面,浙江某城市與英特爾合作,安裝了1000個數字監控設備,100個智能監測點系統,超過300個檢查點的電子警察,和500多個視頻監控系統。通過更有效地監測交通和擁堵數據,改善交通流量,減少道路交通事故。
在廢物處理方面, 英國曼徹斯特垃圾處理局有一套系統,能夠利用數據使得產生的垃圾被盡可能多的再次利用。通過對來自不同地區的卡車進出加工廠時進行稱重,能夠了解每個地區所產生的垃圾數量。這些數據幫助當局出台了相應的政策,鼓勵那些特定的社區更好的垃圾回收和垃圾減量。
在建築方面, 住房慈善機構hact從400,000座住房中持續不斷地收集數據,並進行了各種數據分析。通過數據來發現設計、建造、布局中存在的潛在問題,進而在建造新的樓宇時優化相關的參數,避免這些問題,改進政府保障房的的維修,規劃空間合理使用。
智能應用服務,Google提供的大數據分析智能應用包括客戶情緒分析、交易風險(欺詐分析)、產品推薦、消息路由、診斷、客戶流失預測、法律文案分類、電子郵件內容過濾、政治傾向預測、物種鑒定等多個方面。據稱,大數據已經給Google每天帶來2300萬美元的收入。例如,一些典型應用如下:
(1)基於Map Rece,Google的傳統應用包括數據存儲、數據分析、日誌分析、搜索質量以及其他數據分析應用。
(2)基於Dremel系統, Google推出其強大的數據分析軟體和服務 — BigQuery,它也是Google自己使用的互聯網檢索服務的一部分。Google已經開始銷售在線數據分析服務,試圖與市場上類似亞馬遜網路服務(Amazon Web Services)這樣的企業雲計算服務競爭。這個服務,能幫助企業用戶在數秒內完成萬億位元組的掃描。
(3)基於搜索統計演算法,Google推出搜索引擎的輸寫糾錯、統計型機器翻譯等服務。
(4)Google的趨勢圖應用。通過用戶對於搜索詞的關注度,很快的理解社會上的熱點是什麼。對廣告主來說,它的商業價值就是很快的知道現在用戶在關心什麼,他們應該在什麼地方投入一個廣告。據此,Google公司也開發了一些大數據產品,如「Brand Lift in Adwords」、「Active GRP」等,以幫助廣告客戶分析和評估其廣告活動的效率。
(5)Google Instant。輸入關鍵詞的過程,Google
Instant 會邊打邊預測可能的搜索結果。
谷歌的大數據平台架構仍在演進中,追去的目標是更大數據集、更快、更准確的分析和計算。這將進一步引領大數據技術發展的方向。
在競選方面,直到2012年,奧巴馬的數據團隊對數以千萬計的選民郵件進行了大數據挖掘,精確預測出了更可能擁護奧巴馬的選民類型,並進行了有針對性的宣傳,從而幫助奧巴馬成為了美國歷史上唯一一位在競選經費處於劣勢下實現連任的總統。只要數據量夠大,夠及時,挖掘夠深刻,就可以洞悉每個選民的投票幾率。
在教育方面,"以物聯網、雲計算等綜合技術的成熟為基礎,在學生管理資料庫中挖掘出有價值的數據,經過過程性和綜合性的考慮,找到學生各種行為之間的內在聯系,考量背後的邏輯關系,並作出恰當的教學決策。以某集團最新出版的全球少兒美語旗艦課程為例,引入了首款應用於少兒英語學習領域的MyEnglishLab在線學習輔導系統(以下簡稱MEL),應用大數據技術全程實時分析學生個體和班級整體的學習進度、學情反饋和階段性成果,從而及時找到問題所在對症下葯,實現對學習過程和結果的動態管理。
智慧交通的應用案例
根據ITS114的不完全統計,截至2015年12月31日,包括城市智慧交通和高速公路機電市場的全年千萬項目統計規模為182.5億,其中主要分為四大市場1.交通管控市場千萬項目規模為84.24億。2.智慧交通/智能運輸市場千萬項目規模為20.33億。3.高速公路機電市場千萬項目規模為75.8億。4.平安城市千萬項目規模為56.6億。以上四個市場都有著很多的智慧交通方面的應用案例。
具體的在交通管控市場方面, 當前各個省積極構建的交通運行監測與應急指揮系統,還有圍繞著視頻、圖像分析,從而實現在治安、交通、工業製造、汽車、人工智慧等等諸多領域的應用亦是智慧交通的典型案例。如深圳榕享的"交通模擬與智能管控機器人"可實時採集視頻檢測數據與線圈檢測數據,將採集的交通流數據、信號配時等數據輸入到建立的模擬路網模型中,進行實時的交通系統模擬。通過一體化交通模擬模型,機器人能快速找出路網擁堵點以及分析路網的常發性擁堵點,並對交通流運營狀況的演變進行預測和分析。在交通模擬與智能管控機器人平台上,還可對城市的任意交叉口的交通環境進行設置,周邊居民可將相關建議"告知"機器人,實時模擬交叉口改良效果,實現全民參與、全民實踐、全民創新的交通管理新模式。
智慧交通/運輸方面各種「專車」「快車」「拼車」「代駕」平台類和軟體數據類的實例比比皆是,如我們都熟知的「滴滴快遞」「uber"「e代駕」等app應用。
交通工具新型技術案例方面:如無人駕駛、自動駕駛、智能車等等;在2015年12月互聯網大會上李彥宏展示的無人車,李書福展現的自動駕駛技術都體現了當前智能交通工具的發展。 更近一點的是,汽車電子標識、ETC、車路協同。2015年的新能源客車市場呈爆發性增長,新能源客車銷量達到37363輛,同比增長213.19%,同時2015年國務院印發《新能源公交車推廣應用考核辦法(試行)》、《電動汽車充電基礎設施發展指南》等等政策文件,可預見的是新能源汽車將會造就一個巨大的市場,建立在新能源汽車之上的車聯網也將搭上順風車。
平安城市也有很多已經成型的智慧交通案例。平安城市是基於GIS數字地圖技術,高度整合治安監控、智能交通、數字城管、應急指揮等子系統,改變傳統的靜態管理和單點管理,實現實時、動態的聯動管理新模式,實現了整個城市的治安、交通、城管、應急聯動等各個職能部門的聯動,建立了高效的城市部門聯動機制,提高了城市的集成化、智慧化管理水平。根據高清視頻監控系統的特點和應用需求,結合當前與今後一定時期內圖像監控系統與圖像應用系統的發展需要,建設一套先進的平安城市綜合應用平台,為指揮調度、調查取證、應急處置、交通管理等多種後台應用提供及時、可靠的視頻圖像信息,服務於實戰。市面上常見的平安城市系統具備的主要功能大部分都有:人臉卡口功能;交通事件檢測功能;智能檢索功能;道路違法抓拍功能;車輛稽查布控功能;非現場執法;分析研判功能;交通事態監控功能;視頻質量檢測功能;智能應用管理功能;數據格式及通信功能;遠程式控制制功能;指揮調度功能;勤務管理功能; 設備運行狀態監測功能。
⑦ 交通大數據行業的現狀是什麼
交通大數據行業的現狀是什麼?作為人類行為的重要組成部分和重要條件之一,對大數據的感知是最為迫切的。近年來,我國的智能交通發展迅速,許多技術手段已達到國際領先水平。問題和困難,但是,非常突出,也從城市發展的角度,智能交通的潛在價值並沒有被有效的挖掘:知覺和交通信息的集合是有限的,大量的數據管理系統中存在的不能共享使用,有效的交通情況分析預測疲勞,公共交通信息服務難以滿足需求。雖然有不同的建築概念和投資在不同地區,整個智能交通的現狀特點是低效率和智能不足,這使得許多先進的技術和設備未能發揮應有的作用,還會導致大量的投資浪費。最重要的是在困難時期的損害較小的數據:管理理念和技術設備模擬時間只有在某種程度上,和關系資料庫管理系統的分析只能嚴格的特定關系,對於大規模數據,尤其是半結構化和非結構化數據。
雖然數字化已經基本實現,但是數字化和數字化並不是一回事。它只是提高了本地收集、存儲和應用的效率,但本質上沒有太大的改變。大數據時代的到來,必將為解決難題帶來巨大機遇。大數據必然要求我們改變小數據條件下的盲目和精確計算,但更好地面對困惑,把握宏觀形勢;大數據不可避免地要求我們關注的不是因果關系而是相關性,這使得處理大量的非結構化數據成為可能,促使我們將一切都數字化,最終實現方便高效的管理。
交通大數據行業的現狀是什麼?目前,大數據在交通中的應用主要有兩個方面。一方面,大數據感測器數據可以用來了解車輛的交通密度,合理的道路規劃可以包括單車道的路線規劃。另一方面,可以利用大量的實時數據實現信號量的實時調度,提高現有線路的運行能力。信號燈的科學布置是一項復雜的系統工程,需要利用大數據計算平台制定出更加合理的方案。科學信號系統將使現有道路的通行能力提高約30%。在美國,政府基於特定路段的交通事故信息增加了更多的交通信號燈,從而將事故發生率降低了50%以上。依託大數據實現機場航班起降,提高航班管理效率。航空公司可以利用大數據來增加乘客容量和降低運營成本。鐵路利用大數據有效安排客運和貨運列車,提高效率和降低成本。
交通大數據行業的現狀如何?這個領域的大數據工程師是這樣的,作為人類行為的重要組成部分和重要條件之一,對大數據的感知也是最為迫切的。近年來,我國的智能交通得到了快速發展,你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本站的其他文章進行學習。
⑧ 大數據,數據挖掘在交通領域有哪些應用
交通領域大數據分析和應用的場景會相當多,這裡面要注意兩點,一個是大數據本身的技術處理平台,一個是數據分析和挖掘演算法。具體場景當時寫過點內容,如下:
對於公交線路規劃和設計是一個大數據潛在的應用場景,傳統的公交線路規劃往往需要在前期投入大量的人力進行OD調查和數據收集。特別是在公交卡普及後可以看到,對於OD流量數據完全可以從公交一卡通中採集到相關的交通流量和流向數據,包括同一張卡每天的行走路線和換乘次數等詳細信息。對於一個上千萬人口的大城市而言,每天的流量數據都會相當大,單一分析一天的數據可能沒有相關的價值,而分析一個周期的數據趨勢變化則會相當有價值。結合交通流量流向數據趨勢變化,可以很好的幫助公交部門進行公交運營線路的調整,換乘站的設計等很多內容。這個方法可能很早就有人想到,但是在公交卡沒有普及或海量數據處理和計算能力沒有跟上的時候確實很難實際落地操作,而現在則是完全可以落地操作的時候了。
從單一的公交流量流向數據動態分析僅僅是一個方面,大數據往往更加強調相關性分析。比如對於在某一個時間段內公交流量和流向數據發生明細的趨勢變化的時候,這個趨勢變化的究竟和哪些潛在的大事件或其它影響因素的變化存在相關性,如何去分析這些相關性並做出正確的應對。舉個簡單的例子來說,當市中心區內的房屋租金持續增長的時候一定會影響到交通流的變化,很多人可能會搬離到更遠的地方去居住,自然會形成更多的新增公交流量和流向信息。在《大數據時代》裡面談到更多的會關心相關性而不是因果只是一個方面的內容,實際上往往探索因果仍然很重要,就拿尿片和啤酒的例子來說看起來很簡單,但是究竟是誰發現了這種相關性才更加重要,發現相關性的過程往往是從果尋因的過程,否則你也很難真正就確定是具備相關性。
其次就智能交通來說,現在的智慧交通應用往往已經能夠很方面的進行整個大城市環境下的交通狀況監控並發布相應的道路狀況信息。在GPS導航中往往也可以實時的看到相應的擁堵路況等信息,而方便駕駛者選擇新的路線。但是這仍然是一種事後分析和處理的機制,一個好的智能導航和交通流誘導系統一定是基於大量的實時數據分析為每個車輛給出最好的導航路線,而不是在事後進行處理。對於智能交通中的交通流分配和誘導等模型很復雜,而且面對大量的實時數據採集,根據模型進行實時分分析和計算,給出有價值的結果,這個在原有的信息技術下確實很難解決。隨著物聯網和車聯網,分布式計算,基於大數據的實時流處理等各種技術的不斷城市,智能的交通導航和趨勢分析預測將逐步成為可能。
還有一個在國外大片中經常能夠看到的就是實時的車輛追蹤,隨著智慧城市的建設,城市裡面到處都是攝像頭採集數據,當鎖定一個車輛後如何根據車輛的特徵或車牌號等信息,實時的追蹤到車輛的行走路線和位置。這裡面往往需要實時的視頻數據採集,採集數據的實時分析和比對,給出相應的參考信息和數據。這個個人認為是具有相當大的難度,要知道對於視頻流和圖像信息的比對和分析往往更加耗費計算資源,需要更長的計算周期,要從城市成千上萬個攝像頭裡面採集數據並進行實時分析完全滿足大數據常說的海量數據,異構數據,速度和價值等四個維度的特徵。基於車輛能夠做到,基於人當然同樣也可以做到,希望這類應用能夠逐步的出現,至少現在從硬體水平能力和技術基礎上已經具備這種大數據應用的能力。
-
⑨ 大數據時代的航運創新
大數據時代的航運創新
當下的航運窘境,或許可在大數據、互聯網技術、可再生能源和3D列印等領域的發展浪潮中,從運營模式、戰略發展和技術標准等方面進行改革創新
當前,航運業正處於重新洗牌、再次組合的過程,航運市場面臨運力嚴重過剩、價格持續低迷的困境,傳統的手段與方法已無力幫助航運企業擺脫困局。如何才能使航運企業從現階段的窘況中脫離出來,已經成為航運界共同的難題。
與此同時,大數據、互聯網技術、可再生能源和3D列印等領域的新發展對航運業的運營模式、戰略發展和技術標准都將帶來深遠影響。
大數據的驅動力
毫無疑問,當下世界是一個被數據包圍的世界。航運經營自然也會產生很多數據,所有的數據都是相關的,如何處理、利用這些數據成為挑戰。
DNV GL執行副總裁、海事咨詢總監Albrecht Grell表示:「我們要問的一個問題就是航運數據從哪裡來,怎樣對這些數據進行認知,看到數據背後真正的含義。」一艘營運中的船舶,24小時內通常會生成高達20GB的數據信息,這些信息內容繁多,涉及天氣、發動機、航行位置、速度到燃油消耗等,數據量大、散亂、周期短。確保數據的獲得是進行精確分析的第一步,將這些數據進行整合是第二步,這些數據與外部數據如AIS、天氣等的結合分析,就可能得出有意義的結論。
DNV GL副總裁、DNV GL大中國區主席、DNV GL 海事公司大中國區總經理Torgeir Sterri表示,數字化是航運發展的驅動力之一,這個驅動力本身就是一項技術。大數據驅動的數字化將使遙感器可實時接受各式各樣的結構化和非結構化的數據,且這些數據的來源確定性越來越強。他進一步指出,更智能的數字網路,除了促進科技的應用,在航運業,可以模擬所有船舶周期的現狀。DNV GL利用大數據,開發船隊績效監測系統,在增進營運透明度的同時提高了營運效率。
英國勞氏船級社北亞地區船舶業務總裁Jim Smith表示,英國勞氏船級社將把大數據和有效數據應用於未來業務和技術的戰略計劃中。「1760年開始,我們的工作中就充滿了數據,包括入級的每艘船舶的全壽命周期內的所有相關信息。若能獲得一艘船舶的核心數據,通過集中分析設計、表現、天氣、路線、貨物和法規數據相關信息,則可以尋找到最佳航線,便於船舶更高效經濟地行駛到指定港口。智能船舶將從根本上改變海運業的業務模式。」
究竟什麼是智能船舶呢?中國船級社副總工兼規范與技術中心總經理陳實表示,智能船舶體現在六個方面:一是智能航行。主要是自動航行優化,通過對海況、物流等相關參數的優化,在滿足航運周期和安全的情況下,使航運成本降到最低。目前這一技術已較成熟,進一步發展會形成自主航行。二是智能船體。主要指對船體進行全生命周期的管理,包括建立船體資料庫,以及結構強度和性能的資料庫,為船舶的維修提供決策,如通過資料庫預先制定維修計劃。應急服務可以提供輔助決策,確保安全。三是智能機艙。基於設備和系統監測為機艙提供輔助決策,高級發展階段是對機艙設備提供視情維修,大幅度節省維修成本和周期。四是智能能效管理。通過能耗檢測、分析與報告,為能效優化輔助決策。五是智能貨物控制。從最佳配載以及基於對貨物的監測來輔助決策,確保貨物安全。六是智能系統集成。通過對大數據的分析和處理,形成集中控制,一個平台一個網路來集中控制。
日本船級社會長兼總裁 Noboru Ueda也分享了大數據在行業里的應用。他表示,由Napa和日本船級社2012年完成的Napa—GREEN監控系統已經在很多船舶上應用,可以提高燃料效率,計算出最佳吃水與船速,從而提高船舶運營效率,有效分析船舶運行情況,精確率達99.6%。「使用珍貴的數據,是我們在大數據時代邁出令人興奮的一步。」
SAP大中華區售前總經理李旭東則認為,數字化是一個漸進的過程,從信息系統建設角度講,不是簡單替換,也不是一味追求數量多而不適的功能。在解決現有問題的同時,要考慮明天可能面臨的挑戰,並找到應對之策。「我們的責任是解決信息的互聯互通,幫助船東更好地實現與貨主、收貨人等利益相關方的互聯互通。我們重新定義了在互聯互通的情況下,一個數字化企業支撐其成功運行的信息系統理想模式。與以往相比,產業相關方的合作、聯系要比以往更密切,對信息系統的要求也與以前不同,需要合適的系統幫助企業實現這種不同。」
對接與融合「互聯網+」
航運業已經無法迴避即將到來的智能化工業革命浪潮,也無法斷開與信息網路的深層次對接與合作。工業4.0給市場帶來了高效的生產效率,也給各行各業帶來了發展機遇。它既涉及傳統的互聯網,還涉及正在發展的物聯網,這是一次基於虛實融合的工業革命。這對航運業朝著全面智能加快轉型升級起到了助推作用,通過對雲計算、大數據的運用,提升航運服務、管理、節能、運營的效率和能級。
如何藉助工業4.0之東風,實現航運業自身發展的蛻變,中外運航運董事長李甄認為主要有四個方面。
一是服務定製。工業4.0帶來的智能化水平可幫助航運企業實現定製化服務。通過引入應用電子標簽功能的信息化系統,一方面,電子標簽記錄著航運企業實時更新的每艘船舶的運行狀態、航線位置等點狀定製信息;另一方面,客戶可以在定位識別系統的幫助下,根據自身的服務需求自動識別讀取電子標簽所攜帶的相關信息,向航運企業提出定製化服務的請求,航運企業在收到請求後自動協調安排相關運輸任務。
二是智能管理。利用雲計算、大數據等智能化手段,集成信息挖掘、遠程監控、實時預警及預測分析,推進智能化管理,提高設備運行效率。例如:通過智能機器人,實時評估船舶設備的運行狀態,最大可能地預知設備故障與操作失誤,加強管控預控措施,全面實現船舶管理的智能化。同時,機器人的逐步推廣也可以應用到一些基本船員的工作上,在提高效率的基礎上,使管理的精細化水平得到進一步加強。此外,通過智能化與系統化的管理,既為航運企業積累先進的管理經驗,又提高管理人員的綜合業務技能,為後續的深化發展夯實基礎。
三是節能環保。節能減排是順應當今世界發展潮流的戰略舉措,已成為世界人民的共識。隨著工業4.0引發的技術革命,在航運業逐步推廣與應用環保節能新興技術,通過船岸之間現代化網路,實時調整船舶設備工況、自動優化吃水、採用經濟航速,使之有效降低船舶營運成本、最大程度地減少排放。目前,世界大型航運企業大多對新造船舶進行了LNG准備裝置,有的已經投入實際使用,相信不久的將來,新能源及新能源使用裝置將會得到廣泛的推廣和運用。
四是優化運營。在實際營運過程中,航線設計和運營組織的合理與否直接影響著航運企業的經濟效益。通過建立智能系統,根據船舶航線途徑的航道水深、洋流海況以及天氣特點等外部環境信息,自動進行提煉對比、分析判斷,設計出最合理、經濟的航行路徑,確定最理想的積配載方案,制定出效益最佳的運營組織計劃。由於工業技術的突飛猛進以及北極冰層的逐步消退,北極航線已成為可能,加上北極航線所具備的獨特地緣條件與戰略意義,北極航線已成為各國航運企業爭相開發的焦點,這也為我們進一步優化運營拓展了空間。
除了航運業,對於航運服務業而言,同樣離不開「互聯網+」。廣州仲裁委員會主任、中國仲裁法學會副會長陳忠謙表示,仲裁及時加上互聯網的元素,也就是線上和線下裁案。在線上這個仲裁平台里,通過線上交資料、數據認證進行辦案,如仲裁管理、案件管理、電子檔案形成、網路視頻庭審系統,確保數據的安全性;研究與法院以及航運部門、航運企業的網路對接,在網上備案和受理、答辯,組成仲裁廳、開庭、作出裁決等,在線上解決解紛。
中國船級社總裁孫立成表示,可再生能源對傳統化石能源的替代,3D列印引致的規模經濟效應減弱和滿足客戶需求的本地化生產趨勢加強,致使部分產業門類將由全球分工變為區域分工,由全球生產變為本地生產,沿海運輸替代部分遠洋運輸,海運運距縮短,以及新一代信息技術與船舶製造的深度融合都將引發影響深遠的產業變革,形成新的生產方式、產業形態、商業模式和經濟增長點。
航運業創新路徑
處於瞬息萬變的數字時代,航運業該如何創新發展?交通運輸部水運科學研究院副院長賈大山認為,當前海運市場進入了新一輪的漫長調整,諸多政策提供了強有力的戰略支持。「要注重調整船隊功能結構,分類制定經濟政策。如國家安全船隊、經濟安全船隊、商業運輸船隊,以不同的定位來制定相應的政策。」
從企業層面而言,賈大山認為要優化海運資本結構,推進混合所有制改革。「中國航運業有國有和民營資本兩類運營平台,功能性角度主要通過國有資本運營平台完成,商業性船隊則可通過國有和民營資本運營平台共同完成。」
從產業鏈融合角度出發,賈大山認為要構築海運產業鏈,推進協同發展。加強與金融企業的溝通,加強融資能力,加強造船、海運和貨主企業的合作。
從融資角度而言,賈大山認為,對於海運相關的融資政策、企業海運所得稅的問題,還需進一步探索解決,與國際接軌,讓中國海運企業與國際海運企業在同一市場進行公平競爭。
上海海事大學校長黃有方認為,航運企業要進行「航運+供應鏈」的戰略思考。「實施『航運+物流』戰略,僅做航運不夠,要知道做全程物流。『航運業+貿易』戰略,要更好地關注航運業與貿易的戰略結合。『航運+金融』戰略,航運業要有話語權,並維系好供應鏈關系,金融能力很重要,『航運+信息』戰略也是如此。總之,期望航運企業高度重視與物流、貿易、金融、信息的結合,充分認識到研究供應鏈就是研究信息流、物流、商品流和現金流,『航運+供應鏈』戰略的轉型和創新是未來航運取勝之道。」
中遠集團總經理李雲鵬表示,當前,世界經濟步入深度調整期,出現了很多不同以往的新特點:區域經濟不平衡加劇、國際資本流動性加快、金融市場動盪加強、大宗商品價格深度回落、新興經濟體持續減速等。這些來自宏觀經濟方面的壓力會立竿見影地體現在航運業上,導致運力過剩、運價低迷、無序競爭、慘淡經營等。「低位運行的狀態將會持續相當長的時間。所以航運企業想實現突破性發展,將面臨革命性的變革。」
航運企業內生型增長將成為必然。李雲鵬認為,航運企業未來的成長空間,更多要依靠自身能力和資源的提升利用,要實現增長動力由外到內的轉變,通過調整業務結構、客戶結構、組織架構、運營機制,不斷增強對外部市場需求的適應能力和對外界不利環境的免疫力。未來航運企業的發展,要通過培育「內生型」增長動力,提高自身經營能力、管理水平、服務質量、運營效率和成本優勢來實現。具體實現路徑,一是要有流程再造能力,即改變航運經營傳統流程,提高重新設計、組合內部資源的能力,優化航線設計、服務流程;二是提高市場布局能力,特別是體現經營能力的業務網路布局與區域經濟的匹配度,在當前區域經濟不平衡的環境下更是如此,這實際是對航運企業捕捉市場機遇能力的要求,要由以往「依賴」市場轉向「駕馭」市場;三是有產業鏈延伸能力,實現與航運相關產業的有效嫁接,通過產業上中下游的有機關聯,對沖航運業的既定風險。
產業集群之間的競爭將成為主流。李雲鵬認為,僅僅靠航運企業內部資源的優化配置,已越來越難滿足客戶的需求,包括船東、船貨之間的合作形式都可能遠遠不夠。未來航運市場上船東、船貨之間的競爭模式,將被集群對集群的競爭模式所取代,因此如何構建產業集群將成為航運企業資源配置的重大戰略目標。產業集群在規模、層次、組合方面可能呈現出多樣性,一旦形成,將成為航運企業價值創造的主體模式。從構建路徑來看,要以現有的船貨合作、聯盟聯營為出發點,以新技術為推手,吸引行業領先的利益相關方,形成航運及相關產業的集群。如船東、貨主、物流、貿易、金融、IT、電商平台等企業,可能共同構成一個產業集群,共享資源、共創價值、綁定利益,形成完整的航運產業生態圈。當市場上出現多個這樣的產業集群之時,市場競爭的格局就會發生革命性變革。
全程解決方案將成為利器。李雲鵬認為,企業的成長過程,也就是為客戶創造價值的過程,為客戶提供海運服務,是航運企業傳統的價值創造方式。但客戶的最終需求不僅僅存在於海運環節,而是涉及陸上運輸、港口、倉儲、信息、安全等各個方面,客戶的最終需求是「打通最後一公里」、「門到門」、「安全保質」的全程解決方案。跨境物流的興起與「在線需求」的爆發正在重新定義很多傳統行業,在跨界整合正令傳統行業界限愈發模糊的趨勢下,今後,提供「全程解決方案」的能力必將成為航運企業賴以生存的核心競爭力。真正的「全程解決方案」需要兩個因素:一是對客戶的態度;二是提供服務的能力。
以上是小編為大家分享的關於大數據時代的航運創新的相關內容,更多信息可以關注環球青藤分享更多干貨
⑩ 大數據的應用領域有哪些
1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
5.提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。