① 大數據時代下的三種存儲架構
大數據時代下的三種存儲架構_數據分析師考試
大數據時代,移動互聯、社交網路、數據分析、雲服務等應用的迅速普及,對數據中心提出革命性的需求,存儲基礎架構已經成為IT核心之一。政府、軍隊軍工、科研院所、航空航天、大型商業連鎖、醫療、金融、新媒體、廣電等各個領域新興應用層出不窮。數據的價值日益凸顯,數據已經成為不可或缺的資產。作為數據載體和驅動力量,存儲系統成為大數據基礎架構中最為關鍵的核心。
傳統的數據中心無論是在性能、效率,還是在投資收益、安全,已經遠遠不能滿足新興應用的需求,數據中心業務急需新型大數據處理中心來支撐。除了傳統的高可靠、高冗餘、綠色節能之外,新型的大數據中心還需具備虛擬化、模塊化、彈性擴展、自動化等一系列特徵,才能滿足具備大數據特徵的應用需求。這些史無前例的需求,讓存儲系統的架構和功能都發生了前所未有的變化。
基於大數據應用需求,「應用定義存儲」概念被提出。存儲系統作為數據中心最核心的數據基礎,不再僅是傳統分散的、單一的底層設備。除了要具備高性能、高安全、高可靠等特徵之外,還要有虛擬化、並行分布、自動分層、彈性擴展、異構資源整合、全局緩存加速等多方面的特點,才能滿足具備大數據特徵的業務應用需求。
尤其在雲安防概念被熱炒的時代,隨著高清技術的普及,720P、1080P隨處可見,智能和高清的雙向需求、動輒500W、800W甚至上千萬更高解析度的攝像機面市,大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。
目前市場上的存儲架構如下:
(1)基於嵌入式架構的存儲系統
節點NVR架構主要面向小型高清監控系統,高清前端數量一般在幾十路以內。系統建設中沒有大型的存儲監控中心機房,存儲容量相對較小,用戶體驗度、系統功能集成度要求較高。在市場應用層面,超市、店鋪、小型企業、政法行業中基本管理單元等應用較為廣泛。
(2)基於X86架構的存儲系統
平台SAN架構主要面向中大型高清監控系統,前端路數成百上千甚至上萬。一般多採用IPSAN或FCSAN搭建高清視頻存儲系統。作為監控平台的重要組成部分,前端監控數據通過錄像存儲管理模塊存儲到SAN中。
此種架構接入高清前端路數相對節點NVR有了較高提升,具備快捷便利的可擴展性,技術成熟。對於IPSAN而言,雖然在ISCSI環節數據並發讀寫傳輸速率有所消耗,但其憑借擴展性良好、硬體平台通用、海量數據可充分共享等優點,仍然得到很多客戶的青睞。FCSAN在行業用戶、封閉存儲系統中應用較多,比如縣級或地級市高清監控項目,大數據量的並發讀寫對千兆網路交換提出了較大的挑戰,但應用FCSAN構建相對獨立的存儲子系統,可以有效解決上述問題。
面對視頻監控系統大文件、隨機讀寫的特點,平台SAN架構系統不同存儲單元之間的數據共享冗餘方面還有待提高;從高性能伺服器轉發視頻數據到存儲空間的策略,從系統架構而言也增加了隱患故障點、ISCSI帶寬瓶頸導致無法充分利用硬體數據並發性能、接入前端數據較少。上述問題催生了平台NVR架構解決方案。
該方案在系統架構上省去了存儲伺服器,消除了上文提到的性能瓶頸和單點故障隱患。大幅度提高存儲系統的寫入和檢索速度;同時也徹底消除了傳統文件系統由於供電和網路的不穩定帶來的文件系統損壞等問題。
平台NVR中存儲的數據可同時供多個客戶端隨時查詢,點播,當用戶需要查看多個已保存的視頻監控數據時,可通過授權的視頻監控客戶端直接查詢並點播相應位置的視頻監控數據進行歷史圖像的查看。由於數據管理伺服器具有監控系統所有監控點的錄像文件的索引,因此通過平台CMS授權,視頻監控客戶端可以查詢並點播整個監控系統上所有監控點的數據,這個過程對用戶而言也是透明的。
(3)基於雲技術的存儲方案
當前,安防行業可謂「雲」山「物」罩。隨著視頻監控的高清化和網路化,存儲和管理的視頻數據量已有海量之勢,雲存儲技術是突破IP高清監控存儲瓶頸的重要手段。雲存儲作為一種服務,在未來安防監控行業有著客觀的應用前景。
與傳統存儲設備不同,雲存儲不僅是一個硬體,而是一個由網路設備、存儲設備、伺服器、軟體、接入網路、用戶訪問介面以及客戶端程序等多個部分構成的復雜系統。該系統以存儲設備為核心,通過應用層軟體對外提供數據存儲和業務服務。
一般分為存儲層、基礎管理層、應用介面層以及訪問層。存儲層是雲存儲系統的基礎,由存儲設備(滿足FC協議、iSCSI協議、NAS協議等)構成。基礎管理層是雲存儲系統的核心,其擔負著存儲設備間協同工作,數據加密,分發以及容災備份等工作。應用介面層是系統中根據用戶需求來開發的部分,根據不同的業務類型,可以開發出不同的應用服務介面。訪問層指授權用戶通過應用介面來登錄、享受雲服務。其主要優勢在於:硬體冗餘、節能環保、系統升級不會影響存儲服務、海量並行擴容、強大的負載均衡功能、統一管理、統一向外提供服務,管理效率高,雲存儲系統從系統架構、文件結構、高速緩存等方面入手,針對監控應用進行了優化設計。數據傳輸可採用流方式,底層採用突破傳統文件系統限制的流媒體數據結構,大幅提高了系統性能。
高清監控存儲是一種大碼流多並發寫為主的存儲應用,對性能、並發性和穩定性等方面有很高的要求。該存儲解決方案採用獨特的大緩存順序化演算法,把多路隨機並發訪問變為順序訪問,解決了硬碟磁頭因頻繁尋道而導致的性能迅速下降和硬碟壽命縮短的問題。
針對系統中會產生PB級海量監控數據,存儲設備的數量達數十台上百台,因此管理方式的科學高效顯得十分重要。雲存儲可提供基於集群管理技術的多設備集中管理工具,具有設備集中監控、集群管理、系統軟硬體運行狀態的監控、主動報警,圖像化系統檢測等功能。在海量視頻存儲檢索應用中,檢索性能尤為重要。傳統文件系統中,文件檢索採用的是「目錄-》子目錄-》文件-》定位」的檢索步驟,在海量數據的高清視頻監控,目錄和文件數量十分可觀,這種檢索模式的效率就會大打折扣。採用序號文件定位可以有效解決該問題。
雲存儲可以提供非常高的的系統冗餘和安全性。當在線存儲系統出現故障後,熱備機可以立即接替服務,當故障恢復時,服務和數據回遷;若故障機數據需要調用,可以將故障機的磁碟插入到冷備機中,實現所有數據的立即可用。
對於高清監控系統,隨著監控前端的增加和存儲時間的延長,擴展能力十分重要。市場中已有友商可提供單純針對容量的擴展櫃擴展模式和性能容量同步線性擴展的堆疊擴展模式。
雲存儲系統除上述優點之外,在平台對接整合、業務流程梳理、視頻數據智能分析深度挖掘及成本方面都將面臨挑戰。承建大型系統、構建雲存儲的商業模式也亟待創新。受限於寬頻網路、web2.0技術、應用存儲技術、文件系統、P2P、數據壓縮、CDN技術、虛擬化技術等的發展,未來雲存儲還有很長的路要走。
以上是小編為大家分享的關於大數據時代下的三種存儲架構的相關內容,更多信息可以關注環球青藤分享更多干貨
② 大數據系統架構包含內容涉及哪些
【導語】大數據的應用開發過於偏向底層,具有學習難度大,涉及技術面廣的問題,這制約了大數據的普及。大數據架構是大數據技術應用的一個非常常見的形式,那麼大數據系統架構包含內容涉及哪些?下面我們就來具體了解一下。
1、數據源
所有大數據架構都從源代碼開始。這可以包含來源於資料庫的數據、來自實時源(如物聯網設備)的數據,及其從應用程序(如Windows日誌)生成的靜態文件。
2、實時消息接收
假如有實時源,則需要在架構中構建一種機制來攝入數據。
3、數據存儲
公司需要存儲將通過大數據架構處理的數據。一般而言,數據將存儲在數據湖中,這是一個可以輕松擴展的大型非結構化資料庫。
4、批處理和實時處理的組合
公司需要同時處理實時數據和靜態數據,因而應在大數據架構中內置批量和實時處理的組合。這是由於能夠應用批處理有效地處理大批量數據,而實時數據需要立刻處理才能夠帶來價值。批處理涉及到長期運轉的作業,用於篩選、聚合和准備數據開展分析。
5、分析數據存儲
准備好要分析的數據後,需要將它們放到一個位置,便於對整個數據集開展分析。分析數據儲存的必要性在於,公司的全部數據都聚集在一個位置,因而其分析將是全面的,而且針對分析而非事務進行了優化。這可能採用基於雲計算的數據倉庫或關系資料庫的形式,具體取決於公司的需求。
6、分析或報告工具
在攝入和處理各類數據源之後,公司需要包含一個分析數據的工具。一般而言,公司將使用BI(商業智能)工具來完成這項工作,而且或者需要數據科學家來探索數據。
關於大數據系統架構包含內容涉及哪些,就給大家分享到這里了,希望對大家能有所幫助,作為新時代大學生,我們只有不算提升自我技能,充實自我,才是最為正確的選擇。
③ 大數據系統架構
轉: https://www.sohu.com/a/227887005_487103
數據分析工作雖然隱藏在業務系統背後,但是具有非常重要的作用,數據分析的結果對決策、業務發展有著舉足輕重的作用。隨著大數據技術的發展,數據挖掘、數據探索等專有名詞曝光度越來越高,但是在類似於Hadoop系列的大數據分析系統大行其道之前,數據分析工作已經經歷了長足的發展,尤其是以BI系統為主的數據分析,已經有了非常成熟和穩定的技術方案和生態系統,對於BI系統來說,大概的架構圖如下:
總的來說,目前圍繞Hadoop體系的大數據架構大概有以下幾種:
傳統大數據架構
Lambda架構算是大數據系統裡面舉足輕重的架構,大多數架構基本都是Lambda架構或者基於其變種的架構。Lambda的數據通道分為兩條分支:實時流和離線。實時流依照流式架構,保障了其實時性,而離線則以批處理方式為主,保障了最終一致性。什麼意思呢?流式通道處理為保障實效性更多的以增量計算為主輔助參考,而批處理層則對數據進行全量運算,保障其最終的一致性,因此Lambda最外層有一個實時層和離線層合並的動作,此動作是Lambda里非常重要的一個動作
優點: 既有實時又有離線,對於數據分析場景涵蓋的非常到位。
缺點: 離線層和實時流雖然面臨的場景不相同,但是其內部處理的邏輯卻是相同,因此有大量榮譽和重復的模塊存在。
適用場景: 同時存在實時和離線需求的情況。
Kappa架構
Unifield架構
總結
以上幾種架構為目前數據處理領域使用比較多的幾種架構,當然還有非常多其他架構,不過其思想都會或多或少的類似。數據領域和機器學習領域會持續發展,以上幾種思想或許終究也會變得過時。
④ 大數據中間層架構
大數據中間層:運行在大數據平台基礎上的一個層級
主要是client訪問層,服務提供層,基礎運算層,
client層主要有cli工具,dt工具,外部系統,上層應用。
服務提供層主要有:用戶管理、許可權控制、元數據、業務處理、負載均衡、接入服務、任務調度、數據傳送、訪問計費。
基礎運算層:hdfs、hive、spark、hbase、yarn
數據共享:用戶創建共享資源包,通過共享資源包分享數據給多個用戶。
中間層在大數據體系架構中處於應用和底層組件的橋梁位置。缺少了中間層,會缺少對底層集群服務api的抽象和封裝,也無法對數據進行封閉和保護。
對內訪問進行管控,對外提供統一訪問機制,從而作為一個較完善的系統對外部提供服務。
⑤ 五種大數據處理架構
五種大數據處理架構
大數據是收集、整理、處理大容量數據集,並從中獲得見解所需的非傳統戰略和技術的總稱。雖然處理數據所需的計算能力或存儲容量早已超過一台計算機的上限,但這種計算類型的普遍性、規模,以及價值在最近幾年才經歷了大規模擴展。
本文將介紹大數據系統一個最基本的組件:處理框架。處理框架負責對系統中的數據進行計算,例如處理從非易失存儲中讀取的數據,或處理剛剛攝入到系統中的數據。數據的計算則是指從大量單一數據點中提取信息和見解的過程。
下文將介紹這些框架:
· 僅批處理框架:
Apache Hadoop
· 僅流處理框架:
Apache Storm
Apache Samza
· 混合框架:
Apache Spark
Apache Flink
大數據處理框架是什麼?
處理框架和處理引擎負責對數據系統中的數據進行計算。雖然「引擎」和「框架」之間的區別沒有什麼權威的定義,但大部分時候可以將前者定義為實際負責處理數據操作的組件,後者則可定義為承擔類似作用的一系列組件。
例如Apache Hadoop可以看作一種以MapRece作為默認處理引擎的處理框架。引擎和框架通常可以相互替換或同時使用。例如另一個框架Apache Spark可以納入Hadoop並取代MapRece。組件之間的這種互操作性是大數據系統靈活性如此之高的原因之一。
雖然負責處理生命周期內這一階段數據的系統通常都很復雜,但從廣義層面來看它們的目標是非常一致的:通過對數據執行操作提高理解能力,揭示出數據蘊含的模式,並針對復雜互動獲得見解。
為了簡化這些組件的討論,我們會通過不同處理框架的設計意圖,按照所處理的數據狀態對其進行分類。一些系統可以用批處理方式處理數據,一些系統可以用流方式處理連續不斷流入系統的數據。此外還有一些系統可以同時處理這兩類數據。
在深入介紹不同實現的指標和結論之前,首先需要對不同處理類型的概念進行一個簡單的介紹。
批處理系統
批處理在大數據世界有著悠久的歷史。批處理主要操作大容量靜態數據集,並在計算過程完成後返回結果。
批處理模式中使用的數據集通常符合下列特徵…
· 有界:批處理數據集代表數據的有限集合
· 持久:數據通常始終存儲在某種類型的持久存儲位置中
· 大量:批處理操作通常是處理極為海量數據集的唯一方法
批處理非常適合需要訪問全套記錄才能完成的計算工作。例如在計算總數和平均數時,必須將數據集作為一個整體加以處理,而不能將其視作多條記錄的集合。這些操作要求在計算進行過程中數據維持自己的狀態。
需要處理大量數據的任務通常最適合用批處理操作進行處理。無論直接從持久存儲設備處理數據集,或首先將數據集載入內存,批處理系統在設計過程中就充分考慮了數據的量,可提供充足的處理資源。由於批處理在應對大量持久數據方面的表現極為出色,因此經常被用於對歷史數據進行分析。
大量數據的處理需要付出大量時間,因此批處理不適合對處理時間要求較高的場合。
Apache Hadoop
Apache Hadoop是一種專用於批處理的處理框架。Hadoop是首個在開源社區獲得極大關注的大數據框架。基於谷歌有關海量數據處理所發表的多篇論文與經驗的Hadoop重新實現了相關演算法和組件堆棧,讓大規模批處理技術變得更易用。
新版Hadoop包含多個組件,即多個層,通過配合使用可處理批數據:
· HDFS:HDFS是一種分布式文件系統層,可對集群節點間的存儲和復制進行協調。HDFS確保了無法避免的節點故障發生後數據依然可用,可將其用作數據來源,可用於存儲中間態的處理結果,並可存儲計算的最終結果。
· YARN:YARN是Yet Another Resource Negotiator(另一個資源管理器)的縮寫,可充當Hadoop堆棧的集群協調組件。該組件負責協調並管理底層資源和調度作業的運行。通過充當集群資源的介面,YARN使得用戶能在Hadoop集群中使用比以往的迭代方式運行更多類型的工作負載。
· MapRece:MapRece是Hadoop的原生批處理引擎。
批處理模式
Hadoop的處理功能來自MapRece引擎。MapRece的處理技術符合使用鍵值對的map、shuffle、rece演算法要求。基本處理過程包括:
· 從HDFS文件系統讀取數據集
· 將數據集拆分成小塊並分配給所有可用節點
· 針對每個節點上的數據子集進行計算(計算的中間態結果會重新寫入HDFS)
· 重新分配中間態結果並按照鍵進行分組
· 通過對每個節點計算的結果進行匯總和組合對每個鍵的值進行「Recing」
· 將計算而來的最終結果重新寫入 HDFS
優勢和局限
由於這種方法嚴重依賴持久存儲,每個任務需要多次執行讀取和寫入操作,因此速度相對較慢。但另一方面由於磁碟空間通常是伺服器上最豐富的資源,這意味著MapRece可以處理非常海量的數據集。同時也意味著相比其他類似技術,Hadoop的MapRece通常可以在廉價硬體上運行,因為該技術並不需要將一切都存儲在內存中。MapRece具備極高的縮放潛力,生產環境中曾經出現過包含數萬個節點的應用。
MapRece的學習曲線較為陡峭,雖然Hadoop生態系統的其他周邊技術可以大幅降低這一問題的影響,但通過Hadoop集群快速實現某些應用時依然需要注意這個問題。
圍繞Hadoop已經形成了遼闊的生態系統,Hadoop集群本身也經常被用作其他軟體的組成部件。很多其他處理框架和引擎通過與Hadoop集成也可以使用HDFS和YARN資源管理器。
總結
Apache Hadoop及其MapRece處理引擎提供了一套久經考驗的批處理模型,最適合處理對時間要求不高的非常大規模數據集。通過非常低成本的組件即可搭建完整功能的Hadoop集群,使得這一廉價且高效的處理技術可以靈活應用在很多案例中。與其他框架和引擎的兼容與集成能力使得Hadoop可以成為使用不同技術的多種工作負載處理平台的底層基礎。
流處理系統
流處理系統會對隨時進入系統的數據進行計算。相比批處理模式,這是一種截然不同的處理方式。流處理方式無需針對整個數據集執行操作,而是對通過系統傳輸的每個數據項執行操作。
· 流處理中的數據集是「無邊界」的,這就產生了幾個重要的影響:
· 完整數據集只能代表截至目前已經進入到系統中的數據總量。
· 工作數據集也許更相關,在特定時間只能代表某個單一數據項。
處理工作是基於事件的,除非明確停止否則沒有「盡頭」。處理結果立刻可用,並會隨著新數據的抵達繼續更新。
流處理系統可以處理幾乎無限量的數據,但同一時間只能處理一條(真正的流處理)或很少量(微批處理,Micro-batch Processing)數據,不同記錄間只維持最少量的狀態。雖然大部分系統提供了用於維持某些狀態的方法,但流處理主要針對副作用更少,更加功能性的處理(Functional processing)進行優化。
功能性操作主要側重於狀態或副作用有限的離散步驟。針對同一個數據執行同一個操作會或略其他因素產生相同的結果,此類處理非常適合流處理,因為不同項的狀態通常是某些困難、限制,以及某些情況下不需要的結果的結合體。因此雖然某些類型的狀態管理通常是可行的,但這些框架通常在不具備狀態管理機制時更簡單也更高效。
此類處理非常適合某些類型的工作負載。有近實時處理需求的任務很適合使用流處理模式。分析、伺服器或應用程序錯誤日誌,以及其他基於時間的衡量指標是最適合的類型,因為對這些領域的數據變化做出響應對於業務職能來說是極為關鍵的。流處理很適合用來處理必須對變動或峰值做出響應,並且關注一段時間內變化趨勢的數據。
Apache Storm
Apache Storm是一種側重於極低延遲的流處理框架,也許是要求近實時處理的工作負載的最佳選擇。該技術可處理非常大量的數據,通過比其他解決方案更低的延遲提供結果。
流處理模式
Storm的流處理可對框架中名為Topology(拓撲)的DAG(Directed Acyclic Graph,有向無環圖)進行編排。這些拓撲描述了當數據片段進入系統後,需要對每個傳入的片段執行的不同轉換或步驟。
拓撲包含:
· Stream:普通的數據流,這是一種會持續抵達系統的無邊界數據。
· Spout:位於拓撲邊緣的數據流來源,例如可以是API或查詢等,從這里可以產生待處理的數據。
· Bolt:Bolt代表需要消耗流數據,對其應用操作,並將結果以流的形式進行輸出的處理步驟。Bolt需要與每個Spout建立連接,隨後相互連接以組成所有必要的處理。在拓撲的尾部,可以使用最終的Bolt輸出作為相互連接的其他系統的輸入。
Storm背後的想法是使用上述組件定義大量小型的離散操作,隨後將多個組件組成所需拓撲。默認情況下Storm提供了「至少一次」的處理保證,這意味著可以確保每條消息至少可以被處理一次,但某些情況下如果遇到失敗可能會處理多次。Storm無法確保可以按照特定順序處理消息。
為了實現嚴格的一次處理,即有狀態處理,可以使用一種名為Trident的抽象。嚴格來說不使用Trident的Storm通常可稱之為Core Storm。Trident會對Storm的處理能力產生極大影響,會增加延遲,為處理提供狀態,使用微批模式代替逐項處理的純粹流處理模式。
為避免這些問題,通常建議Storm用戶盡可能使用Core Storm。然而也要注意,Trident對內容嚴格的一次處理保證在某些情況下也比較有用,例如系統無法智能地處理重復消息時。如果需要在項之間維持狀態,例如想要計算一個小時內有多少用戶點擊了某個鏈接,此時Trident將是你唯一的選擇。盡管不能充分發揮框架與生俱來的優勢,但Trident提高了Storm的靈活性。
Trident拓撲包含:
· 流批(Stream batch):這是指流數據的微批,可通過分塊提供批處理語義。
· 操作(Operation):是指可以對數據執行的批處理過程。
優勢和局限
目前來說Storm可能是近實時處理領域的最佳解決方案。該技術可以用極低延遲處理數據,可用於希望獲得最低延遲的工作負載。如果處理速度直接影響用戶體驗,例如需要將處理結果直接提供給訪客打開的網站頁面,此時Storm將會是一個很好的選擇。
Storm與Trident配合使得用戶可以用微批代替純粹的流處理。雖然藉此用戶可以獲得更大靈活性打造更符合要求的工具,但同時這種做法會削弱該技術相比其他解決方案最大的優勢。話雖如此,但多一種流處理方式總是好的。
Core Storm無法保證消息的處理順序。Core Storm為消息提供了「至少一次」的處理保證,這意味著可以保證每條消息都能被處理,但也可能發生重復。Trident提供了嚴格的一次處理保證,可以在不同批之間提供順序處理,但無法在一個批內部實現順序處理。
在互操作性方面,Storm可與Hadoop的YARN資源管理器進行集成,因此可以很方便地融入現有Hadoop部署。除了支持大部分處理框架,Storm還可支持多種語言,為用戶的拓撲定義提供了更多選擇。
總結
對於延遲需求很高的純粹的流處理工作負載,Storm可能是最適合的技術。該技術可以保證每條消息都被處理,可配合多種編程語言使用。由於Storm無法進行批處理,如果需要這些能力可能還需要使用其他軟體。如果對嚴格的一次處理保證有比較高的要求,此時可考慮使用Trident。不過這種情況下其他流處理框架也許更適合。
Apache Samza
Apache Samza是一種與Apache Kafka消息系統緊密綁定的流處理框架。雖然Kafka可用於很多流處理系統,但按照設計,Samza可以更好地發揮Kafka獨特的架構優勢和保障。該技術可通過Kafka提供容錯、緩沖,以及狀態存儲。
Samza可使用YARN作為資源管理器。這意味著默認情況下需要具備Hadoop集群(至少具備HDFS和YARN),但同時也意味著Samza可以直接使用YARN豐富的內建功能。
流處理模式
Samza依賴Kafka的語義定義流的處理方式。Kafka在處理數據時涉及下列概念:
· Topic(話題):進入Kafka系統的每個數據流可稱之為一個話題。話題基本上是一種可供消耗方訂閱的,由相關信息組成的數據流。
· Partition(分區):為了將一個話題分散至多個節點,Kafka會將傳入的消息劃分為多個分區。分區的劃分將基於鍵(Key)進行,這樣可以保證包含同一個鍵的每條消息可以劃分至同一個分區。分區的順序可獲得保證。
· Broker(代理):組成Kafka集群的每個節點也叫做代理。
· Procer(生成方):任何向Kafka話題寫入數據的組件可以叫做生成方。生成方可提供將話題劃分為分區所需的鍵。
· Consumer(消耗方):任何從Kafka讀取話題的組件可叫做消耗方。消耗方需要負責維持有關自己分支的信息,這樣即可在失敗後知道哪些記錄已經被處理過了。
由於Kafka相當於永恆不變的日誌,Samza也需要處理永恆不變的數據流。這意味著任何轉換創建的新數據流都可被其他組件所使用,而不會對最初的數據流產生影響。
優勢和局限
乍看之下,Samza對Kafka類查詢系統的依賴似乎是一種限制,然而這也可以為系統提供一些獨特的保證和功能,這些內容也是其他流處理系統不具備的。
例如Kafka已經提供了可以通過低延遲方式訪問的數據存儲副本,此外還可以為每個數據分區提供非常易用且低成本的多訂閱者模型。所有輸出內容,包括中間態的結果都可寫入到Kafka,並可被下游步驟獨立使用。
這種對Kafka的緊密依賴在很多方面類似於MapRece引擎對HDFS的依賴。雖然在批處理的每個計算之間對HDFS的依賴導致了一些嚴重的性能問題,但也避免了流處理遇到的很多其他問題。
Samza與Kafka之間緊密的關系使得處理步驟本身可以非常鬆散地耦合在一起。無需事先協調,即可在輸出的任何步驟中增加任意數量的訂閱者,對於有多個團隊需要訪問類似數據的組織,這一特性非常有用。多個團隊可以全部訂閱進入系統的數據話題,或任意訂閱其他團隊對數據進行過某些處理後創建的話題。這一切並不會對資料庫等負載密集型基礎架構造成額外的壓力。
直接寫入Kafka還可避免回壓(Backpressure)問題。回壓是指當負載峰值導致數據流入速度超過組件實時處理能力的情況,這種情況可能導致處理工作停頓並可能丟失數據。按照設計,Kafka可以將數據保存很長時間,這意味著組件可以在方便的時候繼續進行處理,並可直接重啟動而無需擔心造成任何後果。
Samza可以使用以本地鍵值存儲方式實現的容錯檢查點系統存儲數據。這樣Samza即可獲得「至少一次」的交付保障,但面對由於數據可能多次交付造成的失敗,該技術無法對匯總後狀態(例如計數)提供精確恢復。
Samza提供的高級抽象使其在很多方面比Storm等系統提供的基元(Primitive)更易於配合使用。目前Samza只支持JVM語言,這意味著它在語言支持方面不如Storm靈活。
總結
對於已經具備或易於實現Hadoop和Kafka的環境,Apache Samza是流處理工作負載一個很好的選擇。Samza本身很適合有多個團隊需要使用(但相互之間並不一定緊密協調)不同處理階段的多個數據流的組織。Samza可大幅簡化很多流處理工作,可實現低延遲的性能。如果部署需求與當前系統不兼容,也許並不適合使用,但如果需要極低延遲的處理,或對嚴格的一次處理語義有較高需求,此時依然適合考慮。
混合處理系統:批處理和流處理
一些處理框架可同時處理批處理和流處理工作負載。這些框架可以用相同或相關的組件和API處理兩種類型的數據,藉此讓不同的處理需求得以簡化。
如你所見,這一特性主要是由Spark和Flink實現的,下文將介紹這兩種框架。實現這樣的功能重點在於兩種不同處理模式如何進行統一,以及要對固定和不固定數據集之間的關系進行何種假設。
雖然側重於某一種處理類型的項目會更好地滿足具體用例的要求,但混合框架意在提供一種數據處理的通用解決方案。這種框架不僅可以提供處理數據所需的方法,而且提供了自己的集成項、庫、工具,可勝任圖形分析、機器學習、互動式查詢等多種任務。
Apache Spark
Apache Spark是一種包含流處理能力的下一代批處理框架。與Hadoop的MapRece引擎基於各種相同原則開發而來的Spark主要側重於通過完善的內存計算和處理優化機制加快批處理工作負載的運行速度。
Spark可作為獨立集群部署(需要相應存儲層的配合),或可與Hadoop集成並取代MapRece引擎。
批處理模式
與MapRece不同,Spark的數據處理工作全部在內存中進行,只在一開始將數據讀入內存,以及將最終結果持久存儲時需要與存儲層交互。所有中間態的處理結果均存儲在內存中。
雖然內存中處理方式可大幅改善性能,Spark在處理與磁碟有關的任務時速度也有很大提升,因為通過提前對整個任務集進行分析可以實現更完善的整體式優化。為此Spark可創建代表所需執行的全部操作,需要操作的數據,以及操作和數據之間關系的Directed Acyclic Graph(有向無環圖),即DAG,藉此處理器可以對任務進行更智能的協調。
為了實現內存中批計算,Spark會使用一種名為Resilient Distributed Dataset(彈性分布式數據集),即RDD的模型來處理數據。這是一種代表數據集,只位於內存中,永恆不變的結構。針對RDD執行的操作可生成新的RDD。每個RDD可通過世系(Lineage)回溯至父級RDD,並最終回溯至磁碟上的數據。Spark可通過RDD在無需將每個操作的結果寫回磁碟的前提下實現容錯。
流處理模式
流處理能力是由Spark Streaming實現的。Spark本身在設計上主要面向批處理工作負載,為了彌補引擎設計和流處理工作負載特徵方面的差異,Spark實現了一種叫做微批(Micro-batch)*的概念。在具體策略方面該技術可以將數據流視作一系列非常小的「批」,藉此即可通過批處理引擎的原生語義進行處理。
Spark Streaming會以亞秒級增量對流進行緩沖,隨後這些緩沖會作為小規模的固定數據集進行批處理。這種方式的實際效果非常好,但相比真正的流處理框架在性能方面依然存在不足。
優勢和局限
使用Spark而非Hadoop MapRece的主要原因是速度。在內存計算策略和先進的DAG調度等機制的幫助下,Spark可以用更快速度處理相同的數據集。
Spark的另一個重要優勢在於多樣性。該產品可作為獨立集群部署,或與現有Hadoop集群集成。該產品可運行批處理和流處理,運行一個集群即可處理不同類型的任務。
除了引擎自身的能力外,圍繞Spark還建立了包含各種庫的生態系統,可為機器學習、互動式查詢等任務提供更好的支持。相比MapRece,Spark任務更是「眾所周知」地易於編寫,因此可大幅提高生產力。
為流處理系統採用批處理的方法,需要對進入系統的數據進行緩沖。緩沖機制使得該技術可以處理非常大量的傳入數據,提高整體吞吐率,但等待緩沖區清空也會導致延遲增高。這意味著Spark Streaming可能不適合處理對延遲有較高要求的工作負載。
由於內存通常比磁碟空間更貴,因此相比基於磁碟的系統,Spark成本更高。然而處理速度的提升意味著可以更快速完成任務,在需要按照小時數為資源付費的環境中,這一特性通常可以抵消增加的成本。
Spark內存計算這一設計的另一個後果是,如果部署在共享的集群中可能會遇到資源不足的問題。相比HadoopMapRece,Spark的資源消耗更大,可能會對需要在同一時間使用集群的其他任務產生影響。從本質來看,Spark更不適合與Hadoop堆棧的其他組件共存一處。
總結
Spark是多樣化工作負載處理任務的最佳選擇。Spark批處理能力以更高內存佔用為代價提供了無與倫比的速度優勢。對於重視吞吐率而非延遲的工作負載,則比較適合使用Spark Streaming作為流處理解決方案。
Apache Flink
Apache Flink是一種可以處理批處理任務的流處理框架。該技術可將批處理數據視作具備有限邊界的數據流,藉此將批處理任務作為流處理的子集加以處理。為所有處理任務採取流處理為先的方法會產生一系列有趣的副作用。
這種流處理為先的方法也叫做Kappa架構,與之相對的是更加被廣為人知的Lambda架構(該架構中使用批處理作為主要處理方法,使用流作為補充並提供早期未經提煉的結果)。Kappa架構中會對一切進行流處理,藉此對模型進行簡化,而這一切是在最近流處理引擎逐漸成熟後才可行的。
流處理模型
Flink的流處理模型在處理傳入數據時會將每一項視作真正的數據流。Flink提供的DataStream API可用於處理無盡的數據流。Flink可配合使用的基本組件包括:
· Stream(流)是指在系統中流轉的,永恆不變的無邊界數據集
· Operator(操作方)是指針對數據流執行操作以產生其他數據流的功能
· Source(源)是指數據流進入系統的入口點
· Sink(槽)是指數據流離開Flink系統後進入到的位置,槽可以是資料庫或到其他系統的連接器
為了在計算過程中遇到問題後能夠恢復,流處理任務會在預定時間點創建快照。為了實現狀態存儲,Flink可配合多種狀態後端系統使用,具體取決於所需實現的復雜度和持久性級別。
此外Flink的流處理能力還可以理解「事件時間」這一概念,這是指事件實際發生的時間,此外該功能還可以處理會話。這意味著可以通過某種有趣的方式確保執行順序和分組。
批處理模型
Flink的批處理模型在很大程度上僅僅是對流處理模型的擴展。此時模型不再從持續流中讀取數據,而是從持久存儲中以流的形式讀取有邊界的數據集。Flink會對這些處理模型使用完全相同的運行時。
Flink可以對批處理工作負載實現一定的優化。例如由於批處理操作可通過持久存儲加以支持,Flink可以不對批處理工作負載創建快照。數據依然可以恢復,但常規處理操作可以執行得更快。
另一個優化是對批處理任務進行分解,這樣即可在需要的時候調用不同階段和組件。藉此Flink可以與集群的其他用戶更好地共存。對任務提前進行分析使得Flink可以查看需要執行的所有操作、數據集的大小,以及下游需要執行的操作步驟,藉此實現進一步的優化。
優勢和局限
Flink目前是處理框架領域一個獨特的技術。雖然Spark也可以執行批處理和流處理,但Spark的流處理採取的微批架構使其無法適用於很多用例。Flink流處理為先的方法可提供低延遲,高吞吐率,近乎逐項處理的能力。
Flink的很多組件是自行管理的。雖然這種做法較為罕見,但出於性能方面的原因,該技術可自行管理內存,無需依賴原生的java垃圾回收機制。與Spark不同,待處理數據的特徵發生變化後Flink無需手工優化和調整,並且該技術也可以自行處理數據分區和自動緩存等操作。
Flink會通過多種方式對工作進行分許進而優化任務。這種分析在部分程度上類似於SQL查詢規劃器對關系型資料庫所做的優化,可針對特定任務確定最高效的實現方法。該技術還支持多階段並行執行,同時可將受阻任務的數據集合在一起。對於迭代式任務,出於性能方面的考慮,Flink會嘗試在存儲數據的節點上執行相應的計算任務。此外還可進行「增量迭代」,或僅對數據中有改動的部分進行迭代。
在用戶工具方面,Flink提供了基於Web的調度視圖,藉此可輕松管理任務並查看系統狀態。用戶也可以查看已提交任務的優化方案,藉此了解任務最終是如何在集群中實現的。對於分析類任務,Flink提供了類似SQL的查詢,圖形化處理,以及機器學習庫,此外還支持內存計算。
Flink能很好地與其他組件配合使用。如果配合Hadoop 堆棧使用,該技術可以很好地融入整個環境,在任何時候都只佔用必要的資源。該技術可輕松地與YARN、HDFS和Kafka 集成。在兼容包的幫助下,Flink還可以運行為其他處理框架,例如Hadoop和Storm編寫的任務。
目前Flink最大的局限之一在於這依然是一個非常「年幼」的項目。現實環境中該項目的大規模部署尚不如其他處理框架那麼常見,對於Flink在縮放能力方面的局限目前也沒有較為深入的研究。隨著快速開發周期的推進和兼容包等功能的完善,當越來越多的組織開始嘗試時,可能會出現越來越多的Flink部署
總結
Flink提供了低延遲流處理,同時可支持傳統的批處理任務。Flink也許最適合有極高流處理需求,並有少量批處理任務的組織。該技術可兼容原生Storm和Hadoop程序,可在YARN管理的集群上運行,因此可以很方便地進行評估。快速進展的開發工作使其值得被大家關注。
結論
大數據系統可使用多種處理技術。
對於僅需要批處理的工作負載,如果對時間不敏感,比其他解決方案實現成本更低的Hadoop將會是一個好選擇。
對於僅需要流處理的工作負載,Storm可支持更廣泛的語言並實現極低延遲的處理,但默認配置可能產生重復結果並且無法保證順序。Samza與YARN和Kafka緊密集成可提供更大靈活性,更易用的多團隊使用,以及更簡單的復制和狀態管理。
對於混合型工作負載,Spark可提供高速批處理和微批處理模式的流處理。該技術的支持更完善,具備各種集成庫和工具,可實現靈活的集成。Flink提供了真正的流處理並具備批處理能力,通過深度優化可運行針對其他平台編寫的任務,提供低延遲的處理,但實際應用方面還為時過早。
最適合的解決方案主要取決於待處理數據的狀態,對處理所需時間的需求,以及希望得到的結果。具體是使用全功能解決方案或主要側重於某種項目的解決方案,這個問題需要慎重權衡。隨著逐漸成熟並被廣泛接受,在評估任何新出現的創新型解決方案時都需要考慮類似的問題。
⑥ 北大青鳥java培訓:大數據的結構層級
隨著互聯網的發展,越來越多的信息充斥在網路上,而大數據就是依靠對這些信息的收集、分類、歸納整理出我們所需要的信息,然後利用這些信息完成一些工作需要的一項能力技術。
今天,北京電腦培訓http://www.kmbdqn.cn/主要就是來分析一下,大數據這項技術到底有那幾個層次。
移動互聯網時代,數據量呈現指數級增長,其中文本、音視頻等非結構數據的佔比已超過85%,未來將進一步增大。
Hadoop架構的分布式文件系統、分布式資料庫和分布式並行計算技術解決了海量多源異構數據在存儲、管理和處理上的挑戰。
從2006年4月第一個ApacheHadoop版本發布至今,Hadoop作為一項實現海量數據存儲、管理和計算的開源技術,已迭代到了v2.7.2穩定版,其構成組件也由傳統的三駕馬車HDFS、MapRece和HBase社區發展為由60多個相關組件組成的龐大生態,包括數據存儲、執行引擎、編程和數據訪問框架等。
其生態系統從1.0版的三層架構演變為現在的四層架構:底層——存儲層現在互聯網數據量達到PB級,傳統的存儲方式已無法滿足高效的IO性能和成本要求,Hadoop的分布式數據存儲和管理技術解決了這一難題。
HDFS現已成為大數據磁碟存儲的事實標准,其上層正在涌現越來越多的文件格式封裝(如Parquent)以適應BI類數據分析、機器學習類應用等更多的應用場景。
未來HDFS會繼續擴展對於新興存儲介質和伺服器架構的支持。
另一方面,區別於常用的Tachyon或Ignite,分布式內存文件系統新貴Arrow為列式內存存儲的處理和交互提供了規范,得到了眾多開發者和產業巨頭的支持。
區別於傳統的關系型資料庫,HBase適合於非結構化數據存儲。
而Cloudera在2015年10月公布的分布式關系型資料庫Ku有望成為下一代分析平台的重要組成,它的出現將進一步把Hadoop市場向傳統數據倉庫市場靠攏。
中間層——管控層管控層對Hadoop集群進行高效可靠的資源及數據管理。
脫胎於MapRece1.0的YARN已成為Hadoop2.0的通用資源管理平台。
如何與容器技術深度融合,如何提高調度、細粒度管控和多租戶支持的能力,是YARN需要進一步解決的問題。
另一方面,Hortonworks的Ranger、Cloudera的Sentry和RecordService組件實現了對數據層面的安全管控。
⑦ 大數據平台架構如何進行 包括哪些方面
【導語】大數據平台將互聯網使用和大數據產品整合起來,將實時數據和離線數據打通,使數據能夠實現更大規模的相關核算,挖掘出數據更大的價值,然後實現數據驅動事務,那麼大數據平台架構如何進行?包括哪些方面呢?
1、事務使用:
其實指的是數據收集,你經過什麼樣的方法收集到數據。互聯網收集數據相對簡略,經過網頁、App就能夠收集到數據,比方許多銀行現在都有自己的App。
更深層次的還能收集到用戶的行為數據,能夠切分出來許多維度,做很細的剖析。但是對於涉及到線下的行業,數據收集就需要藉助各類的事務體系去完成。
2、數據集成:
指的其實是ETL,指的是用戶從數據源抽取出所需的數據,經過數據清洗,終究依照預先定義好的數據倉庫模型,將數據載入到數據倉庫中去。而這兒的Kettle僅僅ETL的其中一種。
3、數據存儲:
指的便是數據倉庫的建設了,簡略來說能夠分為事務數據層(DW)、指標層、維度層、匯總層(DWA)。
4、數據同享層:
表明在數據倉庫與事務體系間提供數據同享服務。Web Service和Web
API,代表的是一種數據間的銜接方法,還有一些其他銜接方法,能夠依照自己的情況來確定。
5、數據剖析層:
剖析函數就相對比較容易理解了,便是各種數學函數,比方K均值剖析、聚類、RMF模型等等。
6、數據展現:
結果以什麼樣的方式呈現,其實便是數據可視化。這兒建議用敏捷BI,和傳統BI不同的是,它能經過簡略的拖拽就生成報表,學習成本較低。
7、數據訪問:
這個就比較簡略了,看你是經過什麼樣的方法去查看這些數據,圖中示例的是因為B/S架構,終究的可視化結果是經過瀏覽器訪問的。
關於大數據平台架構內容,就給大家介紹到這里了,不知道大家是不是有所了解呢,未來,大數據對社會發展的重大影響必將會決定未來的發展趨勢,所以有想法考生要抓緊時間學起來了。
⑧ 大數據平台架構有哪些
一、事務使用:其實指的是數據收集,你經過什麼樣的方法收集到數據。互聯網收集數據相對簡略,經過網頁、App就能夠收集到數據,比方許多銀行現在都有自己的App。
更深層次的還能收集到用戶的行為數據,能夠切分出來許多維度,做很細的剖析。但是對於涉及到線下的行業,數據收集就需要藉助各類的事務體系去完成。
二、數據集成:指的其實是ETL,指的是用戶從數據源抽取出所需的數據,經過數據清洗,終究依照預先定義好的數據倉庫模型,將數據載入到數據倉庫中去。而這兒的Kettle僅僅ETL的其中一種。
三、數據存儲:指的便是數據倉庫的建設了,簡略來說能夠分為事務數據層(DW)、指標層、維度層、匯總層(DWA)。
四、數據同享層:表明在數據倉庫與事務體系間提供數據同享服務。Web Service和Web API,代表的是一種數據間的銜接方法,還有一些其他銜接方法,能夠依照自己的情況來確定。
五、數據剖析層:剖析函數就相對比較容易理解了,便是各種數學函數,比方K均值剖析、聚類、RMF模型等等。
六、數據展現:結果以什麼樣的方式呈現,其實便是數據可視化。這兒建議用敏捷BI,和傳統BI不同的是,它能經過簡略的拖拽就生成報表,學習成本較低。
七、數據訪問:這個就比較簡略了,看你是經過什麼樣的方法去查看這些數據,圖中示例的是因為B/S架構,終究的可視化結果是經過瀏覽器訪問的。
關於大數據平台架構有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。