導航:首頁 > 網路數據 > 雲視頻大數據存儲

雲視頻大數據存儲

發布時間:2022-12-24 02:27:21

大數據爆發性增長 存儲技術面臨難題

大數據爆發性增長 存儲技術面臨難題

隨著大數據應用的爆發性增長,大數據已經衍生出了自己獨特的架構,而且也直接推動了存儲、網路以及計算技術的發展。畢竟處理大數據這種特殊的需求是一個新的挑戰。硬體的發展最終還是由軟體需求推動的。大數據本身意味著非常多需要使用標准存儲技術來處理的數據。大數據可能由TB級(或者甚至PB級)信息組成,既包括結構化數據(資料庫、日誌、SQL等)以及非結構化數據(社交媒體帖子、感測器、多媒體數據)。此外,大部分這些數據缺乏索引或者其他組織結構,可能由很多不同文件類型組成。從目前技術發展的情況來看,大數據存儲技術的發展正面臨著以下幾個難題:

1、容量問題

這里所說的「大容量」通常可達到PB級的數據規模,因此,海量數據存儲系統也一定要有相應等級的擴展能力。與此同時,存儲系統的擴展一定要簡便,可以通過增加模塊或磁碟櫃來增加容量,甚至不需要停機。

「大數據」應用除了數據規模巨大之外,還意味著擁有龐大的文件數量。因此如何管理文件系統層累積的元數據是一個難題,處理不當的話會影響到系統的擴展能力和性能,而傳統的NAS系統就存在這一瓶頸。所幸的是,基於對象的存儲架構就不存在這個問題,它可以在一個系統中管理十億級別的文件數量,而且還不會像傳統存儲一樣遭遇元數據管理的困擾。基於對象的存儲系統還具有廣域擴展能力,可以在多個不同的地點部署並組成一個跨區域的大型存儲基礎架構。

2、延遲問題

「大數據」應用還存在實時性的問題。有很多「大數據」應用環境需要較高的IOPS性能,比如HPC高性能計算。此外,伺服器虛擬化的普及也導致了對高IOPS的需求,正如它改變了傳統IT環境一樣。為了迎接這些挑戰,各種模式的固態存儲設備應運而生,小到簡單的在伺服器內部做高速緩存,大到全固態介質的可擴展存儲系統等等都在蓬勃發展。

3、並發訪問

一旦企業認識到大數據分析應用的潛在價值,他們就會將更多的數據集納入系統進行比較,同時讓更多的人分享並使用這些數據。為了創造更多的商業價值,企業往往會綜合分析那些來自不同平台下的多種數據對象。包括全局文件系統在內的存儲基礎設施就能夠幫助用戶解決數據訪問的問題,全局文件系統允許多個主機上的多個用戶並發訪問文件數據,而這些數據則可能存儲在多個地點的多種不同類型的存儲設備上。

4、安全問題

某些特殊行業的應用,比如金融數據、醫療信息以及政府情報等都有自己的安全標准和保密性需求。雖然對於IT管理者來說這些並沒有什麼不同,而且都是必須遵從的,但是,大數據分析往往需要多類數據相互參考,而在過去並不會有這種數據混合訪問的情況,因此大數據應用也催生出一些新的、需要考慮的安全性問題。

5、成本問題

成本問題「大」,也可能意味著代價不菲。而對於那些正在使用大數據環境的企業來說,成本控制是關鍵的問題。想控製成本,就意味著我們要讓每一台設備都實現更高的「效率」,同時還要減少那些昂貴的部件。

對成本控制影響最大的因素是那些商業化的硬體設備。因此,很多初次進入這一領域的用戶以及那些應用規模最大的用戶都會定製他們自己的「硬體平台」而不是用現成的商業產品,這一舉措可以用來平衡他們在業務擴展過程中的成本控制戰略。為了適應這一需求,現在越來越多的存儲產品都提供純軟體的形式,可以直接安裝在用戶已有的、通用的或者現成的硬體設備上。此外,很多存儲軟體公司還在銷售以軟體產品為核心的軟硬一體化裝置,或者與硬體廠商結盟,推出合作型產品。

6、數據的積累

許多大數據應用都會涉及到法規遵從問題,這些法規通常要求數據要保存幾年或者幾十年。比如醫療信息通常是為了保證患者的生命安全,而財務信息通常要保存7年。而有些使用大數據存儲的用戶卻希望數據能夠保存更長的時間,因為任何數據都是歷史記錄的一部分,而且數據的分析大都是基於時間段進行的。要實現長期的數據保存,就要求存儲廠商開發出能夠持續進行數據一致性檢測的功能以及其他保證長期高可用的特性。同時還要實現數據直接在原位更新的功能需求。

7、數據的靈活性

大數據存儲系統的基礎設施規模通常都很大,因此必須經過仔細設計,才能保證存儲系統的靈活性,使其能夠隨著應用分析軟體一起擴容及擴展。在大數據存儲環境中,已經沒有必要再做數據遷移了,因為數據會同時保存在多個部署站點。一個大型的數據存儲基礎設施一旦開始投入使用,就很難再調整了,因此它必須能夠適應各種不同的應用類型和數據場景。

存儲介質正在改變,雲計算倍受青睞

存儲之於安防的地位,其已經不僅是一個設備而已,而是已經升華到了一個解決方案平台的地步。作為圖像數據和報警事件記錄的載體,存儲的重要性是不言而喻的。

安防監控應用對存儲的需求是什麼?首先,海量存儲的需求。其次,性能的要求。第三,價格的敏感度。第四,集中管理的要求。第五,網路化要求。安防監控技術發展到今天經歷了三個階段,即:模擬化、數字化、網路化。與之相適應,監控數據存儲也經歷了多個階段,即:VCR模擬數據存儲、DVR數字數據存儲,到現在的集中網路存儲,以及發展到雲存儲階段,正是在一步步迎合這種市場需求。在未來,安防監控隨著高清化,網路化,智能化的不斷發展,將對現有存儲方案帶來不斷挑戰,包括容量、帶寬的擴展問題和管理問題。那麼,基於大數據戰略的海量存儲系統--雲存儲就倍受青睞了。

基於大數據戰略的安防存儲優勢明顯

當前社會對於數據的依賴是前所未有的,數據已變成與硬資產和人同等重要的重要資料。如何存好、保護好、使用好這些海量的大數據,是安防行業面臨的重要問題之一。那麼基於大數據戰略的安防存儲其優勢何在?

目前的存儲市場上,原有的視頻監控方案容量、帶寬難以擴展。客戶往往需要采購更多更高端的設備來擴充容量,提高性能,隨之帶來的是成本的急劇增長以及系統復雜性的激增。同時,傳統的存儲模式很難在完全沒有業務停頓的情況下進行升級,擴容會對業務帶來巨大影響。其次,傳統的視頻監控方案難於管理。由於視頻監控系統一般規模較大,分布特徵明顯,大多獨立管理,這樣就把整個系統分割成了多個管理孤島,相互之間通信困難,難以協調工作,以提高整體性能。除此之外,綠色、安全等也是傳統視頻監控方案所面臨的突出問題。

基於大數據戰略的雲存儲技術與生俱來的高擴展、易管理、高安全等特性為傳統存儲面臨的問題帶來了解決的契機。利用雲存儲,用戶可以方便的進行容量、帶寬擴展,而不必停止業務,或改變系統架構。同時,雲存儲還具有高安全、低成本、綠色節能等特點。基於雲存儲的視頻監控解決方案是客戶應對挑戰很好的選擇。王宇說,進入二十一世紀,雲存儲作為一種新的存儲架構,已逐步走入應用階段,雲存儲不僅輕松突破了SAN的性能瓶頸,而且可以實現性能與容量的線性擴展,這對於擁有大量數據的安防監控用戶來說是一個新選擇。

以英特爾推出的Hadoop分布式文件系統(HDFS)為例,其提供了一個高度容錯性和高吞吐量的海量數據存儲解決方案。目前已經在各種大型在線服務和大型存儲系統中得到廣泛應用,已經成為海量數據存儲的事實標准。

隨著信息系統的快速發展,海量的信息需要可靠存儲的同時,還能被大量的使用者快速地訪問。傳統的存儲方案已經從構架上越來越難以適應近幾年來的信息系統業務的飛速發展,成為了業務發展的瓶頸和障礙。HDFS通過一個高效的分布式演算法,將數據的訪問和存儲分布在大量伺服器之中,在可靠地多備份存儲的同時還能將訪問分布在集群中的各個伺服器之上,是傳統存儲構架的一個顛覆性的發展。最重要的是,其可以滿足以下特性:可自我修復的分布式文件存儲系統,高可擴展性,無需停機動態擴容,高可靠性,數據自動檢測和復制,高吞吐量訪問,消除訪問瓶頸,使用低成本存儲和伺服器構建。

以上是小編為大家分享的關於大數據爆發性增長 存儲技術面臨難題的相關內容,更多信息可以關注環球青藤分享更多干貨

❷ 大數據的數據的存儲方式是什麼

大數據有效存儲和管理大數據的三種方式:
1. 不斷加密
任何類型的數據對於任何一個企業來說都是至關重要的,而且通常被認為是私有的,並且在他們自己掌控的范圍內是安全的。然而,黑客攻擊經常被覆蓋在業務故障中,最新的網路攻擊活動在新聞報道不斷充斥。因此,許多公司感到很難感到安全,尤其是當一些行業巨頭經常成為攻擊目標時。
隨著企業為保護資產全面開展工作,加密技術成為打擊網路威脅的可行途徑。將所有內容轉換為代碼,使用加密信息,只有收件人可以解碼。如果沒有其他的要求,則加密保護數據傳輸,增強在數字傳輸中有效地到達正確人群的機會。
2. 倉庫存儲
大數據似乎難以管理,就像一個永無休止統計數據的復雜的漩渦。因此,將信息精簡到單一的公司位置似乎是明智的,這是一個倉庫,其中所有的數據和伺服器都可以被充分地規劃指定。然而,有些報告指出了反對這種方法的論據,指出即使是最大的存儲中心,大數據的指數增長也不再能維持。
然而,在某些情況下,企業可能會租用一個倉庫來存儲大量數據,在大數據超出的情況下,這是一個臨時的解決方案,而LCP屬性提供了一些很好的機會。畢竟,企業不會立即被大量的數據所淹沒,因此,為物理機器租用倉庫至少在短期內是可行的。這是一個簡單有效的解決方案,但並不是永久的成本承諾。
3. 備份服務 - 雲端
當然,不可否認的是,大數據管理和存儲正在迅速脫離物理機器的范疇,並迅速進入數字領域。除了所有技術的發展,大數據增長得更快,以這樣的速度,世界上所有的機器和倉庫都無法完全容納它。
因此,由於雲存儲服務推動了數字化轉型,雲計算的應用越來越繁榮。數據在一個位置不再受到風險控制,並隨時隨地可以訪問,大型雲計算公司(如谷歌雲)將會更多地訪問基本統計信息。數據可以在這些服務上進行備份,這意味著一次網路攻擊不會消除多年的業務增長和發展。最終,如果出現網路攻擊,雲端將以A遷移到B的方式提供獨一無二的服務。

❸ 大數據時代下的三種存儲架構

大數據時代下的三種存儲架構_數據分析師考試

大數據時代,移動互聯、社交網路、數據分析、雲服務等應用的迅速普及,對數據中心提出革命性的需求,存儲基礎架構已經成為IT核心之一。政府、軍隊軍工、科研院所、航空航天、大型商業連鎖、醫療、金融、新媒體、廣電等各個領域新興應用層出不窮。數據的價值日益凸顯,數據已經成為不可或缺的資產。作為數據載體和驅動力量,存儲系統成為大數據基礎架構中最為關鍵的核心。

傳統的數據中心無論是在性能、效率,還是在投資收益、安全,已經遠遠不能滿足新興應用的需求,數據中心業務急需新型大數據處理中心來支撐。除了傳統的高可靠、高冗餘、綠色節能之外,新型的大數據中心還需具備虛擬化、模塊化、彈性擴展、自動化等一系列特徵,才能滿足具備大數據特徵的應用需求。這些史無前例的需求,讓存儲系統的架構和功能都發生了前所未有的變化。

基於大數據應用需求,「應用定義存儲」概念被提出。存儲系統作為數據中心最核心的數據基礎,不再僅是傳統分散的、單一的底層設備。除了要具備高性能、高安全、高可靠等特徵之外,還要有虛擬化、並行分布、自動分層、彈性擴展、異構資源整合、全局緩存加速等多方面的特點,才能滿足具備大數據特徵的業務應用需求。

尤其在雲安防概念被熱炒的時代,隨著高清技術的普及,720P、1080P隨處可見,智能和高清的雙向需求、動輒500W、800W甚至上千萬更高解析度的攝像機面市,大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。

目前市場上的存儲架構如下:

(1)基於嵌入式架構的存儲系統

節點NVR架構主要面向小型高清監控系統,高清前端數量一般在幾十路以內。系統建設中沒有大型的存儲監控中心機房,存儲容量相對較小,用戶體驗度、系統功能集成度要求較高。在市場應用層面,超市、店鋪、小型企業、政法行業中基本管理單元等應用較為廣泛。

(2)基於X86架構的存儲系統

平台SAN架構主要面向中大型高清監控系統,前端路數成百上千甚至上萬。一般多採用IPSAN或FCSAN搭建高清視頻存儲系統。作為監控平台的重要組成部分,前端監控數據通過錄像存儲管理模塊存儲到SAN中。

此種架構接入高清前端路數相對節點NVR有了較高提升,具備快捷便利的可擴展性,技術成熟。對於IPSAN而言,雖然在ISCSI環節數據並發讀寫傳輸速率有所消耗,但其憑借擴展性良好、硬體平台通用、海量數據可充分共享等優點,仍然得到很多客戶的青睞。FCSAN在行業用戶、封閉存儲系統中應用較多,比如縣級或地級市高清監控項目,大數據量的並發讀寫對千兆網路交換提出了較大的挑戰,但應用FCSAN構建相對獨立的存儲子系統,可以有效解決上述問題。

面對視頻監控系統大文件、隨機讀寫的特點,平台SAN架構系統不同存儲單元之間的數據共享冗餘方面還有待提高;從高性能伺服器轉發視頻數據到存儲空間的策略,從系統架構而言也增加了隱患故障點、ISCSI帶寬瓶頸導致無法充分利用硬體數據並發性能、接入前端數據較少。上述問題催生了平台NVR架構解決方案。

該方案在系統架構上省去了存儲伺服器,消除了上文提到的性能瓶頸和單點故障隱患。大幅度提高存儲系統的寫入和檢索速度;同時也徹底消除了傳統文件系統由於供電和網路的不穩定帶來的文件系統損壞等問題。

平台NVR中存儲的數據可同時供多個客戶端隨時查詢,點播,當用戶需要查看多個已保存的視頻監控數據時,可通過授權的視頻監控客戶端直接查詢並點播相應位置的視頻監控數據進行歷史圖像的查看。由於數據管理伺服器具有監控系統所有監控點的錄像文件的索引,因此通過平台CMS授權,視頻監控客戶端可以查詢並點播整個監控系統上所有監控點的數據,這個過程對用戶而言也是透明的。

(3)基於雲技術的存儲方案

當前,安防行業可謂「雲」山「物」罩。隨著視頻監控的高清化和網路化,存儲和管理的視頻數據量已有海量之勢,雲存儲技術是突破IP高清監控存儲瓶頸的重要手段。雲存儲作為一種服務,在未來安防監控行業有著客觀的應用前景。

與傳統存儲設備不同,雲存儲不僅是一個硬體,而是一個由網路設備、存儲設備、伺服器、軟體、接入網路、用戶訪問介面以及客戶端程序等多個部分構成的復雜系統。該系統以存儲設備為核心,通過應用層軟體對外提供數據存儲和業務服務。

一般分為存儲層、基礎管理層、應用介面層以及訪問層。存儲層是雲存儲系統的基礎,由存儲設備(滿足FC協議、iSCSI協議、NAS協議等)構成。基礎管理層是雲存儲系統的核心,其擔負著存儲設備間協同工作,數據加密,分發以及容災備份等工作。應用介面層是系統中根據用戶需求來開發的部分,根據不同的業務類型,可以開發出不同的應用服務介面。訪問層指授權用戶通過應用介面來登錄、享受雲服務。其主要優勢在於:硬體冗餘、節能環保、系統升級不會影響存儲服務、海量並行擴容、強大的負載均衡功能、統一管理、統一向外提供服務,管理效率高,雲存儲系統從系統架構、文件結構、高速緩存等方面入手,針對監控應用進行了優化設計。數據傳輸可採用流方式,底層採用突破傳統文件系統限制的流媒體數據結構,大幅提高了系統性能。

高清監控存儲是一種大碼流多並發寫為主的存儲應用,對性能、並發性和穩定性等方面有很高的要求。該存儲解決方案採用獨特的大緩存順序化演算法,把多路隨機並發訪問變為順序訪問,解決了硬碟磁頭因頻繁尋道而導致的性能迅速下降和硬碟壽命縮短的問題。

針對系統中會產生PB級海量監控數據,存儲設備的數量達數十台上百台,因此管理方式的科學高效顯得十分重要。雲存儲可提供基於集群管理技術的多設備集中管理工具,具有設備集中監控、集群管理、系統軟硬體運行狀態的監控、主動報警,圖像化系統檢測等功能。在海量視頻存儲檢索應用中,檢索性能尤為重要。傳統文件系統中,文件檢索採用的是「目錄-》子目錄-》文件-》定位」的檢索步驟,在海量數據的高清視頻監控,目錄和文件數量十分可觀,這種檢索模式的效率就會大打折扣。採用序號文件定位可以有效解決該問題。

雲存儲可以提供非常高的的系統冗餘和安全性。當在線存儲系統出現故障後,熱備機可以立即接替服務,當故障恢復時,服務和數據回遷;若故障機數據需要調用,可以將故障機的磁碟插入到冷備機中,實現所有數據的立即可用。

對於高清監控系統,隨著監控前端的增加和存儲時間的延長,擴展能力十分重要。市場中已有友商可提供單純針對容量的擴展櫃擴展模式和性能容量同步線性擴展的堆疊擴展模式。

雲存儲系統除上述優點之外,在平台對接整合、業務流程梳理、視頻數據智能分析深度挖掘及成本方面都將面臨挑戰。承建大型系統、構建雲存儲的商業模式也亟待創新。受限於寬頻網路、web2.0技術、應用存儲技術、文件系統、P2P、數據壓縮、CDN技術、虛擬化技術等的發展,未來雲存儲還有很長的路要走。

以上是小編為大家分享的關於大數據時代下的三種存儲架構的相關內容,更多信息可以關注環球青藤分享更多干貨

❹ 學習雲計算和大數據要有哪些基礎知識

雲計算與來大數據工程師是指自將包括硬體軟體的一切資源(計算能力,存儲等)通過虛擬化和分布式技術,對網路中海量數據中,進行高效的獲取數據,有效的深加工,並最終得到感興趣的數據,以數據為支撐,通過網路以便利的、按需付費的方式獲取計算資源(包括網路、伺服器、存儲、應用和服務等)並提高其可用性的模式。

❺ 大數據和雲計算是什麼

大數據和雲計算的區別:
1)目的不同:大數據是為了發掘信息價值,而雲計算主要是通過互聯網管理資源,提供相應的服務。
2)對象不同:大數據的對象是數據,雲計算的對象是互聯網資源以及應用等。
3)背景不同:大數據的出現在於用戶和社會各行各業所產生大的數據呈現幾何倍數的增長;雲計算的出現在於用戶服務需求的增長,以及企業處理業務的能力的提高。
4)價值不同:大數據的價值在於發掘數據的有效信息,雲計算則可以大量節約使用成本。
不看現在雲計算發展情況,未來的趨勢是:雲計算作為計算資源的底層,支撐著上層的大數據處理,而大數據的發展趨勢是,實時互動式的查詢效率和分析能力,借用Google一篇技術論文中的話:「動一下滑鼠就可以在妙極操作PB級別的數據」,確實讓人興奮不能止。
大數據分析經常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十數百或甚至數千的伺服器分配工作,大數據需要特殊的技術,以有效地處理大量數據。適用大數據的技術,包括大規模並行處理資料庫、數據挖掘電網、分布文件系統、分布式資料庫、計算平台、互聯網和可擴展的存儲系統,大數據指的海量的數據一般日處理PB級別以上,一般用於挖掘,分析,做一些智能性商業板塊。
大數據必然與雲計算有相關(大數據和雲計算沒有必然的聯系,你要作大數據,可以用雲計算,也可不用)數據中心是雲計算基礎,從技術上來看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分,大數據必然無法用單台的計算機進行處理,必須採用分布式的架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算分布式處理、分布式資料庫和雲存儲、虛擬化等技術,隨著雲時代的來臨,大數據也吸引了越來越多的關注。

❻ 大數據存儲技術都有哪些

1. 數據採集:在大數據的生命周期中,數據採集是第一個環節。按照MapRece應用系統的分類,大數據採集主要來自四個來源:管理信息系統、web信息系統、物理信息系統和科學實驗系統。

2. 數據訪問:大數據的存儲和刪除採用不同的技術路線,大致可分為三類。第一類主要面向大規模結構化數據。第二類主要面向半結構化和非結構化數據。第三類是面對結構化和非結構化的混合大數據,

3。基礎設施:雲存儲、分布式文件存儲等。數據處理:對於收集到的不同數據集,可能會有不同的結構和模式,如文件、XML樹、關系表等,表現出數據的異構性。對於多個異構數據集,需要進行進一步的集成或集成處理。在對不同數據集的數據進行收集、排序、清理和轉換後,生成一個新的數據集,為後續的查詢和分析處理提供統一的數據視圖。

5. 統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、t檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測、殘差分析,嶺回歸、logistic回歸、曲線估計、因子分析、聚類分析、主成分分析等方法介紹了聚類分析、因子分析、快速聚類與聚類、判別分析、對應分析等方法,多元對應分析(最優尺度分析)、bootstrap技術等。

6. 數據挖掘:目前需要改進現有的數據挖掘和機器學習技術;開發數據網路挖掘、特殊群挖掘、圖挖掘等新的數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破面向領域的大數據挖掘技術如用戶興趣分析、網路行為分析、情感語義分析等挖掘技術。

7. 模型預測:預測模型、機器學習、建模與模擬。

8. 結果:雲計算、標簽雲、關系圖等。

關於大數據存儲技術都有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

❼ 有什麼軟體可以實現視頻雲存儲

瑞馳的海量冷數據存儲系統秉承「用科技力量推動社會創新」的願景,不斷將網路在雲計算、大數據、人工智慧的技術能力向社會輸出。

❽ 2022年大數據、雲計算現狀如何

雲計算可以為用戶提供眾多的服務,大致包括三個層次的服務,分別是基礎設施即服務、平台即服務和軟體即服務。
通過雲計算技術,這些應用可以大大的方便我們的生活,我們可以隨時隨地把我們需要存儲的信息傳上雲端而不需要考慮存儲空間等問題,我們還可以隨時隨地的舉行會議,而不需要受地域的限制,不需要麻煩的出差,會議便可以輕松地得到解決,這樣省下了許多的時間和金錢。
在產業發展領域:
雲計算加速了產業優化升級步伐,越來越多的企業通過大規模部署雲計算在推動戰略性變革,實現更精準的決策和更深入的協作方面獲得企業核心競爭優勢。藉助互聯網、雲計算技術,實現多業態融合,成為產業結構調整升級新方向,極大的促進中小企業創新創業和全社會信息化水平提升。
對於中小型企業來說,人才和預算相對比較有限,通過雲計算,這些企業可以通過雲計算提供的租用模式來使用其他公司企業的先進技術。
對於大企業而言,其主要是用雲計算來做基礎架構服務。
在公共服務領域:
雲計算提升了服務水平和管理效率。隨著雲計算和大數據技術在智慧城市建設、社區精細管理、疾病預防和治療、食品葯品安全監管、環境污染監測等領域的逐漸應用,社會管理效率、公共服務水平和人民幸福感將得到極大的提升。
在個人生活領域:
雲計算使工作更加高效,生活更加快樂。隨著雲計算、大數據時代的到來,雲辦公、雲筆記、雲視頻、雲記帳等被廣泛應用,可穿戴設備隨時關注著我們的健康。基於大數據的反饋經濟,讓我們生活的更加便捷。
雲計算的市場潛力和發展前景是巨大的,其中雲計算擴展投資價值、混合雲計算的出現、移動雲服務和雲安全等幾個方面是備受關注的。
如今安全性問題成為了雲計算發展的最大阻礙,如何保證用戶敏感數據不被懷有惡意的人所利用和竊取是目前迫切需要解決的問題。
雲計算要發展壯大需要眾多用戶的參與,這就帶來了關於隱私的問題出現,很多用戶擔心自己的隱私會被其收集和利用。雲計算發展壯大要走的路還很長,需要解決的問題也很多,除了以上提到的兩個問題,還有網路傳輸問題和如何建立統一的技術標准等問題需要處理,只有把這些問題都一一解決了,我們才能說雲計算真正的融入了我們的生活,並且能給我們帶來前所未有的方便和用得舒適與安心。

閱讀全文

與雲視頻大數據存儲相關的資料

熱點內容
什麼格式的配置文件比較主流 瀏覽:984
增加目錄word 瀏覽:5
提取不相鄰兩列數據如何做圖表 瀏覽:45
r9s支持的網路制式 瀏覽:633
什麼是提交事務的編程 瀏覽:237
win10打字卡住 瀏覽:774
linux普通用戶關機 瀏覽:114
文件夾的相片如何列印出來 瀏覽:84
mpg文件如何刻錄dvd 瀏覽:801
win10edge注冊表 瀏覽:309
cad圖形如何復制到另一個文件中 瀏覽:775
sim文件在手機上用什麼打開 瀏覽:183
ubunturoot文件夾 瀏覽:745
手機文件誤刪能否恢復數據 瀏覽:955
照片文件名中的數字代表什麼 瀏覽:44
cs6裁切工具 瀏覽:235
資料庫超過多少數據會卡 瀏覽:858
CAD落圖文件 瀏覽:125
怎樣翻譯文件內容 瀏覽:679
戴爾r910安裝linux 瀏覽:69

友情鏈接