㈠ 八年級語文上冊第4-5單元試卷
語文的學習應該怎樣學才學的有效果,學得有成績?下面梳理了八年級語文上冊第4-5單元試卷,供大家參考借鑒。
一、積累與運用(30分)
1.請給下列語段加點的字注音或根據拼音寫出漢字。(3分)
我曾在你的記憶中háo 啕大哭,像一個小氣的孩子;也曾在你的chōng 憬里,低吟淺唱,像一個睿( )智的老人。祖國啊,現在,我躺在你寬大的手掌中,像一顆露珠,被你千年的皺紋細細摩挲( )。
2.下列句子中,加點的成語使用不正確的一項是( )(3分)
A.創新是文化的本質特徵,任何一種文化要有活力和競爭力,歸根到底要激發創造力。
B.當微波爐走進千家萬戶的時候,各種質疑聲層出不窮,最危言聳聽的是微波致癌一說。
C.郭孝義意味深長地說,通過「融入中原、對接上海」,他們深刻意識到品牌效益遠遠高於資源效益。
D.新一輪的「環保風暴」正在掀起,鋼鐵企業首當其沖,受到沖擊。
3.下列各句中標點符號使用完全正確的一項是( )(3分)
A.魯達道:「先打四角酒來」。
B.不多時,只見兩個到來,前面一個十八九歲的婦人,背後一個五六十歲的老兒。
C.因為班裡多了幾個「女穆鐵柱」,女生們無形之中就更神氣了。
D.他指示說,由大家代表他:也不問問大家是否願意代表他,這個專啃英語書的傢伙!
4.(安順中考)下列對病句的修改不正確的一項是( )(3分)
A.為了防止不再出現這樣的問題,我們班全體同學專門開會研究,制定出具體的改進措施。(把「不再」刪掉)
B.通過開展機動車使用乙醇汽油的活動,使中山市的空氣更加清新。(把「使」刪掉)
C.為了搞好這次活動,老師徵求了同學們廣泛的意見。(把「為了」刪掉)
D.我們中學生如果缺乏創新精神,也不能適應知識經濟時代的要求。(把「也」改為「就」)
5.下面文學常識表述有誤的一項是( )(3分)
A.《魯提轄拳打鎮關西》選自《水滸傳》,作者是元末明初小說家施耐庵。大鬧五台山、倒拔垂楊柳、單打二龍山、大鬧野豬林、大戰呼延灼等都是與魯達相關的經典故事情節。
B.《范進中舉》選自《儒林外史》,作者是清代小說家吳敬梓,課文通過對比描寫范進中舉前後不同的境遇,形象地說明了科舉制度是套在封建知識分子身上的精神枷鎖,是戕害人心、敗壞社會風俗道德的毒劑。
C.當代兒童文學作家秦文君的長篇小說《選舉風波》,圍繞一次學生會幹部選舉而展開,是一部反映當代中學生精神風貌的小說,筆調生動活潑、輕松幽默。
D.美國兒童文學作家貝特西貝爾斯的《山米與白鶴》生動細膩地描寫了山米與外祖父相處的一段經歷,告訴我們「愛不僅使人與人相互理解,相互貼切,甚至也能使人與動物、與大自然相互溝通」。
6.(黔南州中考)下列句子排序恰當的一項是( )(3分)
①我們需要培養實驗的精神。
②不但研究學術不可缺少,而且在應付今天的世界環境也是不可少的。
③我覺得真正的格物致知精神。
④要靠實踐來發現事物的真相。
⑤就是說,不論是研究自然科學,研究人文科學,還是在個人行動上,我們都要保留一個懷疑求真的態度。
A.①④⑤②③ B.③②①⑤④
C.④⑤③①② D.④③①⑤②
7.(東營中考)下面是某名著的插圖,請認真觀察,完成下面的填空。(4分)
插圖出自中國古代小說「四大名著」中的《_________》。本書通過______________、__________________等情節事件(不含插圖中表現的內容)塑造了畫面中的主人公_________這一俠義英雄的形象。
8.(東營中考)綜合性學習。(8分)
材料一:據統計,A市患呼吸、心腦、內分泌系統疾病的人數比例與10年前比增加了2.4倍。醫學證實,霧霾中的微顆粒攜病菌進入呼吸道和肺葉中引起炎症,進入人體血液循環導致人腦功能衰老,引起如腎衰竭等生殖泌尿系統病變,進入心臟引發心肌梗死、心肌缺血或損傷,對人體造成直接嚴重危害。
材料二:A市10年前曾被譽為「天然氧吧」,如今卻遭受著霧霾嚴重污染。
表一 A市2014年1—3月份空氣質量(單位:天)
月份嚴重污染中度污染輕度污染良優
1月58891
2月58870
3月59980
表二 A市霧霾成分分析結果
污染源熱電排放化工生產汽車尾氣居民生活地麵灰塵其他
所佔比例25.2%30.7%13.5%12.7%11.9%6%
(1)綜合研讀以上材料,寫出你探究發現的結果。(4分)
(2)6月5日為世界環境日,世界環境日到來之際,學校組織開展「生命與空氣」語文綜合性學習,請你設計一項活動;聯系實際擬寫一則公益廣告。(4分)
二、閱讀理解(40分)
一)(河南中考)閱讀下文,完成練習。(14分)
看自行車的女人
梁曉聲
○1為那個看自行車的女人寫點什麼的念頭,已萌生在我心裡很久了。
②第一次見到她,是在北京一家醫院前的人行道上。一個胖女人企圖奪她裝錢的書包,書包的帶子已從她肩頭滑落,搭垂在手臂上。身材瘦小的她雙手將書包緊緊摟在懷里,以帶著哭腔的聲音叫嚷:「你不能這樣啊,我每天掙點兒錢多不容易呀!」
③她40餘歲,穿著一套舊迷彩服,戴著一頂舊迷彩單帽。那身衣服一看就是地攤貨。腳下是一雙老式舊布鞋,沒穿襪子,腳面曬得很黑。帽舌下,她的兩隻眼睛,呈現著莫大而又無助的驚恐。
④我從圍觀者的議論中聽明白了兩個女人糾纏的原因:那胖女人存車時,忘了拿放在車筐里的包,包丟了。她認為這個看自行車的外地女人應該負責任,並且懷疑是被她藏起來了。
⑤胖女人一用力,終於將看自行車的女人那書包奪了去,她將一隻手伸進包里去掏,卻 只不過掏出了一把零錢。「當」的一聲,一隻小搪瓷碗拋在看自行車女人的腳旁,搶奪者騎上自己的'自行車,帶著裝有一把零錢的別人的書包,揚長而去。
⑥看自行車的女人追了幾步,回頭看看一排自行車,慢慢走回原地,撿起自己的小搪瓷碗,瞧著發愣。忽然,她把頭往身旁的大樹上一抵,嗚嗚哭了……
⑦第二次見到她,是在一家商場的自行車場。我因沒買到合適的東西,帶著 的一百元錢也就沒破開。取自行車時,我歉意地說:「忘帶存車的零錢了,一百元你能找得開嗎?」我以為她會朝不好的方面猜疑我,因為一個人從商場出來,居然說自己兜里連幾角零錢都沒有,不大可信的。她望著我怔了怔,然後一笑,很不好意思地說:「那就不用給錢了,走吧走吧!」她當時那笑,給我留下很深的印象。我們許多人,不是已被猜度慣了嗎?偶爾有一次竟不被明明有理由猜度我們的人所猜度,於是我們自己反倒覺得很稀奇了。每每的,竟至於感激起來。我當時的心情就是那樣。應該不好意思的是我,她倒那麼不好意思。
⑧後來我又去那家商場,付存車費時,我說:「上次欠你兩毛錢,這次一起付給你。」我之所以如此主動,是我覺得她肯定記得我欠她兩毛錢的事,若由她提醒,我會尷尬的。不料她又像上次那樣怔了怔,然後一笑,很不好意思地說:「不用啊,不用啊!」硬塞還給了我兩毛錢。我將裝東西的紙箱夾在車後座上,忍不住問她:「來北京多久了?」「還不到半年。」「家鄉的日子怎麼樣?」「不容易啊……再加上我兒子又上了大學……」她將「大學」兩個字說出特別強調的意味,一臉自豪。我推自行車下人行道時,覺得後輪很輕,回頭一看,她正替我提著後輪呢。騎上自行車剛蹬了幾下,紙箱掉了,她跑過來,從書包里掏出一截塑料繩……
⑨這年冬天,雪後的一個晚上,單位一位退休攝影師給我打電話,讓我替他寫一封表揚信。他要表揚的,就是那個看自行車的女人。「我到那家商場去,遇到熟人聊了一會兒,竟忘了取自行車,拎兜也忘在車筐里了。拎兜里的幾百元錢倒沒什麼,關鍵是我洗的三百多張老照片啊!幹了一輩子攝影,那些老照片可都是我的寶呀!天黑了我才想起來,'急忙趕去,你猜怎麼著?就剩我那輛車了!商場早關門了,看車的女人在冷風中站著,抱著我的拎兜,守著我那輛舊自行車。人心不可以沒有了感動呀,是不是?人對人也不可以不知感激呀,是不是?」他在電話里言辭懇切。
⑩不久前我又去那家商場,見看自行車的已經換成一個男人了,我想問原先那個女人到哪裡去了,張了張嘴,卻什麼也沒問。我祈願她永遠也不會再碰到什麼欺負她的人,比如那個搶奪了她書包的胖女人。
○11陽光底下,人與人應該是平等的。弱者有時對這平等反倒顯得誠惶誠恐似的,不是他們不配,而是因為這起碼的平等往往太少,太少……
9.本文寫了「看自行車的女人」的哪幾件事?請用簡潔的語言分別概括。(4分)
10.品讀第③段和第⑥段,從人物描寫的角度,結合相關語句進行賞析。(4分)
11.本文表現了作者的理性思考。作者是如何做到這一點的?請以第⑦段為例進行分析。(3分)
12.從全文看,「我」為什麼想為「看自行車的女人」寫點兒什麼?(3分)
(二)閱讀下文,回答問題。(14分)
親情,一生的歸宿
①男人處於人生最深的低谷。剛剛和妻子簽完離婚協議書。六歲的兒子和她都要離開自己。他沒有怨言,只是覺得對不起兒子,讓他在六歲就面臨這家庭的破碎。今年的經濟危機,他投資的股份打了水漂,自己還背著沉重的債務,還有失落、嘆息和迷惘……
②這天夜晚,他站在13樓的陽台上。望著上海這個大都市,他不到二十就離開家鄉,在這里打拚了十幾年,可最後還是無家可歸,要到處流浪。他最後看看這個即將不屬於自己的房子,明天就有人來接收了。這最後一夜裡,他想到了自己的老家,他決定回家看看,然後四海為家,因為他不想讓家人知道自己的處境。
③終於回家了,母親還是腿腳不方便,哥哥也老了許多。給父親上完墳已是傍晚,母親做了豐盛的家鄉菜,哥哥拿出兩瓶酒,母親就開心地看著。這天,他聊得很開心,嗓子都啞了。小時候,他和哥哥晚上一起在油燈下寫作業,然後母親從櫃子里拿出一塊冰糖,咬開後給他哥倆一人一半,他倆總是笑呵呵地填到嘴裡,母親總是笑。還有一次,他偷了鄰居李大爺的瓜,然後兄弟二人又偷偷地吃了。晚上李大爺找到他家裡來,他指著哥哥說是他偷的,哥哥就這樣被父親打了一頓。事後哥哥找他理論,他說哥哥也注意那瓜好幾天了,何況哥哥也吃了……這夜,嫂子送來的棉被很暖,不知不覺他就睡著了。
④第二天,他說公司還有事要馬上回去,母親送他很遠,還囑咐他明年端午一定要回來。他只是點點頭,就啟動了發動機……
⑤到了村口,他不舍地往村裡看。卻看到哥哥急匆匆地跑來。他下了車,哥哥給他一個包裹,說了幾句 家常話就走了。他上了車,打開包裹,裡面卻是錢。有幾摞100的還有50、20的,甚至5元的,裡面還有一張紙條:
⑥剛子,哥哥知道你的困難,你昨天給咱爸說的我都聽到了。雖然我沒有什麼文化,但我想讓你知道,無論有什麼困難,都不要放棄希望。累了,就回家看看,媽盼望你端午回家。
⑦他看著包裹,雖然它對於自己欠的債微不足道,卻是哥哥一點一滴積攢下來的。從失意到現在,一個男人,終於流出了淚水……
⑧也許親情不能永遠,但它卻永遠真摯可貴。也許親情沒有愛情來的浪漫,但它卻比愛情純凈得多。家,才是永恆的港灣,它容納你的快樂和痛苦。如果愛情可以陪你走到最後,那麼親情,是你一生的歸宿。
13.為什麼說「男人處於人生最深的低谷」?(4分)
14.第③段插敘小時候和哥哥在一起的哪兩件事?從全文看,起到怎樣的作用?(4分)
15.「雖然它對於自己欠的債微不足道,卻是哥哥一點一滴積攢下來的。」加點詞語在句中起到怎樣的作用?(3分)
16.如何理解「親情,是一生的歸宿」?(3分)
(三) (濱州中考)閱讀下文,完成18~22題。(12分)
在大數據中「精準」生活
①萬物皆互聯,無處不計算。因為互聯網、手機、無線感測器的普及,實時監測、遠程協作、SOHO工作、數據管理已成為平常之事,信息像水電一樣通過網路供應汩汩傳輸,計算機上有形的數據轉化為無形的財富,深入並造福於現實生活。
②這標志著雲計算與大數據時代的開啟。智能管理、社交網站、物聯網、IPv6,當新技術風馳電掣般地駛入生活,我們如同搭上高鐵列車,還來不及看清楚窗外的風景,就已呼嘯著越過下一個站台。大數據應用於健康管理,幾乎表徵了新媒體技術層面的全部特徵:電子檔案高度個性化;人工智慧幫助我們細分信息;遠程協同記錄用戶的行為模式;數據挖掘預測人們的未來需要。而智能終端與「可穿戴」計算設備的出現,更使得行為、位置、生理數據等細微變化成為可供記錄和分析的精準對象。
③盡管大數據這個名詞並不新鮮,但社會對於大數據價值的認識尚在深化。20世紀80年代,美國人首先提出了這個概念。雅虎的科學家發現,得益於計算 機技術和海量資料庫的發展,個人在真實世界的活動能夠得到前所未有的紀錄。隨著新媒體技術的更新,如今,大數據的概念逐漸拓展,涵蓋了從數字圖像、新聞跟帖、文本記錄、視頻文檔、社交平台互動所提供的所有信息。不僅如此,它還被視作一種能力,引發了社會和國家戰略層面的深刻關注。
④大數據之「大」,不僅在於容量,更在於社會對其價值的洞悉:在大數據所重塑的後信息環境中,一個大規模生產、分享和應用數據的世界撲面而來。正如學者維克托邁爾—舍恩伯格所說,它的真實價值就像漂浮在海洋中的冰山,第一眼只能看到一角,絕大部分隱藏於表面之下。
⑤但即便如此,我們依然可以清楚察覺到大數據給社會帶來的一些改變。從谷歌的流行病分析系統到沈陽渾南居民的數據查詢終端,基於信息的創新成為服務的先導,連接民生,可以救助更廣泛的普通大眾;以雲計算為基礎的信息存儲、分享和挖掘手段,推動著數據的交換、整合和分析,可以幫助人們發現新知,創造新的價值;作為新發明和新服務的源泉,大數據也影響到傳統學科研究的分化,改變了人們的價值取向、知識結構和生活方式。有學者將大數據比作觀察人類自身社會行為的顯微鏡和儀表盤。而我們看到,這個新的測量工具,再一次引領新的繁榮,提供給人們更多的選擇。
⑥作為發掘價值、征服數據的強大引擎,大數據所帶來的更多改變蓄勢待發。站在創新、競爭和生產率提高的前沿,思索大數據對於生活的意義,如何將數據、信息轉化為知識,擴大人類的理性,實現技術與智能服務的跨越?如何規避風險、應對它對管理世界所提出的挑戰?如何藉助於大數據的力量將人類的觀察和理解推向「精準」,並衍生出有效的解決方案?答案還存在於人類智慧的彼此交融之中。
(選自《人民日報》,有刪改)
17.簡要概括第⑤段中大數據給社會帶來了哪些改變?(3分)
18.第④段畫橫線的句子運用了哪種說明方法?有什麼作用?(3分)
19.第②段中加點的「幾乎」一詞能否刪去?為什麼?(3分)
20.下面的說法或推斷符合原文意思的一項是( )(3分)
A.大數據這個名詞早已出現,社會對於大數據價值的認識也早已深化。
B.我們已經進入大數據時代,可以「精準」規避風險,成功應對所有挑戰。
C.大數據作為一種新的測量工具,將再次引領新 的繁榮,提供給人們更多的選擇。
D.大數據之「大」,僅僅是因為它的容量大,數據大。
三、寫作(50分)
21.請從下面兩個題目中任選一題作文。
(1)在現實生活中,面對正義、面對危難、面對挫折、面對誘惑,我們該以怎樣的勇氣和精神去拷問自己的靈魂?是直面還是退避?是迎擊還是躲讓?是承擔還是推辭?
請以「面對」為話題,寫一篇600字左右的作文。(不要寫成詩歌)
(2)在本單元的「環保小課題研究」中,你一定找到了自己感興趣的課題,展開了相應的調查、研究。現在請你將自己調查的事物或現象依據你的資料寫一篇說明文。
要求:突出事物的特徵,運用合理的說明順序,採用恰當的說明方法,600字左右。
【參考答案】
1.嚎 憧 ruì suō
2.B(解析:「危言聳聽」指故意說些誇大的嚇人的話,使人驚疑震動,「微波致癌一說」在句中並沒有表明是故意說的,這里宜用「駭人聽聞」。)
3.C(解析:A項句號應在引號之內;B項第二個逗號改為冒號;D項冒號改為破折號。)
4.C(解析:C項是語序不當,「廣泛」應位於「徵求」之前。)
5.C(解析:應為長篇小說《男生賈里女生賈梅》。)
6.B
7.水滸傳 大鬧野豬林 拳打鎮關西 魯智深(魯達)
8.(1)熱電、化工、汽車尾氣排放,導致A市空氣污染嚴重(或每月污染天數佔到三分之二以上);因為霧霾會對人體的呼吸、心腦、內分泌系統造成直接嚴重危害,所以A市患呼吸、心腦、內分泌系統疾病的人數比例比10年前增加了2.4倍。(2)活動示例:查閱資料,了解空氣質量對動植物生存乃至生命的相關影響,撰寫研究報告;舉辦「保護空氣,從我做起」義務宣傳活動;開展「遠離霧霾,共享藍天」徵文、演講比賽或圖片展覽;組織「霧霾的產生及治理」社會調查,並撰寫調查報告。公益廣告示例:你污染空氣,空氣污染你;綠色是生命的食糧,空 氣也是生命的食糧;一個人人戴著防毒面具呼吸的世界是多麼可怕!
9.①她被胖女人冤枉,被搶走了裝錢的書包。②她知道我沒零錢時,免收我的存車費。③她不要我補給她的存車費,還幫我抬車、捆紙箱。④她等候忘了取車的攝影師,並幫他保管拎兜。
10.第③段:主要運用了外貌描寫。「舊迷彩服」「老式舊布鞋」「腳面曬得很黑」寫出了她衣服的廉價、穿著的過時、工作的 辛苦。或:「她的兩隻眼睛,呈現著莫大而又無助的驚恐」寫出了她當時的處境和內心的驚恐。第⑥段:主要運用了動作描寫。「追」「回頭看看」「慢慢走回」「撿起」「瞧」「抵」「哭」寫出了她被搶後的為難、無助與傷心。
11.在敘述她免收「我」存車費這件事後進行議論。由她對「我」的信任、體諒,引起了「我」對人與人之間猜度與信任的感慨,引人深思。
12.示例:①看自行車的女人的遭遇令「我」同情,她對「我」的體諒、對工作的盡職盡責令「我」感動。②看自行車的女人是社會中弱者的代表,為她寫點什麼是為了呼籲人們尊重他們,平等對待他們。
13.①剛剛和妻子簽完離婚協議書。②六歲的兒子和妻子都要離開自己。③今年的經濟危機,他投資的股份打了水漂。④自己還背著沉重的債務。
14.第一件事是和哥哥同吃一塊糖;第二件事是他偷瓜,哥哥挨打。這兩件事都寫了童年時和哥哥在一起的事情,體現了手足情深,為下文中哥哥把自己一點一點攢下的錢送給他作鋪墊。
15.「一點一滴積攢」,特別突出這個詞,體現了哥哥的錢來之不易,哥哥能把這些錢都給了他,體現了哥哥對他的關心和幫助,體現了手足情深。
16.示例:血濃於水,親情,是永遠難以割捨的,不管時隔多久, 相隔多遠,永遠那麼真摯可貴。無論富有與貧窮,無論幸福與悲慘,無論何時,親情永遠是人生的歸宿。
17.可以救助更廣泛的普通大眾;可以幫助人們發現 新知,創造新的價值;改變了人們的價值取向、知識結構和生活方式。
18.打比方。把大數據的真實價值比作「漂浮在海洋中的冰山」,具體形象地說明了它巨大的價值還未被發現,有待於進一步開發。
19.不能刪去。因為「幾乎」是十分接近,差不多的意思,說明了「大數據應用於健康管理」差不多「表徵了新媒體技術層面的全部特徵」,刪除後說法就太絕對了,不符合事實,體現了說明文語言准確、嚴密的特點。
20.C
21.作文略。
㈡ 大數據時代讀後感1000字
大數據時代讀後感1000字(精選7篇)
當品味完一本著作後,大家心中一定有很多感想,現在就讓我們寫一篇走心的讀後感吧。怎樣寫讀後感才能避免寫成「流水賬」呢?下面是我精心整理的大數據時代讀後感1000字,僅供參考,大家一起來看看吧。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾——舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,如果能做足功課又具備相應的理論功底,就能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--」並非原子而是信息才是一切的本源「,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字
當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。
在附上一些事例的時候,用作者提供的」本質「去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,
大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。
第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)
第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度
第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們」是什麼「而不是」為什麼「。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。,出處:短美文,否則追究其責任,謝謝你的支持,我們會給做得更好!
正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與」過去的經驗或積累的部分知識「相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。
所以作者稱之為revolution。
講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是,預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡
公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。
扯到這里,順便扯一下,書中另一段關於自由意志的描述
在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。
書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,」哎喲,我居然看過這部電影,想想心裡還是有點小激動「,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。
最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。
大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。
「大數據」一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。
作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。
書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。
為什麼是清新的呢?因為書中的內容彷彿向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處於網路時代 ,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到「猜你喜歡」的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自於那些曾被忽略的大數據同時也在證明「預測,大數據的核心」這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像「猜你喜歡」欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網路時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。「本質上世界是由信息構成的」,面對這句話時,大數據時代彷彿就在眼前。
在感受驚嘆著大數據能為我們做到以往無法想像的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言「我們時刻暴露在『第三隻眼』下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什麼都知道」,而且利用大數據我們可以預測許多事情並且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年後就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什麼?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。
於是我繼續去探索作者對這問題的思考。「更大的數據在於人本身」,作者還說「我們是在創造更好的未來」,也說「在一個預測的時代里,人類的.自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本」。人類學家克利福德吉爾茲曾說:「努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。」這些話語彷彿是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背後對人溫暖的光芒。
面對時代的變革,我會為堅守內心深處的自由意志而努力並「擁抱大數據」。
世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺於搖籃之中—這遠勝於"防患於未然"。
《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了 "大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落於世界進程之後,所以我們必須轉變我們的思想。
"我們不再熱衷於尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯繫到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷於"精確",而是"混亂",若不接受"混亂",那麼有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之後,我們就可以從這些數據之中發掘它們的相關關系,即以"是什麼"而不是"為什麼"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。
這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年h1n1流行之時,通過檢測檢索詞條,處理34。5億個不同的數據模型,通過預測並與2007、2008年的美國疾控中心記錄的實際流感病例進行對比後,確定了45條檢索詞條組合,並將其用於一個特定的數學模型後,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。
同時,雖然大數據可為人類造福、對抗病症,但這僅限於掌握這門技術而言,若不重視這種技術,當我們的對手早於我們一步構建這種數據網路之時,便是我們的災難,想想,大數據雖核心的在於預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控於敵手,敵方甚至可以藉此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。
對於我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網路共享化的時代,通過這些數據,建立數據模型,可以准確分析並給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好准備,去應對大數據時代的一切!
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。
我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。
如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。
與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。
舍恩伯格的《大數據時代》,讓我重新審視了"大數據"這個在信息時代異軍突起的熱點詞彙,作為信息安全專業的我,對大數據這個詞本身有著更多的熱忱。
在網路上搜索到的解釋是:"大數據",或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。
而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。
本書中,主要從三個方面論述,即思維變革、商業變革和管理變革。而舍恩伯格更是著重闡明三大觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。
對於觀點一,我不敢苟同,畢竟大數據的實現需要一定的技術支持,而顯然,現在這種技術還不夠成熟,同時一些簡單的事情運用大數據反倒是問題更加復雜化,因此這種大叔據的繁雜處理方式更適用於一些特定的情況,比如商業預測,人類dna的研究等。
而對第二種觀點,我是十分贊同舍恩伯格所說的"大數據的簡單演算法比小數據的簡單演算法有效"。在計算機行業迅速發展中,一種新的簡單可行的演算法的出現,遠沒有計算機在運算速度和存儲容量的發展快,而大數據演算法似乎更能迎合這種大趨勢。
觀點三中提到的相關關系在大數據中可是重量級的,它能較快找到事物規律和對應的解決措施,當然,也不能完全忽視因果關系,畢竟人們在思維上更能夠接受因果關系分析出的結果,而大數據預測的需要人們慢慢的適應才能接受。當我們完成相關關系的分析而又不滿足於只知道"是什麼"的時候,我們就可以轉而研究"為什麼"了,畢竟問題的根本在於因果。而舍恩伯格的全體數據和相關關系是大數據時代下的一種捷徑。
但是在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。
在這樣的大環境下,常引起我更多的思考和擔憂。
大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。
工業化、信息化,我們都向世界交出了一份讓世界不能小覷的答案;
大數據時代的數據化我們又將怎樣在新的風暴中所向披靡,如果大數據時代是一種必然趨勢,那這就是我們這一代人的責任,是我們新的戰場!
;㈢ 《大數據時代》的讀後感
當認真看完一本名著後,大家心中一定有很多感想,為此需要認真地寫一寫讀後感了。你想知道讀後感怎麼寫嗎?下面是我收集整理的《大數據時代》的讀後感範文(通用5篇),僅供參考,大家一起來看看吧。
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的.預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。
在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。
一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?
我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。
在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的.答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
首先,想談一談何為大數據,何為大數據時代。大數據是一種資源,也是一種工具。它提供一種新的思維方式去理解當今這個信息化世界。為何說是一種新的思維方式:在信息缺乏的時代或模擬時代,我們更傾向於精確性的思維方式,就像是」釘是釘,鉚是鉚」,而在這種傳統的思維方式下,我們得到問題的答案只有一個。
而在大數據時代下,我們打破了這種思維方式,換句話說,我們接受結果的不確定性。簡言概括之,我認為大數據是一種預測模型。在大數據時代下,我們關注的不是因果,即為什麼是這樣,而更關心」是什麼」這種相關關系。換句話說,在這種新思維的思考方式下,我們探究問題背後的原因也是不可行的。我們所做的是利用大數據這種工具,讓數據自己說話!
其次,我想談下如何利用大數據提升我軍戰鬥力。當然,大數據分析並不是精準的預測,精準的預測也是不存在的。大數據只能有利於我們理解現在和預測未來的可能性。
作為軍人,我所關注的是如何利用好大數據的工具提升我軍戰鬥力,打贏這場信息化戰爭。毫無疑問,現在我們打的不是刀對刀,槍對槍的戰爭,更不是模擬時代,當代乃是數字時代,打的是信息化戰爭!
四次戰爭的大勝,美軍的戰爭形態從機械化轉向信息化,而且相應的在戰場取勝的時間也越來越短,這正是大數據時代下的必然結果。而我軍正在轉向信息化的過程中。在此戰爭形態的過程中,我們需要更多的計算分析師,大數據分析師,數學家等高等技術性人才來打贏這場信息化戰爭。這正是大數據時代下我們不得不有的基礎。我軍戰鬥力的提升迫在眉睫!
當然大數據是一把雙刃劍,利用好了取勝也是得心應手,相反,利用不好會導致不可估量的損失。
畢竟,這只是一種預測模型,得不到精準的預測結果。我們更要讓數據為我們所用,不要被龐大的資料庫框住我們的思維。為適應時代的發展,在這個適者生存,弱肉強食的世界,大數據時代下的殘酷競爭已經給我們敲響警鍾,一場悄無聲息的信息化戰爭已經打響!
去年的「雲計算」炒得熱火朝天的,今年的「大數據」又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起「大數據」來了。於是乎,各企業的CIO也將熱度紛紛轉向關注「大數據」來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。
不過話又還得說回來,《大數據時代》是本好書。
當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。
看完此書,我心中的一些問題:
1、什麼是大數據?
查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity這個好像是IBM的定義吧。
以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。
2、大數據適合什麼樣的企業?
誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。
同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?
3、大數據帶來的影響
當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?
1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。
2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司
3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。
㈣ 大數據時代讀後感1000字(2)
大數據時代讀後感1000字(精選7篇)
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--」並非原子而是信息才是一切的本源「,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字
當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。
在附上一些事例的時候,用作者提供的」本質「去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,
大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。
第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)
第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度
第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們」是什麼「而不是」為什麼「。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。,出處:短美文,否則追究其責任,謝謝你的支持,我們會給做得更好!
正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與」過去的經驗或積累的部分知識「相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。
所以作者稱之為revolution。
講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是,預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡
公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。
扯到這里,順便扯一下,書中另一段關於自由意志的描述
在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。
書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,」哎喲,我居然看過這部電影,想想心裡還是有點小激動「,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。
最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。
大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。
「大數據」一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。
作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。
書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。
為什麼是清新的呢?因為書中的內容彷彿向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處於網路時代 ,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到「猜你喜歡」的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自於那些曾被忽略的大數據同時也在證明「預測,大數據的核心」這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像「猜你喜歡」欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網路時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。「本質上世界是由信息構成的」,面對這句話時,大數據時代彷彿就在眼前。
在感受驚嘆著大數據能為我們做到以往無法想像的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言「我們時刻暴露在『第三隻眼』下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什麼都知道」,而且利用大數據我們可以預測許多事情並且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年後就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什麼?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。
於是我繼續去探索作者對這問題的思考。「更大的數據在於人本身」,作者還說「我們是在創造更好的未來」,也說「在一個預測的時代里,人類的自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本」。人類學家克利福德吉爾茲曾說:「努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。」這些話語彷彿是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背後對人溫暖的光芒。
面對時代的變革,我會為堅守內心深處的自由意志而努力並「擁抱大數據」。
世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺於搖籃之中—這遠勝於"防患於未然"。
《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了 "大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落於世界進程之後,所以我們必須轉變我們的思想。
"我們不再熱衷於尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯繫到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷於"精確",而是"混亂",若不接受"混亂",那麼有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之後,我們就可以從這些數據之中發掘它們的相關關系,即以"是什麼"而不是"為什麼"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。
這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年h1n1流行之時,通過檢測檢索詞條,處理34。5億個不同的數據模型,通過預測並與2007、2008年的美國疾控中心記錄的實際流感病例進行對比後,確定了45條檢索詞條組合,並將其用於一個特定的數學模型後,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。
同時,雖然大數據可為人類造福、對抗病症,但這僅限於掌握這門技術而言,若不重視這種技術,當我們的對手早於我們一步構建這種數據網路之時,便是我們的災難,想想,大數據雖核心的在於預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的.導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控於敵手,敵方甚至可以藉此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。
對於我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網路共享化的時代,通過這些數據,建立數據模型,可以准確分析並給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好准備,去應對大數據時代的一切!
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。
我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。
如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。
與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。
舍恩伯格的《大數據時代》,讓我重新審視了"大數據"這個在信息時代異軍突起的熱點詞彙,作為信息安全專業的我,對大數據這個詞本身有著更多的熱忱。
在網路上搜索到的解釋是:"大數據",或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。
而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。
本書中,主要從三個方面論述,即思維變革、商業變革和管理變革。而舍恩伯格更是著重闡明三大觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。
對於觀點一,我不敢苟同,畢竟大數據的實現需要一定的技術支持,而顯然,現在這種技術還不夠成熟,同時一些簡單的事情運用大數據反倒是問題更加復雜化,因此這種大叔據的繁雜處理方式更適用於一些特定的情況,比如商業預測,人類dna的研究等。
而對第二種觀點,我是十分贊同舍恩伯格所說的"大數據的簡單演算法比小數據的簡單演算法有效"。在計算機行業迅速發展中,一種新的簡單可行的演算法的出現,遠沒有計算機在運算速度和存儲容量的發展快,而大數據演算法似乎更能迎合這種大趨勢。
觀點三中提到的相關關系在大數據中可是重量級的,它能較快找到事物規律和對應的解決措施,當然,也不能完全忽視因果關系,畢竟人們在思維上更能夠接受因果關系分析出的結果,而大數據預測的需要人們慢慢的適應才能接受。當我們完成相關關系的分析而又不滿足於只知道"是什麼"的時候,我們就可以轉而研究"為什麼"了,畢竟問題的根本在於因果。而舍恩伯格的全體數據和相關關系是大數據時代下的一種捷徑。
但是在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。
在這樣的大環境下,常引起我更多的思考和擔憂。
大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。
工業化、信息化,我們都向世界交出了一份讓世界不能小覷的答案;
大數據時代的數據化我們又將怎樣在新的風暴中所向披靡,如果大數據時代是一種必然趨勢,那這就是我們這一代人的責任,是我們新的戰場!
;㈤ 生活中有哪些大數據
網路日誌抄、感測器襲網路、社會網路、社會數據、互聯網文體和文件、呼叫詳細記錄、天文學、醫療記錄,籃球比賽中利用大數據對球員的個人在比賽場上的數據分析。
通過收集普通家庭的能耗數據,大數據技術給出人們切實可用的節能提醒;通過對城市交通數據的收集處理,大數據技術能實現城市交通的優化。這些都是大數據在生活中的應用。
(5)在大數據中精準生活閱讀理解答案擴展閱讀:
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據的價值體現在以下幾個方面:
1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2、做小而美模式的中小微企業可以利用大數據做服務轉型
3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
㈥ 了解生活中的大數據 大數據在日常生活中的應用
【導讀】隨著社會的發展以及商業化的推進,大數據已經漸漸的滲透到了我們的日常生活中,那麼大數據在日常生活中的應用有哪些呢?大數據是如何解決我們日常生活中的問題呢?下面小編就帶大家一起來了解生活中的大數據,希望對大家有所幫助。
1、大數據解決生活中的問題——應用於能源
隨著工業化進程的加快,大量溫室氣體的排放,全球氣候發生了變化,因此推動低碳環保顯得尤為重要。將大數據技術應用到能源領域可以為低碳做出巨大貢獻。低碳能源大數據主要由能源信息採集、能源分布式運行、能源數據統計分析、能源調度四個模塊組成。通過這四個模塊,可以科學、自動、高效地實現能源生產和能源管理,實現節能。
2、大數據解決生活中的問題——醫學應用
大數據在醫療領域的應用主要是通過收集和分析大數據進行疾病的預防和治療。患者佩戴大數據設備後,該設備可以收集有意義的數據。通過大數據分析,可以監測患者的生理狀態,從而幫助醫生及時、准確、有效地治療患者。據新華網報道,大數據分析可以讓我們在幾分鍾內解碼整個DNA,找到新的治療方法,更好地理解和預測疾病模式。
3、大數據解決生活中的問題——對於金融業來說
大數據在金融業的主要應用是金融交易。許多股權交易都是使用大數據演算法進行的,大數據演算法可以快速決定是否出售商品,使交易更加簡潔和准確。在這個大數據時代,把握市場機遇,快速實現大數據商業模式創新顯得尤為重要。
4、大數據解決生活中的問題——應用於地理信息
地理信息系統(GIS)需要及時處理相關的空間信息,以及存儲的大量數據和工作任務。將大數據技術合理地應用到地理信息系統中,不僅可以及時處理地理信息,而且可以提高處理結果的准確性。
5、大數據解決生活中的問題——應用於消費
為了在未來的市場中站穩腳跟,建立大資料庫,充分利用大數據技術顯得尤為重要。淘寶、京東等企業將通過大數據技術自動記錄用戶交易數據,對用戶信用進行分析和記錄,形成長期龐大的資料庫,為後續金融業務布局提供徵信和風控數據。
6、大數據解決生活中的問題——應用於製造業
大數據影響生產力,使機器設備在應用中更加智能化、自主化,使生產過程更加簡潔、准確、安全,提高生產能力。此外,大數據技術可以幫助企業了解客戶的偏好,從而生產出市場需要的產品。
以上就是小編今天給大家整理的關於「了解生活中的大數據
大數據在日常生活中的應用」的相關內容,希望對大家有所幫助。總的來說,大數據的價值不可估量,未來發展前景也是非常可觀的,因此有興趣的小夥伴,盡早著手學習哦!
㈦ 怎樣用大數據解決生活中的問題
大數據是一種量大、增長速度快、品類多、價值密度低的數據。新一代信息系統架構和技術,用於對大量、分散的、各種格式的數據進行相關收集、存儲和分析。
大數據的形式包括文字、圖片、視頻等,其多樣化的形式可以幫助人們挖掘有價值的信息。
1、大數據解決生活中的問題——應用於能源
隨著工業化進程的加快,大量溫室氣體的排放,全球氣候發生了變化,因此推動低碳環保顯得尤為重要。將大數據技術應用到能源領域可以為低碳做出巨大貢獻。低碳能源大數據主要由能源信息採集、能源分布式運行、能源數據統計分析、能源調度四個模塊組成。通過這四個模塊,可以科學、自動、高效地實現能源生產和能源管理,實現節能。
2、大數據解決生活中的問題——醫學應用
大數據在醫療領域的應用主要是通過收集和分析大數據進行疾病的預防和治療。患者佩戴大數據設備後,該設備可以收集有意義的數據。通過大數據分析,可以監測患者的生理狀態,從而幫助醫生及時、准確、有效地治療患者。據新華網報道,大數據分析可以讓我們在幾分鍾內解碼整個DNA,找到新的治療方法,更好地理解和預測疾病模式。
3、大數據解決生活中的問題——對於金融業來說
大數據在金融業的主要應用是金融交易。許多股權交易都是使用大數據演算法進行的,大數據演算法可以快速決定是否出售商品,使交易更加簡潔和准確。在這個大數據時代,把握市場機遇,快速實現大數據商業模式創新顯得尤為重要。
4、大數據解決生活中的問題——應用於地理信息
地理信息系統(GIS)需要及時處理相關的空間信息,以及存儲的大量數據和工作任務。將大數據技術合理地應用到地理信息系統中,不僅可以及時處理地理信息,而且可以提高處理結果的准確性。
5、大數據解決生活中的問題——應用於消費
為了在未來的市場中站穩腳跟,建立大資料庫,充分利用大數據技術顯得尤為重要。淘寶、京東等企業將通過大數據技術自動記錄用戶交易數據,對用戶信用進行分析和記錄,形成長期龐大的資料庫,為後續金融業務布局提供徵信和風控數據。
6、大數據解決生活中的問題——應用於製造業
大數據影響生產力,使機器設備在應用中更加智能化、自主化,使生產過程更加簡潔、准確、安全,提高生產能力。此外,大數據技術可以幫助企業了解客戶的偏好,從而生產出市場需要的產品。
你認為大數據已經在我們的生活中無處不在了嗎?在不久的將來,大數據的應用將使我們的生活更美好。
如何用大數據解決生活中的問題?這幾個應用才是大數據工程師關注的,大數據是一種量大、增長速度快、品類多、價值密度低的數據。存儲和分析的新一代信息系統架構和技術,可以點擊本站的其他文章進行學習。
㈧ 《大數據》閱讀答案
所謂‘大數據’,是指數據規模巨大,大到難以用我們傳統信息處理技術合理擷取、管理、處理、整理」「在‘大數據’時代,我們的知識生產若再固守印刷時代的知識生產理念,沿襲此前的知識生產方式,就會被遠遠地甩在時代後面。我在這里整理了《大數據》閱讀答案,希望能幫助到那您。
大數據
近年來,「大數據」這個概念突然火爆起來,成為業界人士舌尖上滾燙的話題。所謂「大數據」,是指數據規模巨大,大到難以用我們傳統信息處理技術合理擷取、管理、處理、整理。「大數據」概念是「信息」概念的3.0版,主要是對新媒體語境下信息爆炸情境的生動描述。
我們一直有這樣的成見:信息是個好東西。對於人類社會而言,信息應該多多益善。這種想法是信息稀缺時代的產物。由於我們曾吃盡信息貧困和蒙昧的苦頭,於是就拚命追逐信息、佔有信息。我們甚至還固執地認為,佔有的信息越多,就越好,越有力量。但是,在「大數據’時代,信息不再稀缺,這種成見就會受到沖擊。信息的失速繁衍造成信息的嚴重過剩。當超載的信息逼近人們所能承受的極限值時,就會成為一種負擔,我們會不堪重負。
信息的超速繁殖源自於信息技術的升級換代。以互聯網為代表的新媒體技術打開了信息所羅門的瓶子,數字化的信息失速狂奔,使人類主宰信息的能力遠遠落在後面。美國互聯網數據中心指出,互聯網上的數據每兩年翻一番,目前世界上的90%以上數據是近幾年才產生的。2000年,數字存儲信息佔全球數據量的四分之一,另外四分之三的信息都存儲在報紙、膠片、黑膠唱片和盒式磁帶這類媒介上。2007年,只有7%是存儲在報紙、書籍、圖片等媒介上的模擬數據,其餘都是數字數據。到2013年,世界上存儲的數據中,數字數據超過98%。面對數字數據的大量擴容,我們只能望洋興嘆。
「大數據」時代對人類社會的影響是全方位的。這種影響究竟有多大,我們現在還無法預料。哈佛大學定量社會學研究所主任蓋瑞·金則以「一場革命」來形容大數據技術給學術、商業和政府管理等帶來的變化,認為「大數據」時代會引爆一場「哥白尼式革命」:它改變的不僅僅是信息生產力,更是信息生產關系;不僅是知識生產和傳播的內容,更是其生產與傳播方式。
我們此前的知識生產是印刷時代的產物。它是15世紀古登堡時代的延續。印刷革命引爆了人類社會知識生產與傳播的「哥白尼式革命」,它使得知識的生產和傳播突破了精英、貴族的壟斷,開啟了知識傳播的大眾時代,同時,也確立了「機械復制時代」的知識生產與傳播方式。與印刷時代相比,互聯網新媒體開啟的「大數據」時代,則是一場更為深廣的革命。在「大數據」時代,信息的生產與傳播往往是呈幾何級數式增長、病毒式傳播。以互聯網為代表的媒介技術顛覆了印刷時代的知識生產與傳播方式。新媒體遍地開花,打破了傳統知識主體對知識生產與傳播的壟斷。新媒體技術改寫了靜態、單向、線性的知識生產格局,改變了自上而下的知識傳播模式,將知識的生產與傳播拋入空前的不確定之中。在「大數據」時代,我們的知識生產若再固守印刷時代的知識生產理念,沿襲此前的知識生產方式,就會被遠遠地甩在時代後面。
(節選自2013.2.22《文匯讀書周報》,有刪改)
《大數據》閱讀題目:
9.下列對「大數據時代」的特點解說正確的一項是
A.數據規模巨大,信息嚴重過剩,總量已超過了人們的承受極限值而成為社會的負擔。B.信息生產呈幾何級數式增長、病毒式傳播,信息傳播方式不再是自上而下,而是相反。
C.精英與貴族的知識壟斷被沖破,傳統知識主體不再是唯一的知識生產者和傳播者。 D.「機械復制時代」知識生產和傳播方式被顛覆,呈動態、多向和空前的不確定性。 10.下列理解,不符合原文意思的一項是
A.人們在信息稀缺時代形成的佔有信息越多越好、越有力量的認識,將隨著「大數據」時代的到來而改變。
B.人類主宰信息的能力遠遠落後於信息的產生,是因為信息技術的升級換代帶來的數字化信息的失速狂奔。
C.從2000年數字存儲信息佔全球數據量的四分之一,到2013年超過98%,說明了傳統媒體被新媒體取代。
D.印刷革命開啟了知識傳播的大眾時代, 與印刷時代相比,互聯網新媒體開啟的「大數據」時代,則是一場更為深廣的革命。
《大數據》參考答案:
9.D【試題分析:論述類文體閱讀的命題主要從概念、判斷、推理三個角度命題,概念注意「答非所問」「內涵、外延不準」「誤劃類別」「張冠李戴」;判斷類注意「范圍不當」「偷換概念」「曲解文意」;推理注意「強加因果」「強行推理」等錯誤。答題的關鍵是審清題干、找准區位、對讀原文、尋找細微的差別。選項A原文「信息的失速繁衍造成信息的嚴重過剩。當超載的信息逼近人們所能承受的極限值時,就會成為一種負擔,我們會不堪重負」現在是「大數據」時代,但還沒有到「當超載的信息逼近人們所能承受的極限值時」,時間范圍混淆;選項B 原文「新媒體技術改寫了靜態、單向、線性的知識生產格局,改變了自上而下的知識傳播模式,將知識的生產與傳播拋入空前的不確定之中」選項「信息傳播方式不再是自上而下,而是相反」,偷換了文中的概念「拋入空前的不確定之中」為「自下而上」;選項C對應的原文「印刷革命引爆了人類社會知識生產與傳播的‘哥白尼式革命’,它使得知識的生產和傳播突破了精英、貴族的壟斷」讓「知識的生產和傳播突破了精英、貴族的壟斷」是「印刷革命」,選項是「大數據時代」,犯了張冠李戴的錯誤。】
10.C【試題分析:選項「說明了傳統媒體正被新媒體取代」,文中沒有依據,屬於無中生有。】
㈨ 什麼是大數據有什麼特徵與性質
大數據必然無法用單台的計算機進行處理,必須採用分布式架構。大數據也是具備有一定的特徵與性質的。以下是由我整理的大數據的內容,希望大家喜歡!
大數據的主要介紹
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產,
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)、Veracity(真實性)。
大數據的特徵
容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;
種類(Variety):數據類型的多樣性;
速度(Velocity):指獲得數據的速度;
可變性(Variability):妨礙了處理和有效地管理數據的過程。
真實性(Veracity):數據的質量
復雜性(Complexity):數據量巨大,來源多 渠道
價值(value):合理運用大數據,以低成本創造高價值
大數據的意義
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。[7] 阿里巴巴創辦人馬雲來台演講中就提到,未來的時代將不是IT時代,而是DT的時代,DT就是Data Technology數據科技,顯示大數據對於阿里巴巴集團來說舉足輕重。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在“大”,而在於“有用”。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是贏得競爭的關鍵。
大數據的價值體現在以下幾個方面:
1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2) 做小而美模式的中小微企業可以利用大數據做服務轉型
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
不過,“大數據”在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:“就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。”這確實是需要警惕的。
在這個快速發展的智能硬體時代,困擾應用開發者的一個重要問題就是如何在功率、覆蓋范圍、傳輸速率和成本之間找到那個微妙的平衡點。企業組織利用相關數據和分析可以幫助它們降低成本、提高效率、開發新產品、做出更明智的業務決策等等。例如,通過結合大數據和高性能的分析,下面這些對企業有益的情況都可能會發生:
1)及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。
2)為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。
3)分析所有SKU,以利潤最大化為目標來定價和清理庫存。
4)根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
5)從大量客戶中快速識別出金牌客戶。
6)使用點擊流分析和數據挖掘來規避欺詐行為。
大數據的結構
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
大數據的應用
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
大數據的主要特點
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
㈩ 在大數據中精準生活閱讀答案
在大數據中精準生活閱讀答案
①萬物皆互聯,無處不計算。因為互聯網、手機、無線感測器的普及,實時監測、遠程協作、SOHO工作、數據管理已成為平常之事,信息像水電一樣通過網路供應汩汩傳輸,計算機上有形數據轉化為無形的財富,深入並造福於現實生活。
②這標志著雲計算與大數據時代的開啟。智能管理、社交網站、物聯網、IPv6,當新技術風馳電掣般地駛入生活,我們如同搭上高鐵列車,還來不及看清楚窗外的風景,就已呼嘯著越過下一個站台。大數據應用於健康管理,幾乎表徵了新媒體技術層面的全部特徵:電子檔案高度個性化;人工智慧幫助我們細分信息;遠程協同記錄用戶的行為模式;數據挖掘預測人們的未來需要。而智能終端與「可穿戴」計算設備的出現,更使得行為、位置、生理數據等細微變化成為可供記錄和分析的精準對象。
③盡管大數據這個名詞並不新鮮,但社會對於大數據價值的認識尚在深化。20世紀80年代,美國人首先提出了這個概念。雅虎的科學家發現,得益於計算機技術和海量資料庫的發展,個人在真實世界的活動能夠得到前所未有的記錄。隨著新媒體技術的更新,如今,大數據的概念逐漸拓展,涵蓋了從數字圖像、新聞跟帖、文本記錄、視頻文檔、社交平台互動所提供的所有信息。不僅如此,它還被視作一種能力,引發了社會和國家戰略層面的深刻關注。
④大數據之「大」,不僅在於容量,更在於社會對其價值的洞悉:在大數據所重塑的後信息環境中,一個大規模生產、分享和應用數據的世界撲面而來。正如學者維克托·邁爾—舍恩伯格所說,它的真實價值就像漂浮在海洋中的冰山,第一眼只能看到一角,絕大部分隱藏於表面之下。
⑤但即便如此,我們依然可以清楚察覺到大數據給社會帶來的一些改變。從谷歌的流行病分析系統到沈陽渾南居民的數據查詢終端,基於信息的創新成為服務的先導,連接民生,可以救助更廣泛的普通大眾;以雲計算為基礎的信息存儲、分享和挖掘手段,推動著數據的交換、整合和分析,可以幫助人們發現新知,創造新的價值;作為新發明和新服務的源泉,大數據也影響到傳統學科研究的分化,改變了人們的價值取向、知識結構和生活方式。有學者將大數據比作觀察人類自身社會行為的顯微鏡和儀表盤。而我們看到,這個新的測量工具,再一次引領新的繁榮,提供給人們更多的選擇。
⑥作為發掘價值、征服數據的強大引擎,大數據所帶來的更多改變蓄勢待發。站在創新、競爭和生產率提高的前沿,思索大數據對於生活的'意義,如何將數據、信息轉化為知識,擴大人類的理性,實現技術與智能服務的跨越?如何規避風險、應對它對管理世界所提出的挑戰?如何藉助於大數據的力量將人類的觀察和理解推向「精準」,並衍生出有效的解決方案?答案還存在於人類智慧的彼此交融之中。
(選自《人民日報》2016年5月,有刪改。)
1.簡要概括第五段中大數據給社會帶來了哪些改變?(2分)
2.第四段畫橫線的句子運用了哪種說明方法?有什麼作用?(3分)
3.第二段中加點的「幾乎」一詞能否刪去?為什麼?(3分)
4.下面的說法或推斷符合原文意思的一項是()(2分)
A、大數據這個名詞早已出現,社會對於大數據價值的認識也早已深化。
B、我們已經進入大數據時代,可以「精準」規避風險,成功應對所有挑戰。
C、大數據作為一種新的測量工具,將再次引領新的繁榮,提供給人們更多的選擇。
D、大數據之「大」,僅僅是因為它的容量大,數據大。
參考答案:
1.可以救助更廣泛的普通大眾;可以幫助人們發現新知,創造新的價值;改變了人們的價值取向、知識結構和生活方式。
2.打比方。(1分)把大數據的真實價值比作「漂浮在海洋中的冰山」,具體形象地說明了它巨大的價值還未被發現,有待於進一步開發。(2分)。
3.不能刪去。因為「幾乎」是十分接近,差不多的意思,說明了「大數據應用於健康管理」差不多「表徵了新媒體技術層面的全部特徵」,刪除後說法就太絕對了,不符合事實,體現了說明文語言准確、嚴密的特點。
4.C