① 大數據的定義是什麼
大數據首先是一個非常大的數據集,可以達到TB(萬億位元組)甚至ZB(十萬億億位元組)。這裡面的數據可能既有結構化的數據,也有半結構化和非結構化的數據,而且來自於不同的數據源。
結構化的數據是什麼呢?對於接觸過關系型資料庫的小夥伴來說,應該一點都不陌生。對了,就是我們關系型資料庫中的一張表,每行都具有相同的屬性。如下面的一張表:
(子標簽的次序和個數不一定完全一致)
那什麼又是非結構化數據呢?這類數據沒有預定義完整的數據結構,在我們日常工作生活中可能更多接觸的就是這類數據,比如,圖片、圖像、音頻、視頻、辦公文檔等等。
知道了這三類結構的數據,我們再來看看大數據的數據源有哪些呢?歸納起來大致有五種數據源。
一是社交媒體平台。如有名氣的Facebook、Twitter、YouTube和Instagram等。媒體是比較受歡迎的大數據來源之一,因為它提供了關於消費者偏好和變化趨勢的寶貴依據。並且因為媒體是自我傳播的,可以跨越物理和人口障礙,因此它是企業深入了解目標受眾、得出模式和結論、增強決策能力的方式。
二是雲平台。公有的、私有的和第三方的雲平台。如今,越來越多的企業將數據轉移到雲上,超越了傳統的數據源。雲存儲支持結構化和非結構化數據,並為業務提供實時信息和隨需應變的依據。雲計算的主要特性是靈活性和可伸縮性。由於大數據可以通過網路和伺服器在公共或私有雲上存儲和獲取,因此雲是一種高效、經濟的數據源。
三是Web資源。公共網路構成了廣泛且易於訪問的大數據,個人和公司都可以從網上或「互聯網」上獲得數據。此外,國內的大型購物網站,淘寶、京東、阿里巴巴,更是雲集了海量的用戶數據。
四是IoT(Internet of Things)物聯網數據源。物聯網目前正處於迅猛發展勢頭。有了物聯網,我們不僅可以從電腦和智能手機獲取數據,還可以從醫療設備、車輛流程、視頻游戲、儀表、相機、家用電器等方面獲取數據。這些都構成了大數據寶貴的數據來源。
五是來自於資料庫的數據源。現今的企業都喜歡融合使用傳統和現代資料庫來獲取相關的大數據。這些數據都是企業驅動業務利潤的寶貴資源。常見的資料庫有MS Access、DB2、Oracle、MySQL以及大數據的資料庫Hbase、MongoDB等。
我們再來總結一下,什麼樣的數據就屬於大數據呢?通常來大數據有4個特點,這就是業內人士常說的4V,volume容量、 variety多樣性、velocity速度和veracity准確性。
② 什麼是大數據要簡單通俗點的解釋
這是一個非常好的問題,作為一名大數據從業者,我來回答一下。
在當前的大數據時代,不僅IT(互聯網)行業的人需要了解大數據相關知識,傳統行業的從業者和普通大學生也都應該了解一定的大數據知識,在產業互聯網和新基建計劃的推動下,未來大數據技術將全面開始落地應用,大數據也將重塑整個產業結構。
了解大數據首先要從大數據的概念開始,不同於人工智慧概念,大數據概念還是相對比較明確的,而且大數據的技術體系也已經趨於成熟了。解釋大數據概念,可以從數據自身的特點入手,然後進一步從場景、應用和行業來逐漸展開。
大數據自身的特點往往集中在五個方面,分別是數據量、數據結構多樣性、數據價值密度、數據增長速度和可信度,對於這五個維度的理解和認知,是了解大數據概念的關鍵。當然,隨著大數據技術的發展和在行業領域的應用,關於數據自身的維度也有了一定程度的擴展,這些擴展本身也是對大數據概念的一種豐富和完善。
數據量大是大數據的一個重要特徵,但是數據量本身是一個匯集的概念,並不是只有很大的數據才稱為大數據,傳統信息系統所產生的「小數據」也是大數據的一個重要組成部分,這一點一定要有清晰的認知。當前從大數據的數據來源來看,主要集中在三個渠道,包括互聯網、物聯網和傳統信息系統,物聯網數據當前占據的比例比較大,相信在5G時代,物聯網將依然是大數據的主要數據來源。
數據結構多樣性是大數據的另一個重要特點,不同於創新信息系統(ERP)當中的數據,大數據的數據類型是非常復雜的,既有結構化數據,也有非結構化數據和半結構化數據,這對於傳統的數據處理技術提出了巨大的挑戰,這也是推動大數據技術產生的一個重要原因。在工業互聯網時代,大數據的數據結構多樣性會進一步得到體現,這對於數據價值化過程也提出了新的挑戰。
數據價值密度往往是衡量數據價值的重要基礎,相對於傳統的信息系統來說,大數據當中的數據價值密度是比較低的,這就需要有更快速和便捷的方式,來完成數據的價值化提取過程,而這也正是當前大數據平台所關注的核心能力之一。實際上,早期的Hadoop、Spark平台之所以能夠脫穎而出,一個重要的原因就是其數據處理(排序)速度比較快。
數據增長速度快是大數據的另一個重要表現,通常傳統信息系統的數據增量是可以預測的,或者說增長速度是可控的,但是在大數據時代,數據增長速度已經大大突破了傳統數據處理所能承載的極限。數據增長是一個相對的概念,相對於消費互聯網來說,產業互聯網所帶來的數據增量可能會更加客觀,因此產業互聯網時代會進一步打開大數據的價值空間。
最後,大數據還有一個特點就是數據本身的真實性,大數據時代所帶來的一個重要副作用就是數據真假難辨,這也是當前大數據技術所要重點解決的問題之一。從當前大型互聯網平台所採用的方法來看,通常是技術和管理相結合的方式,比如通過為用戶認證就能夠解決一部分數據的真實性(專業性)問題。
如果有互聯網、大數據、人工智慧等方面的問題,或者是考研方面的問題,都可以在評論區留言,或者私信我!
博士時候就是做大數據。
最通俗一點就是很多條數據。
我們做大數據研究呢,就是高效的處理數據,對未來做一些預測,建議等。
例如,全中國人大多數都是10點睡覺。睡覺前看一看手機。那我們做推廣時候,就可以選擇9點半的時間。
大數據沒有什麼特別神秘的地方,就是數據多一點。
大數據這個詞其實流行了很久了,與我們的生活息息相關,並不陌生,現在我們生活中的大平台基本上都用到大數據,淘寶,拼多多,美團,滴滴等都用到大數據,如今大數據基本上無處不在。
一、大數據是什麼意思
大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
二、大數據特徵
容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;
種類(Variety):數據類型的多樣性;
速度(Velocity):指獲得數據的速度;
可變性(Variability):妨礙了處理和有效地管理數據的過程。
真實性(Veracity):數據的質量。
復雜性(Complexity):數據量巨大,來源多渠道。
價值(value):合理運用大數據,以低成本創造高價值。
三、大數據的 歷史 發展
人類誕生以來,數據就開始膨脹,時代交替,工業革命,互聯網時代,5G時代,人工智慧時代,都是數據的一次次發展,數據的不斷精準,加快了人類的新陳代謝,大數據推動 歷史 發展。
四、大數據意義
大數據的價值體現在以下幾個方面:
1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;
2、做小而美模式的中小微企業可以利用大數據做服務轉型;
3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。
4、各大領域的科研需要大數據,加快技術變革和換代如醫療,環保,公共政府服務
5、航空航天,軍事領域因為大數據也會得到突飛猛進的提升。
生活工作中所有的流水賬信息就是大數據,在信息化時代,它通過特定模式的整合、分析,使人得到對自己有用的、有指導性的結論。參加工作時講台塑數字化、表單化、信息化,一晃二十年了,應該就是大數據的雛形,但那會信息化能力不足,沒人這么稱呼。管理是千變萬幻,主線未變,大數據也僅僅是一種方法,只是更符合形勢,更有效。小名流水賬,大名大數據。
舉個例子,大數據記錄了一個愛抽煙的男人。晚上一般是先抽煙以後刷牙。有一天男士刷了牙以後抽煙。第二天app開始推送了tt。根據兩天的記錄了刷牙到抽煙的時間,第三天app推送了加厚版的tt。一個半月後某天記錄到男人一直抽煙,便推送了某家專科醫院。再過了一個月,發現男人再無抽煙,推送了鉑爵旅拍。
從前有個大爺,在證券公司車庫上班,給證券公司大戶、老闆看守車,這么一個工作。
這位大爺特別喜歡炒股,他也不會技術分析,什麼基本面分析!每當呢,車庫裡面的車停的非常少的時候,這位大爺就買進股票,這大爺也不知道什麼股票好,什麼股票不好,就隨便買,等車庫裡面的車停的越來越多了,每次都停滿了的時候,這位大爺就買出股票。每次都能賺到錢!!!
這就是非常簡單的大數據,大爺利用車庫里車的多少來判斷市場的火熱程度,人棄我取,等到全民炒股的時候,市場就會出現泡沫,這時候離「崩盤」也就不遠了
大數據通俗的解釋就是海量的數據,顧名思義,大就是多、廣的意思,而數據就是信息、技術以及數據資料,合起來就是多而廣的信息、技術、以及數據資料。
大數據簡單的說就是市場調研的升級版。包括騰訊,阿里巴巴等這些具有大量用戶的公司,對其客戶在其平台的所有行為發布的所有內容進行採集分類和分析。而這些數據有分成共性和個性。從所有人中採集出共性有助於發覺商機,了解客戶痛點,更好地推出客戶滿意的產品,比如很多化妝品公司就會跟淘寶購買數據從而研發出更貼合市場需求的產品。而從你個人採集的數據屬於個性,系統會通過你個人的數據採集進行相對於的推薦和改變,也就是我們經常說的ai智能,例子像我們的淘寶現在都是千人千面,每人手機打開的淘寶推薦的東西都不一樣,這些就是大數據的效果。
大數據通俗來說就是有個機器,把你生活中的點點滴滴都記錄下來,形成一種特定的形式!
大數據簡單來說:就是海量的信息!不論用途,不論方向,就是簡單地信息收集,參數收集,所有這些匯總起來就是大數據。大數據,不是隨機樣本,而是所有數據!
而大數據分析,就是針對這些信息進行識別,再進行分類,將其有事件變為數據化,概率化,然後應用於各種商業用途。
以上是對大數據簡單地解讀。那麼大數據的意義何在呢?
隨著大數據的發展,企業的技術研發、應用和落地在前期就能獲得預期,能避免很多無所謂的浪費,以便於將有限的資源集中到開發更適合時代的企業產業。
商業決策可以通過數據分析來獲取更為准確的信息和方向,最終能幫助決策者能更為准確直觀的指導業務實踐。
人工智慧離不開數據。隨著人工智慧的發展,數據能模擬的更加人性化,也更個人化,也更適合於各種不同場景的應用。大數據的價值在於它是目前解決這個時代更新最有效的方法。
但對於我個人而言,比較抵觸過度的大數據和互聯網,原因如下:
一、當各類app通過我的使用習慣,推薦各種我搜索過一次的各種商業廣告時,我會有種隱私被人冒犯的憤怒;
二、當你在使用各類軟體時,都會被要求提供個人信息以便於獲得更好的用戶體驗,這無形中增加了個人數據泄露的風險;
三、當數據化盛行,似乎人性變得無處安放;
四、一旦行業固化,人們想要突破階層將變得不可能,擁有大量數據的將遙遙領先,後發的行人,將一輩子連望其項背的資格都沒有,可以預見 社會 將會成為一潭死水,毫無興趣和生機。
③ 大數據是什麼
作者:李麗
鏈接:https://www.hu.com/question/23896161/answer/28624675
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
"大數據"是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,"大數據"指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。
亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。
研發小組對大數據的定義:"大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。" Kelly說:"大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。當你的技術達到極限時,也就是數據的極限"。 大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二、大數據分析
從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
三、大數據技術
1、數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
2、數據存取:關系資料庫、NOSQL、SQL等。
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or
association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text,
Web ,圖形圖像,視頻,音頻等)
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
四、大數據特點
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
1、
數據體量巨大。從TB級別,躍升到PB級別。
2、
數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
3、
價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
4、
處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。
五、大數據處理
大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理
六、大數據應用與案例分析
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
[1] Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
[2] 在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
[3] 它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
[1] 智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
[2] 維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
[1] XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
[2] 電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
[3] 中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
[4] NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。
④ 大數據是什麼
什麼是大數據?
大數據是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據技術,是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
具體來說,大數據具有4個基本特徵:
一是數據體量巨大。網路資料表明,其新首頁導航每天需要提供的數據超過1.5PB(1PB=1024TB),這些數據如果列印出來將超過5千億張A4紙。有資料證實,到目前為止,人類生產的所有印刷材料的數據量僅為200PB。
二是數據類型多樣。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。
三是處理速度快。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是價值密度低。以視頻為例,一小時的視頻,在不間斷的監控過程中,可能有用的數據僅僅只有一兩秒。
⑤ 大數據是什麼
大數據是什麼意思呢?
如果從字面意思來看,大數據指的是巨量數據。那麼可能有人會問,多大量級的數據才叫大數據?不同的機構或學者有不同的理解,難以有一個非常定量的定義,只能說,大數據的計量單位已經越過TB級別發展到PB、EB、ZB、YB甚至BB級別。
最早提出「大數據」這一概念的 是全球知名咨詢公司麥肯錫,它是這樣定義大數據的:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型以及價值密度低四大特徵。
研究機構Gartner是這樣定義大數據的:「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流轉優化能力來適應海量、高增長率和多樣化的信息資產。若從技術角度來看,大數據的戰略意義不在於掌握龐大的數據,而在於對這些含有意義的數據進行專業化處理,換言之,如果把大數據比作一種產業,那麼這種產業盈利的關鍵在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
⑥ 大數據是什麼意思
大數據是指那些數據量特別大、數據類別特別復雜的數據集,這種數據集不能用傳統的資料庫進行轉存、管理和處理,是需要新處理模式才能具有更強大的決策力、洞察發現力和流程優化能力的海量、高增差率和多樣化的信息資產。
而大數據的主要特點就是數據量大、數據處理速度快、數據真實性高、數據類別復雜等,它們合起來被稱為4V。
大數據也可以應用在警察預測犯罪的發生、預測選舉結果,同時還能通過手機定位數據和交通數據建立城市規劃,現在醫療行業也在做大數據的分析。
現在社會發展速度非常快,科技也很發達,信息的流通和人們之間的交流也非常密切,而大數據就是這個時代高科技的產物。
對於大部分行業而言,怎麼運用這些大規模數據是贏得競爭的關鍵,但同時,大數據在經濟發展中的意義不能取代一切對於社會問題的理性思考。
現在大數據行業非常的受歡迎,人才需要求量也非常大,而且企業給大數據工程師的薪資比一般工程師的薪資也要高很多。
⑦ 大數據是什麼概念
世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從政府到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。
所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?
七:最後北京開運聯合給您總結一下
不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。
1、從大數據的價值鏈條來分析,存在三種模式:
1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。
2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。
3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。
2、未來在大數據領域最具有價值的是兩種事物:
1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;
2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。
大 數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不
斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於
數據的應用需求和應用水平進入新的階段。
⑧ 大數據是什麼意思有什麼用途
大數據是統計學中的,用於指導人們的商業行為、戰略覺策、未來預期的一種分析處理方法。回
主要有以下答三點作用:
第一,對大數據的處理分析正成為新一代信息技術融合應用的結點。移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。
第二,大數據是信息產業持續高速增長的新引擎。面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。
第三,大數據利用將成為提高核心競爭力的關鍵因素。各行各業的決策正在從「業務驅動」 轉變「數據驅動」。