導航:首頁 > 網路數據 > 醫學影像大數據研究

醫學影像大數據研究

發布時間:2022-12-20 23:52:53

大數據在醫療行業的應用有哪些

大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。

⑵ 大數據醫療行業的5大應用

一、電子病歷


到目前為止,大數據最強大的應用就是電子醫療記錄的收集。每一個病人都有自己的電子記錄,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。


這些記錄通過安全的信息系統(究竟是否安全值得商榷)在不同的醫療機構之間共享。每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。


二、健康監控


醫療業的另一個創新是“可穿戴設備”的應用,這些設備能夠實時匯報病人的健康狀況。


和醫院內部分析醫療數據的軟體類似,這些新的分析設備具備同樣的功能,但能在醫療機構之外的場所使用,降低了醫療成本,病人在家就能獲知自己的健康狀況,同時還獲得智能設備所提供的治療建議。這些可穿戴設備持續不斷地收集健康數據並存儲在雲端。


三、醫護資源配置


這個看似不可能完成的任務,已經在大數據的幫助幫助下在一些“試點”單位實現。在法國巴黎,有四家醫院通過多個來源的數據預測每家醫院每天和每小時的患者數量。


他們採用一種被稱為“時間序列分析”的技術,分析過去10年的患者入院記錄。這項研究能夠幫助研究人員發現患者入院的規律並利用機器學習,找到能夠預測未來入院規律的演算法。


四、大數據與人工智慧


人工智慧技術通過演算法和軟體,分析復雜的醫療數據,達到近似人類認知的目的。因此AI使得計算機演算法能夠在沒有直接人為輸入的情況下預估結論成為可能。由AI支持的腦機介面可以幫助恢復基本的人類體驗,例如因神經系統疾病和神經系統創傷而喪失的說話和溝通功能。


五、醫學影像


醫學影像包括X射線、核磁共振成像、超聲波等,這些都是醫療過程中的關鍵環節。


放射科醫生往往需要單獨查看每一個檢查結果,不但產生了巨大的工作量,同時也有可能耽誤患者的最佳治療時間。但是大數據卻可以有效解決這一問題。


關於大數據醫療行業的5大應用的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

⑶ 人工智慧趨勢下 「AI+醫學影像」行業發展前景可期

我國醫學影像醫生缺口大,特別是具有豐富臨床經驗的醫生十分短缺,而醫學影像分析工作繁瑣重復,醫生數量的不足導致醫學影像醫生的工作量繁重,且人工閱讀影像存在誤診率,人工智慧技術在醫學影像領域的應用可以很好的解決這些痛點,有利於減輕醫生的工作壓力、提高工作效率、提升診斷質量,因此「AI+醫學影像」的發展被國家和各方面資本所關注。

根據新思界產業研究中心發布的 《2018-2022年AI+醫學影像行業深度市場調研及投資策略建議報告》 顯示,「AI+醫學影像」是將人工智慧在圖像識別領域不斷取得的前沿性突破技術,應用在醫學影像領域,從而達到提高診斷效率和准確率的目的。我國醫療信息化建設正在不斷推進,隨著醫療行業進入大數據時代,醫療數據的質和量都在快速提升,為「AI+醫學影像」的發展奠定了良好的基礎。

人工智慧主要應用於醫學影像的診斷環節,可分為兩個階段,一是利用圖像識別技術對患者的影像進行識別,給出初步診斷結果,提升醫生工作效率;二是通過大量影像數據和臨床診斷信息訓練人工智慧系統 ,使其具備獨立診斷能力,降低復雜疾病的誤診率,提升診斷水平。「AI+醫學影像」可以幫助患者更為快速的完成檢查,減少醫生的讀片時間、降低誤診率,提升醫院的整體診療水平,患者、醫生、醫院三方均可受益。

自2015年以來,我國政策對人工智慧發展給予高度關注,2016年國家明確提出醫療領域人工智慧發展要求。2017年,國務院發布的《新一代人工智慧發展規劃》,將人工智慧上升至國家戰略層面,提出要實現智能影像識別、病理分型和智能多學科會診。 在國家政策的強力推動下,我國「AI+醫學影像」進入快速發展階段。

在政策和市場需求的雙重推動下,「AI+醫學影像」領域融資數量及融資金額快速增長, 科技 巨頭也紛紛加碼,網路、騰訊、阿里、科大訊飛等技術實力雄厚的巨頭積極進入人工智慧醫療市場,這些巨頭在人工智慧領域有著長期布局,在醫學影像應用上能夠快速取得新進展。 除此之外,人工智慧醫學影像創業公司也較多,在應用層建設方面具有一定優勢。現階段,我國共有40餘家企業進入人工智慧醫學影像領域布局,但行業中尚未出現占據絕對優勢地位的龍頭企業。

新思界行業分析人士表示,在國家政策和資本的關注下,我國「AI+醫學影像」技術發展迅速,隨著「AI+醫學影像」逐漸走出實驗室,商業化落地式是各企業接下來的發展目標。 現階段,我國「AI+醫學影像」行業中的龍頭企業尚未出現,未來能尋得更適合的商業模式迅速佔領市場的企業將在行業中處於領跑地位。

⑷ 既能檢索病例還可幫助診斷,看人工智慧如何助力醫療升級

你知道嗎?眼底醫學檢查是窺見高血壓、糖尿病、冠心病、帕金森症等重大慢病信號的重要窗口,但是很多患者因定期復查的時間、財務成本和距離的阻隔而錯過了控制病變的機會。

在9月18日,首台國產「黑 科技 」眼底影像儀問世。這個集合了AI輔助診斷系統、華為雲人工智慧和連接技術以及協和醫院頂尖臨床實力的眼底影像儀,實現超弱光照量環境下的精準診療,簡單、快速、無損地還原圖像的真實紋理,為眼科醫生提供更有利於精準診斷的信息,降低了漏診、誤診的發生率!

什麼是人工智慧?

人工智慧是研究人類智能活動的規律,構造具有一定智能的人工系統,研究如何讓計算機去完成以往需要人的智力才能勝任的工作,也就是研究如何應用計算機的軟硬體來模擬人類某些智能行為的基本理論、方法和技術。

人工智慧在醫院里的應用

1、醫用虛擬助理

醫用虛擬助理是一種基於人工智慧技術和醫療知識體系,將患者症狀表現與診療標准對比,為患者提供全流程服務的專用型信息系統,使用者可以通過語言文字、圖像等形式與AI系統進行互動,使其提供醫療咨詢等服務。

目前醫用虛擬助理可用於疾病診療的前、中、後多個環節,如診療前的智能導診機器人能對患者講話內容進行語義分析經後台數據處理並給出分診和導診建議,或通過感測器獲取患者生命體徵信息並反饋給醫生來提高問診效率。

2、醫學影像識別

AI 與 X 射線、超聲、CT和MRI等醫學影像結合能提高醫師診斷效率,輔助治療與判斷。AI在醫學影像領域的應用主要是圖像分割、分類、配准、識別和深度學習系統等,即通過分析影像獲取有意義的信息,進行大量的影像數據對比,進行演算法訓練,逐步掌握診斷能力。醫學影像領域已成為AI與大數據在醫療領域應用發展最快的方向之一。

3、病理診斷

AI在標注病理結構等腫瘤特徵時能夠識別到人眼無法觀察到的細節並作定量描述,可避免醫師主觀性帶來的差異。AI深度學習技術在病理學領域展現出極大的應用前景,它可以幫助病理醫師提高診斷效率和准確性,減輕工作負擔,緩解病理醫師缺乏以及不同地區醫師診斷水平差距明顯的難題,為患者提供更加精準、可靠的高質量醫療服務。

4、輔助診療

輔助診療是指將AI技術用於疾病診療中,讓計算機從醫學書籍、文獻、指南和案例等深度學習醫學知識並歸納,建立知識庫,模擬醫師的思維和診斷推理過程,對患者的病症信息等醫療大數據進行智能匹配,通過已學習的知識推理判斷疾病原因與發展趨勢,給出初步的診斷和治療方案,醫師參考輔助診療結果並結合臨床經驗提供更多的臨床決策指導,使診療流程更加客觀、科學、合理、高效。

5、醫學數據平台

基於AI與互聯網技術的醫學數據平台可以分為兩類:一是醫學研究大數據平台,通過對醫學文獻中的海量醫療大數據進行分析,能夠有效促進醫學研究;二是醫學評價數據平台,通過平台獲取醫療機構內包括病案首頁以及大型醫用設備和臨床重點葯物相關的醫療活動中重要的數據點,讓大數據進行分析和數據模型推演,從而提高醫療機構相關工作整體管理水平。

6、疫情診治與監測

AI 藉助大數據技術可以通過影像識別、自動體溫檢測和病毒溯源等輔助新冠肺炎診治並進行疫情監測預警,開發適宜的預警關鍵技術,基於人工智慧的疫情監控雲平台監測預警、疫情地圖、確診及密切接觸人員軌跡追蹤、人群流動監測等在減少人力成本、降低感染風險的同時顯著提升抗疫效率。

人工智慧技術廣泛的應用前景,將給老百姓看病帶來許許多多、實實在在的便利。手術機器人、遠程手術等應用場景,還將讓更多百姓享受到優質的醫療資源。

專家:中國傳媒大學信號與信息處理專業副教授余心樂

⑸ AI賦能醫療的背後,臨床大數據該如何「跑起來」

19世紀,英國流行病學家、麻醉學家約翰·斯諾運用近代早期的數據科學,記錄每天的死亡人數和傷患 人數,並將死亡者的地址標注在地圖上,繪制了倫敦霍亂爆發的「群聚」地圖,霍亂在過去被普遍認為是由有害空氣導致,斯諾通過調查數據的匯總,確定了霍亂的元兇是被污 染的公共水井,並同時奠定了疾病細菌理論的基礎,這算是大數據運用的早期雛形之一。

斯諾大概不會想到,在近兩百年後,大數據的應用早已不再是偶然,隨著醫療衛生信息化的迅速發展,其通過與AI的結合在生物醫葯研發、疾病管理、公共衛生和 健康 管理等方面的滲透已逐漸常態化,但問題也相應地隨之凸顯。

信息孤島仍存

近兩年,關於醫療大 健康 數據的政策頻出,從頂層設計、具體規劃指導、數 據隱私和安全、數據管理等多個方面提出了相關的指導意見。

2016年6月,國務院辦公廳下發《關於促進和規范 健康 醫療大數據應用發展的指導意見》指出,鼓勵各類醫療衛生機構推進 健康 醫療大數據採集、存儲,加強應用支撐和運維技術保障,打通數據資源共享通道,加快建設和完善以居民電子 健康 檔案、電子病歷、電子處方等為核心的基礎資料庫

2018年9月, 國家衛生 健康 委印發《國家 健康 醫療大數據標准、安全和服務管理辦法(試行)》,對醫療 健康 大數據行業從規范管理和開發利用的角度出發進行規范。《辦法》從醫療大數據標准、醫 療大數據安全、醫療大數據服務、醫療大數據監督四個方面提出指導意見,直擊目前醫療大數 據領域的痛點,未來對數據的統籌標准管理、落實安全責任、規范數據服務和管理具有重要意義。

然而,即使有專項政策的支持,但都限於宏觀層面,相較於其他成熟領域而言, 健康 醫療大數據領域的法律法規依然存在明顯的滯後性,缺乏比較全面、細致、明確的指引和規則,使其的發展受到嚴重製約。雖然現階段,已有很多企業在醫療大數據領域進行深耕布局,但受制於市場准入和產業政策的不確定性,目前尚在摸著石頭過河,市場熱情和活力並未得到充分、有效地釋放。

復旦大學上海醫學院生物醫學研究院教授劉雷認為,正是醫療大數據政策的不明朗,標準的不統一,也直接導致了各個系統之間難以進行數據交換和信息共享,產生了大量的「信息孤島」。舉個簡單的例子,患者在A醫院拍的片子到了B醫院卻不認,B醫院的醫生想要了解患者的信息則需要從零開始,患者曾在A醫院做的檢查需要在B醫院重新再來一輪,「想要打通醫療機構間臨床大數據資源的共享通道,至少在現階段是一件挺困難的事情。」劉雷表示。

相似的困擾也發生在相距超過一萬公里之外的美國,華盛頓大學醫學院信息研究所所長Philip Paynes在接受醫谷采訪時表示:臨床大數據間的彼此「孤立」給國家醫保機構、患者和醫院都帶來了負擔,實現大數據間的互通互用,是全世界范圍內都在著力解決的問題。

作為兩所頂尖大學的知名研究學者,劉雷和Paynes想在臨床大數據領域做一些努力和嘗試。

兩人共有的想法迅速得到了學校層面的大力支持,2019年7月26-29日,由復旦大學醫學院和聖路易斯華盛頓大學醫學院聯合授課的「應用臨床信息學和數據分析研修班」進行了第一次開班。

復旦大學生物醫學研究院教授、復旦大學大數據研究院醫學信息與醫學影像智能診斷研究所所長劉雷授課

據劉雷介紹,此次研修班得到了業界人士的積極響應,在第一屆學員中,來自醫院、醫療企業、高校各佔了三分之一,「就是純粹地想把對臨床大數據分析和感興趣的業界人士聚集在一起,通過共有的努力,能把臨床大數據的有效運用更推進一步。」

聖路易斯華盛頓大學醫學院信息學研究所主任Philip Paynes授課

「希望通過這種國際化的合作,能讓臨床大數據在醫療機構間甚至跨國間真正地』跑』起來多一種可能性。」 Paynes說道。

各自所做的 探索

而在這種可能性之前,劉雷和Paynes各自所在的研究機構均已做了大量的工作。

據悉,劉雷所在的復旦大學上海醫學院生物醫學研究作為一家致力於創建「中國第一、世界一流的生物醫學交叉學術研究機構」,已經在生物醫學交叉學科領域形成「代謝與腫瘤的分子細胞生物學」、「醫學表觀遺傳學」、「系統生物醫學」三個優勢方向,並正在努力拓展轉化醫學研究和精準醫學研究,包括老年醫學、腫瘤和心血管疾病、出生缺陷、靶點結構與活性小分子、組學和大數據、生物治療與干預,形成新的交叉學科生長點和下游技術。

另悉,目前,復旦大學上海醫學院生物醫學研究還在申請一個超算中心的建設項目,以該項目來支撐生物學大數據的研究,「復旦大學有包括中山醫院、華山醫院、仁濟醫院等17所附屬教學醫院,這其中有一些醫院也在做自身的臨床大數據中心,從研究所層面,希望能夠給他們提供一些人才培養和技術研究的有力支持。」劉雷表示。

Paynes所在的華盛頓大學醫學院信息研究所則是華盛頓大學所有大數據計劃的中心, 「我們擁有世界上最好的基因組研究所和最具生產力和影響力的基礎科學研究企業」,在醫學信息技術方面的能力非常強,但在大數據的整合方面還有待加強。」而這也成了Paynes擔任華盛頓大學醫學院信息研究所第一屆所長之後重點開展的工作。

自Paynes上任後,首先將研究所與旗下15所附屬教學醫院進行了打通聯動,從臨床大數據的收集到整合再到挖掘,最後到應用,鋪設了一條全鏈式的臨床大數據之路。

在Paynes看來:研究所下屬的15所教學醫院簡直就是大數據來源的寶藏,這15家在全美醫療機構中排名比較靠前的醫院每天產生大量的臨床數據,依託這些已有的臨床數據的回顧性研究,是分析研究疾病最基本、最重要的研究方法之一,通過將這些海量的臨床數據進行統計分析,分析的結果又將反過來為醫生臨床診療全過程提供疾病共享的發病及治療總體情況信息,幫助醫生科學決策,實現精準醫療。

「我們的夢想是不僅僅是利用臨床大數據幫助患者,而是希望這些臨床大數能滲透到他們的生活和工作,甚至休閑 娛樂 ,通過大數據的分析能夠把他們患病的概率降到最低,讓人們能一直保持 健康 的狀態。」 Paynes對醫谷展望道。

未來發展構想

在劉雷、Paynes和其團隊所做的大量臨床數據整合的工作中,由於各自旗下擁有多所強大的教學醫院,數據的來源已不是問題,然而,擺在他們面前更為現實的問題有兩個,一是要解決多模態臨床大數據的選擇問題。臨床大數據來源多樣,是一種多模態數據,其包括有結構化很好的數據,比如化驗單、處方;還有一些半結構化的數據,比如住院小結、出院小結;還有完全無結構化的數據,比如醫療影像;還有像基因測序這樣的組學數據;以及時間序列數據,比如ICU里會看到患者插著各種各樣的儀器測量血壓心率脈搏等各種流數據。

怎樣從這些不同模態的數據裡面選出需要的數據,劉雷表示他們,他們需要的更多的是結構化很好的臨床數據,為了得到這部分數據,會通過一定的技術平台會對數據進行一定的清洗,從中選取高質量的有效數據。

這個問題解決後,還有一個臨床大數據一直以來繞不開的一個爭議--安全和隱私問題。

對此,劉雷表示,依託現有的技術,目前收集的臨床大數據基本都能做到「不出院」,這在一定程度程度上很好地保證了數據的安全性。Paynes也指出,美國對於醫療大數據有很嚴密的保護法規,患者的關鍵隱私數據,如姓名、住址、電話、身份證號等進入數據管理的時候必須要打馬賽克,同時對數據進行強加密,數據即使被泄露也是不可解密的,對所有的數據訪問(誰什麼時間能訪問什麼)都要有一套嚴格的訪問控制,通過這樣的方式來保證數據安全性。

當技術的問題已不再是問題, 這意味著臨床大數據和AI的結合會變得更為完美,因此,劉雷和Paynes更多希望監管層能在未來對基於大數據訓練的AI能進行更多關於有效性和安全性方面的評估,也就是審批准入要做到嚴,同時,還要加強公眾對醫療AI的認知,不管AI發展到多麼先進的程度,總歸存在一定的局限性,它永遠不可能替代醫生,只能是醫生的一種輔助診斷工具

盡管還有一段路要走,但對於臨床大數據和AI的搭配,劉雷和Paynes都充滿信心,至少在他們現有開展工作的規劃里,「應用臨床信息學和數據分析研修班」能最終逐步發展為一個碩士人才培養項目,為臨床大數據和人工智慧培養更多專業人才。同時,基於兩個研究機構現階段開展的工作,有天能實現跨國界的匯聚統一,可以把所有的臨床大數據統一在同一個模型上,建立一個類似於聯盟數據一樣的聯合體,這對於數據的整合和應用就會變得游刃有餘。

【凡本網註明來源非大 健康 Pai的作品,均轉載自其它媒體,目的在於傳遞更多信息,並不代表本網贊同其觀點和對其真實性負責。】

⑹ 醫療大數據的分析和挖掘發展現狀如何未來會有什麼樣的應用前景

如今是大數據時代,前景自然好了,據前瞻產業研究院《2016-2021年中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯示,總的來說,醫療大數據應用主要體現在臨床操作、研發、新的商業模式、付款/定價、公眾健康五大領域,在這些場景中,大數據的分析和應用都將發揮巨大的作用。
醫療大數據的應用對於臨床醫學研究、科學管理和醫療服務模式轉型發展都具有重要意義,而大數據技術的運用前景是十分光明的。
醫院和醫療行業面臨的大數據主要有醫學影像、視頻(教學、監控)及文獻等非結構化數據。由於這些數據增長很快且結構復雜,給數據管理和利用帶來較大的壓力,存儲與管理成本不斷提高,數據利用困難、利用率低。除了數據數量和形態的迅速增加,醫療數據還需要越來越長的保留期。一旦存儲系統的安全性出現問題,導致醫療數據丟失,醫院會面臨嚴重不良局面。醫療大數據的應用要保證數據的全面性、准確性、實時性和使用的便捷性,要能快速運算和快速展現,要與日常工作平台緊密結合。
國人已經把健康大數據上升為國家戰略,而面對「大數據」的挑戰,醫院必須考慮三大主要問題。
(1) 數據存儲是否安全可靠?因為系統一旦出現故障,首先考驗的就是數據的存儲、災備和恢復能力。如果數據不能迅速恢復,而且恢復不能到斷點,則將對醫院的業務、患者滿意度構成直接損害。
(2) 如何提高醫院運行和服務的效率?提高效率就是節省醫生的時間,從而緩解醫療資源的緊張狀況,在一定程度上可以幫助解決「看病難」的問題。
(3) 如何控制大數據的成本?存儲架構是否合理,不僅影響醫院IT系統的成本,而且關乎醫院的運營成本,醫療數據激增,使醫院普遍存在著較大的存儲擴容壓力。如今,醫院的存儲設備大多是由不同廠商構成的完全異構的存儲系統。這些不同的存儲設備利用各自不同的軟體工具來進行控制和管理,這樣就增加了整個系統的復雜性,使管理成本非常高。
未來,大數據必將影響醫療行業,未來醫療行業的大數據將會具體應用在:臨床輔助決策,醫療質量監管,疾病預測模型,臨床實驗分析。其發展空間有:個人健康門戶,慢病管理和健康管理,電子病歷和臨床質量監控,醫學知識管理,臨床路徑和循證醫學,遠程醫療和移動醫療,醫學研究數據倉庫和共享平台,跨醫療機構協作平台。

⑺ 醫學影像大數據分析存在哪些問題

醫學影像信息是被數字化、數據化後形成了豐富多樣的、存儲量龐大的醫學大數據但是這些版數據大多要進行人工權分析 。
原始影像一般還不能直接用於影像數據挖掘分析,必須進行預處理,以生成可用於高層次挖掘的影像特徵庫。影像數據挖掘的一般流程通常包括影像的存儲、影像的預處理、影像的搜索、影像的挖掘和展示等步驟。
醫學影像信息的分析需要研究利用時間上的形態學變化對某個病變與組織器官的功能預測,研究利用相關的數據與知識進行推測的方法。

⑻ 大數據醫療具體是指什麼

醫療大數據是個很寬泛的概念,他有很多詳細的分類,包括:電子病歷數據,這是患者就醫過程中所產生的數據,包括患者基本信息、疾病主訴、檢驗數據、影像數據、診斷數據、治療數據等,這類數據一般產生及存儲在醫療機構的電子病歷中,這也是醫療數據最主要的產生地。電子化的醫療病歷方便了病歷的存儲和傳輸,但是並未達到進行數據分析的要求。大約80%的醫療數據是自由文本構成的非結構化數據,其中不僅包括大段的文字描述,也包括包含非統一文字的表格欄位。通過醫學自然語言理解技術,將非結構化醫療數據轉化為適合計算機分析的結構化形式是醫療大數據分析的基礎。電子病歷中所採集的數據是數據量最多、最有價值的醫療數據。通過和臨床信息系統的整合,內容涵蓋了醫院內的方方面面的臨床數據集。在電子病歷的互通互聯上,出於各自的利益性(限制病人轉診),各大電子病歷企業也不願意使數據互通互聯。根據美國政府相關報告顯示,其電子病歷共享比例也僅為30%左右。
檢驗數據
醫院檢驗機構產生了大量患者的診斷、檢測數據,也有大量存在的第三方醫學檢驗中心也在產生數據。檢驗數據是醫療臨床子系統中的一個細分小類,但是可以通過檢驗數據直接患者的疾病發展和變化。目前臨床檢驗設備得到迅速發展,通過LIS 系統對檢驗數據進行收集,可以對疾病的早發現早診斷和正確診斷做出貢獻。
影像數據
隨著資料庫技術和計算機通訊技術的發展,數字化影像傳輸和電子膠片應運而生。醫療影像數據是通過影像成像設備和影像信息化系統產生的,醫院影像科和第三方獨立影像中心存儲了大量的數字化影像數據。醫學影像大數據,是由DR、CT、MR 等醫學影像設備產生所產生並存儲在PACS 系統內的大規模、高增速、多結構、高價值和真實准確的影像數據集合。與檢驗信息系統(LIS)大數據和電子病歷(EMR)等同屬於醫療大數據的核心范疇。醫學影像數據量非常龐大,影像數據增速快,標准化程度高。影像數據和臨床其他數據比較起來,它的標准化、格式化、統一性是最好的,價值開發也最早。
費用數據
醫院門診費用、住院費用、單病種費用、醫保費用、檢查和化驗收入、衛生材料收入、診療費用、管理費用率、資產負債率等和經濟相關的數據。除了醫療服務的收入費用之外,還包含醫院所提供醫療服務的成本數據,包含葯品、器械、衛生人員工資等成本數據。在DRGs 按疾病診斷相關組付費模式中,需要詳細的成本數據核算。通過大樣本量的測算,建立病種標准成本,加強病種成本核算和精細化成本管理。
基因測序數據
基因檢測技術通過基因組信息以及相關數據系統,預測罹患多種疾病的可能性。基因測序會產大量的個人遺傳基因數據,一次全面的基因測序,產生的個人數據則達到300GB。一家基因測序企業每月產生的數據量可以達到數百TB 甚至1PB。
智能穿戴數據
各種智能可穿戴設備的出現,使得血壓、心率、體重、體脂、血糖、心電圖等健康體征數據的監測都變成可能,患者的單一體征健康數據以及運動數據快速上傳到雲端,而且數據的採集頻率和分析速度大大提升。除了生命體征之外,還有其他智能設備收集的健康行為數據,比如每天的卡路里攝入量、喝水量、步行數、運動時間、睡眠時間等等。智能穿戴設備雖然在這兩年遇冷,用戶很難形成粘性,但是並不意味著智能穿戴設備所產生的數據沒有意義。提供健康數據和服務,可能是智能穿戴廠商未來的轉型之路。健康大數據的收集必須依靠硬體載體,智能穿戴設備還將會遇到自己的第二春。
體檢數據
體檢數據是體檢機構所產生的健康人群的身高、體重、檢驗和影像等數據。這部分數據來自醫院或者第三體檢機構,大部分是健康人群的體征數據。隨著亞健康人群、慢病患者的增加,越來越多的體檢者除了想從體檢報告中了解自己的健康狀況,還想從體檢結果中獲得精準的健康風險評估,以及如何進行健康、慢病管理。
移動問診數據
通過移動設備端或者PC 端連接到互聯網醫療機構,產生的輕問診數據和行為數據。曾經通過互聯網問診企業春雨醫生的數據,分析各地醫生互聯網問診的活躍度、細分疾病種的問診行為。通過這些數據的分析,對行業發展、互聯網問診企業的決策有非常重要的幫助。

⑼ 大數據醫療行業發展的5大趨勢

一、影像識別智能化


醫療數據中有超過90%來自於醫學影像,但是影像診斷過於依賴人的主觀意識,容易發生誤判。AI可以通過大量學習醫學影像,可以幫助醫生進行病灶區域定位,減少漏診誤診問題。


二、智能診療通用化


智能診療是人工智慧在醫療領域最重要、也最核心的應用場景。


智能診療就是將人工智慧技術應用於疾病診療中,計算機可以幫助醫生進行病理,體檢報告等的統計,通過大數據和深度挖掘等技術,對病人的醫療數據進行分析和挖掘,自動識別病人的臨床變數和指標。計算機通過“學習”相關的專業知識,模擬醫生的思維和診斷推理,從而給出可靠診斷和治療方案。


三、葯物研發提速


依託大數據,人工智慧系統可以快速、准確的挖掘和篩選出適合的葯物。通過計算機模擬,人工智慧可以對葯物活性、安全性和副作用進行預測,找出與疾病匹配的最佳葯物。這一技術將會大大縮短葯物研發周期、降低新葯成本並且提高新葯的研發成功率。


四、醫療機器人廣泛應用


機器人在醫療領域的應用范圍很廣泛,比如智能假肢、外骨骼和輔助設備等技術修復人類受損身體,醫療保健機器人輔助醫護人員的工作等。目前,關於機器人在醫療界中的應用的研究主要集中在外科手術機器人、康復機器人、護理機器人和服務機器人方面。國內醫療機器人領域也經歷了快速發展,進入了市場應用。


五、健康管理實時追蹤


根據人工智慧而建造的智能設備可以監測到人們的一些基本身體特徵,如飲食、身體健康指數、睡眠等。對身體素質進行簡單的評估,提供個性的健康管理方案,及時識別疾病發生的風險,提醒用戶注意自己的身體健康安全。目前人工智慧在健康管理方面的應用主要在風險識別、虛擬護士、精神健康、在線問診、健康干預以及基於精準醫學的健康管理。


關於大數據醫療的5大趨勢的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

⑽ 大數據技術和醫學影像技術專業哪個好

醫學影像技術專業好。
1、發展前景方面:醫學影像技術專業發展前景好,競爭壓力比較低,大數據技術發展前景一般,競爭壓力比較高。
2、後期工作穩定性方面:醫學影像技術專業後期工作比較穩定,大數據技術後期工作行業競爭比較多,比較不穩定。

閱讀全文

與醫學影像大數據研究相關的資料

熱點內容
編程怎麼做到場景移動 瀏覽:166
配音秀草稿箱文件夾 瀏覽:642
丟失隱私文件怎麼恢復 瀏覽:187
怎麼收集數據表格 瀏覽:199
java登錄校驗碼 瀏覽:967
ug星空自動編程字體怎麼改 瀏覽:544
桌面文件大文件刪除後可否恢復 瀏覽:153
蘋果如何安裝dmg文件 瀏覽:427
java組件技術 瀏覽:909
java定義一個空數組 瀏覽:200
win10安全等級降低 瀏覽:305
編程哪個國家比較好 瀏覽:518
linux文件偏移量 瀏覽:205
工行app怎麼看這個月要還款 瀏覽:582
ps1模擬器能讀取bin文件嗎 瀏覽:857
6150se顯卡升級 瀏覽:263
編程錯誤提示語有哪些 瀏覽:535
如何恢復硬碟丟失的數據 瀏覽:490
蘋果官換機6sp能買嗎 瀏覽:786
火花app怎麼解封 瀏覽:126

友情鏈接