⑴ 大數據技術及應用
大數據技術及應用
半個世紀以來,隨著計算機技術全面融入社會生活,信息爆炸已經積累到了一個開始引發變革的程度。21世紀是數據信息大發展的時代,移動互聯、社交網路、電子商務等極大拓展了互聯網的邊界和應用范圍,各種數據正在迅速膨脹並變大。互聯網(社交、搜索、電商)、移動互聯網(微博)、物聯網(感測器,智慧地球)、車聯網、GPS、醫學影像、安全監控、金融(銀行、股市、保險)、電信(通話、簡訊)都在瘋狂產生著數據。2011年5 月,在「雲計算相遇大數據」 為主題的EMC World 2011 會議中,EMC 拋出了Big Data概念。正如《紐約時報》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。哈佛大學社會學教授加里?金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。」
二、什麼是大數據
大數據(Big Data)是指那些超過傳統資料庫系統處理能力的數據。它的數據規模和轉輸速度要求很高,或者其結構不適合原本的資料庫系統。為了獲取大數據中的價值,我們必須選擇另一種方式來處理它。數據中隱藏著有價值的模式和信息,在以往需要相當的時間和成本才能提取這些信息。如沃爾瑪或谷歌這類領先企業都要付高昂的代價才能從大數據中挖掘信息。而當今的各種資源,如硬體、雲架構和開源軟體使得大數據的處理更為方便和廉價。即使是在車庫中創業的公司也可以用較低的價格租用雲服務時間了。對於企業組織來講,大數據的價值體現在兩個方面:分析使用和二次開發。對大數據進行分析能揭示隱藏其中的信息。例如零售業中對門店銷售、地理和社會信息的分析能提升對客戶的理解。對大數據的二次開發則是那些成功的網路公司的長項。例如Facebook通過結合大量用戶信息,定製出高度個性化的用戶體驗,並創造出一種新的廣告模式。這種通過大數據創造出新產品和服務的商業行為並非巧合,谷歌、雅虎、亞馬遜和Facebook它們都是大數據時代的創新者。
(一)大數據的4V特徵
大量化(Volume):企業面臨著數據量的大規模增長。例如,IDC最近的報告預測稱,到2020年,全球數據量將擴大50倍。目前,大數據的規模尚是一個不斷變化的指標,單一數據集的規模範圍從幾十TB到數PB不等。簡而言之,存儲1PB數據將需要兩萬台配備50GB硬碟的個人電腦。此外,各種意想不到的來源都能產生數據。
多樣化(Variety):一個普遍觀點認為,人們使用互聯網搜索是形成數據多樣性的主要原因,這一看法部分正確。然而,數據多樣性的增加主要是由於新型多結構數據,以及包括網路日誌、社交媒體、互聯網搜索、手機通話記錄及感測器網路等數據類型造成。其中,部分感測器安裝在火車、汽車和飛機上,每個感測器都增加了數據的多樣性。
快速化(Velocity):高速描述的是數據被創建和移動的速度。在高速網路時代,通過基於實現軟體性能優化的高速電腦處理器和伺服器,創建實時數據流已成為流行趨勢。企業不僅需要了解如何快速創建數據,還必須知道如何快速處理、分析並返回給用戶,以滿足他們的實時需求。根據IMS Research關於數據創建速度的調查,據預測,到2020年全球將擁有220億部互聯網連接設備。
價值(Value):大量的不相關信息,浪里淘沙卻又彌足珍貴。對未來趨勢與模式的可預測分析,深度復雜分析(機器學習、人工智慧Vs傳統商務智能(咨詢、報告等)
三、大數據時代對生活、工作的影響
大數據,其影響除了經濟方面的,它同時也能在政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。
「大數據」的影響,增加了對信息管理專家的需求。事實上,大數據的影響並不僅僅限於信息通信產業,而是正在「吞噬」和重構很多傳統行業,廣泛運用數據分析手段管理和優化運營的公司其實質都是一個數據公司。麥當勞、肯德基以及蘋果公司等旗艦專賣店的位置都是建立在數據分析基礎之上的精準選址。而在零售業中,數據分析的技術與手段更是得到廣泛的應用,傳統企業如沃爾瑪通過數據挖掘重塑並優化供應鏈,新崛起的電商如卓越亞馬遜、淘寶等則通過對海量數據的掌握和分析,為用戶提供更加專業化和個性化的服務。
大數據在個人隱私的方面,大量數據經常含有一些詳細的潛在的能夠展示有關我們的信息,逐漸引起了我們對個人隱私的擔憂。一些處理大數據公司需要認真的對待這個問題。例如美國天睿資訊給人留下比較深刻印象的是他的一個科學家提出,我們不應該簡單地服從法律方面的隱私保護問題,這些遠遠不夠的,公司都應該遵從谷歌不作惡的原則,甚至更應該做出更積極的努力。
四、大數據時代的發展方向、趨勢
根據ESM國際電子商情針對2013年大數據應用現狀和趨勢的調查顯示:被調查者最關注的大數據技術中,排在前五位的分別是大數據分析(12.91%)、雲資料庫(11.82%)、Hadoop(11.73%)、內存資料庫(11.64%)以及數據安全(9.21%)。Hadoop已不再是人們心目中僅有的大數據技術,而大數據分析成為最被關注的技術。從中可以看出,人們對大數據的了解已經逐漸深入,關注的技術點也越來越多。既然大數據分析是最被關注的技術趨勢,那麼大數據分析中的哪項功能是最重要的呢?從下圖可以看出,排在前三位的功能分別是實時分析(21.32%)、豐富的挖掘模型(17.97%)和可視化界面(15.91%)。2012年也曾做過類似的調查,當時選擇豐富的挖掘模型(27.22%)比實時分析(19.88%)多7.34%。短短一年時間內,企業對實時分析的需求激增,成就了很多以實時分析為創新技術的大數據廠商。從調查結果可以看出:企業在未來一兩年中有迫切部署大數據的需求,並且已經從一開始的基礎設施建設,逐漸發展為對大數據分析和整體大數據解決方案的需求。與此同時,大數據還面臨人才的缺乏的挑戰,需要企業和高校聯合起來,培養數據領域的復合型人才,幫助企業打贏這場「數據戰」。
五、大數據的應用
(一)行業拓展者,打造大數據行業基石
IBM:IBM大數據提供的服務包括數據分析,文本分析,藍色雲杉(混搭供電合作的網路平台);業務事件處理;IBM Mashup Center的計量,監測,和商業化服務(MMMS)。 IBM的大數據產品組合中的最新系列產品的InfoSphere bigInsights,基於Apache Hadoop。
該產品組合包括:打包的Apache Hadoop的軟體和服務,代號是bigInsights核心,用於開始大數據分析。軟體被稱為bigsheet,軟體目的是幫助從大量數據中輕松、簡單、直觀的提取、批註相關信息為金融,風險管理,媒體和娛樂等行業量身定做的行業解決方案。
微軟:2011年1月與惠普(具體而言是HP資料庫綜合應用部門) 合作目標是開發了一系列能夠提升生產力和提高決策速度的設備。
EMC:EMC 斬獲了紐交所和Nasdaq;大數據解決方案已包括40多個產品。
Oracle:Oracle大數據機與Oracle Exalogic中間件雲伺服器、Oracle Exadata資料庫雲伺服器以及Oracle Exalytics商務智能雲伺服器一起組成了甲骨文最廣泛、高度集成化系統產品組合。
(二)大數據促進了政府職能變革
重視應用大數據技術,盤活各地雲計算中心資產:把原來大規模投資產業園、物聯網產業園從政績工程,改造成智慧工程;在安防領域,應用大數據技術,提高應急處置能力和安全防範能力;在民生領域,應用大數據技術,提升服務能力和運作效率,以及個性化的服務,比如醫療、衛生、教育等部門;解決在金融,電信領域等中數據分析的問題:一直得到得極大的重視,但受困於存儲能力和計算能力的限制,只局限在交易數型數據的統計分析。一方面大數據的應用促進了政府職能變革,另一方面政府投入將形成示範效應,大大推動大數據的發展。
(三)打造「智慧城市」
美國奧巴馬政府在白宮網站發布《大數據研究和發展倡議》,提出「通過收集、處理龐大而復雜的數據信息,從中獲得知識和洞見,提升能力,加快科學、工程領域的創新步伐,強化美國國土安全,轉變教育和學習模式」 ;中國工程院院士鄔賀銓說道,「智慧城市是使用智能計算技術使得城市的關鍵基礎設施的組成和服務更智能、互聯和有效,隨著智慧城市的建設,社會將步入「大數據」時代。」
(四)未來,改變一切
未來,企業會依靠洞悉數據中的信息更加了解自己,也更加了解客戶。
數據的再利用:由於在信息價值鏈中的特殊位置,有些公司可能會收集到大量的數據,但他們並不急需使用也不擅長再次利用這些數據。例如,行動電話運營商手機用戶的位置信息來傳輸電話信號,這對以他們來說,數據只有狹窄的技術用途。但當它被一些發布個性化位置廣告服務和促銷活動的公司再次利用時,則變得更有價值。
六、機遇和挑戰
大數據賦予了我們洞察未來的能力,但同時諸多領域的問題亟待解決,最重要的是每個人的信息都被互聯網所記錄和保留了下來,並且進行加工和利用,為人所用,而這正是我們所擔憂的信息安全隱患!更多的隱私、安全性問題:我們的隱私被二次利用了。多少密碼和賬號是因為「社交網路」流出去的?
眼下中國互聯網熱門的話題之一就是互聯網實名制問題,我願意相信這是個好事。畢竟我們如果明著亮出自己的身份,互聯網才能對我們的隱私給予更好保護
⑵ IBM大數據分析
IBM大數據分析
數據就像一個神奇的鑽石礦,當它的首要價值被發掘後仍能不斷給予。下面是我收集的IBM大數據分析,希望大家認真閱讀!
大數據給體育賽事帶來的價值
大數據的真實價值就像漂浮在海洋中的冰山,第一眼只能看到冰山的一角,而絕大部分都隱藏在表面之下。所以發現這些價值的關鍵在於分析。就拿最近的中網來說,跟其他的體育項目一樣,網球也涉及大量的數據。比如一發成功率、一發得分率和Ace球,這些數據是標志球員競技水平的指標。發球速度、接發球成功率、上網成功率、得分點則突出體現了球員的.打法特點,如果非受迫性失誤和雙發失誤率上升,那表明球員的心理狀態或者體力開始下滑。
IBM贊助網球賽事並提供技術支持始於1993年,在1998年,IBM就為美國網球公開賽提供了虛擬化技術。從2005年以來,IBM通過SlamTracker追蹤了四大滿貫賽事八年來的全部8,128場比賽,每場比賽收集4,100萬個數據點。有了這些數據,我們可以知道Ace球的數量,對比賽結果的影響很大,首先被破發的選手失敗的可能性很大。再比如,一發速度快的選手,上網成功率比較高,納達爾近幾年的得分點,從底線逐漸逼近網前。這些數據不但可以給選手提供幫助,更可以通過這些數據來分析對手。這些都是大數據帶給我們的改變。
IBM也在今年正式成為中網的白金信息科技贊助商。作為一項剛剛跨入十年的領先網球賽事,中國網球公開賽正在樹立自己的品牌,相信有了IBM大數據分析技術的支持,為廣大球迷、球員和教練提供更具人性化,現代化的環境支持。此外,中網還致力於成為具有感知化、互聯化和智能化的頂級賽事。通過採用IBM的大數據分析及雲計算技術,中網可以更加快速實現這一目標。
IBM SlamTracker分析出來的比賽
其實對於分析這個詞語,在英文中有兩個單詞,一個是analysis,一個是analytics。這兩者的區別就在於,前者只是對數據進行統計、過濾、抽取,發現價值。而後者則是通過數據分析創造價值。在IBM的SlamTracker里我們就能理解什麼是分析出來的比賽,以及大數據是分析出來的價值。
在SlamTracker中,有一項Keys to the Match功能,它的功能就是找出每場比賽對陣雙方選手獲勝的三個關鍵指標,比如說,當溫網男單決賽中德約科維奇對陣穆雷,小德的三個獲勝關鍵指標分別是第4拍到第9拍的獲勝率、Ace球數量、回球成功率,而穆雷的三個獲勝關鍵指標分別是回球得分率、二發成功率和發球成功率。Keys to the Match 不但找到了這三個關鍵的指標,而且找到了量化的及格線。比如說在今年法網女單決賽里,Keys to the Match 告訴小威廉姆斯,要戰勝莎拉波娃,接對方一發的回球得分率要爭取超過36%,而反過來,莎拉波娃要打敗小威廉姆斯,接對方一發的回球得分率要爭取超過28%。如果在這三項指標里A選手比B選手完成的更好,那麼A獲勝的可能性就大大高於B,換句話說,如果A球員做到了這些指標,這場比賽的結果,其實我們已經知道了。
像這樣的分析特點就在於,這三項指標並不是司空見慣的普通指標,例如第4拍到第9拍的勝率,這種不起眼的數據,是在電視轉播屏幕上看不到的。然而就是這些不起眼的指標衡量了戰局,決定了成敗的關鍵。8128場比賽,每場比賽4100萬個數據點,動用5500個分析模型,在45個潛在動態指標里選擇、對比、分析、判斷、猜測、排除、定位、評估、定量、組合,只有在這樣基礎之上,Keys to the Match才能夠為對陣的雙方挑選出最重要的三個指標,並且確定及格線。這就是大數據分析辦到的事情,也只有大數據分析才能夠辦到。
;⑶ IBM Power全面推動大數據分析發展
IBM日前在2015中國大數據技術大會上分享了其在大數據分析領域的最新成果,闡述了面向大數據分析領域的IT基礎架構的最新戰略。針對企業在認知時代面臨的大數據分析工作負載,IBM堅信要以全新的IT基礎架構作為支持。憑借產品和解決方案的持續革新,IBM致力於助力大數據應用創新,通過打造基於Power的本地生態系統,全面推動本地大數據分析技術的發展。
隨著互聯網和移動互聯網技術的進一步發展,在數據量激增的同時,數據類型也變得更為復雜多樣。如何快速處理這些數據使其產生價值,如何結合結構化與非結構化數據分析進行預測、推理、感知的判斷並採取相應行動,成為企業亟須思考的難題。面對當前挑戰,企業需要能夠處理和分析大量結構化與非結構化數據,具備高可靠性和經濟效益的認知系統。未來,隨著數據量的進一步增長,企業將需要一個具備更強事務處理能力、更靈活調配系統架構的領先IT 基礎架構。
IBM Power一直致力於憑借領先的IT基礎架構,滿足企業的大數據分析需求,幫助企業實現數字化轉型。針對大數據分析與認知工作負載,IBM今年推出了多款Power產品。Power Systems LC伺服器基於OpenPOWER基金會創新成果,針對企業大數據分析工作負載,能夠提供比同等x86伺服器更快的速度及更低的成本,幫助客戶實現便捷、快速的部署。此外,IBM不僅憑借基於POWER8的Linux專屬伺服器幫助用戶發展新興應用,還通過企業級高性能Linux分區伺服器為用戶的關鍵應用提供支持,幫助企業發展新興工作負載、實現業務轉型。
著眼未來趨勢,IBM堅信認知技術與思維是滿足企業發展需要不可或缺的一部分。作為IBM在認知計算領域的卓越代表,沃森(Watson)在大數據處理與分析方面已取得突破性成就,擁有分析海量數據、處理並行復雜數據以及快速判斷和應答響應等卓越能力。基於由IBM Power平台構建的高性能運算基礎架構的支持,IBM正聯合多家合作夥伴,推動沃森的應用。
除了不斷革新Power硬體平台,IBM還通過對本地人才的培養推動大數據應用的創新。今年,IBM已聯手CSDN成功舉辦了8期POWER8極限挑戰賽,吸引了逾萬人次參賽。IBM也成功舉辦了十餘次培訓沙龍,為開發者帶來更多學習和交流的機會。此外,IBM還以不同形式聯合合作夥伴為本地開發者提供基於Power的開源技術創新環境,幫助開發者加速其創新進程。
為提升本地合作夥伴的能力,IBM還與合作夥伴聯手,積極推動本地開源技術生態系統的構建。在IBM「中國合夥人」戰略的引領下,IBM與CSDN等夥伴聯手啟動Linux開源生態系統聯盟,基於IBM多年來為開源領域提供的先進支持,攜手國內ISV、開源技術社區、企業用戶、創投公司等多方力量,共同打造一個基於Power技術的開源技術生態圈。IBM還聯手OpenPOWER基金會成員推出了全新硬體加速ISV支持計劃,為本地ISV免費提供基於RedPOWER伺服器以及賽靈思FPGA的雲端開發及測試環境,幫助ISV提升大數據、雲計算等新興技術研發能力,促進第二代分布式計算的發展。
IBM副總裁、大中華區硬體系統部總經理郭仁聲表示:「認知時代的到來標志著信息技術的發展步入了全新階段,也對企業的IT基礎架構提出了更為嚴苛的要求。為了幫助企業更好地處理、分析數量龐大的結構化和非結構化數據,IBM Power將憑借扎實的硬體基礎和深入的行業洞察,幫助企業構建全新的IT基礎架構,更好地應對當前和未來包括大數據在內的種種挑戰。」
⑷ 《IBM商業價值報告大數據、雲計算價值轉化》epub下載在線閱讀,求百度網盤雲資源
《IBM商業價值報告》(IBM商業價值研究院)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1xtiHRu7SxbxMcSVmb_JotA
書名:IBM商業價值報告
作者:IBM商業價值研究院
出版社:人民東方出版傳媒有限公司,東方出版社
出版年份:2015-3-1
頁數:292
內容簡介:
IBM商業價值研究院經過一系列調研後明確指出,不久的將來,轉型將進一步加強,以客戶為中心的經濟最終將轉向每個人對每個人的經濟。為此,企業要立即做出應對,以創造協調、共生、基於情境和認知的體驗及業務模式。《大數據、雲計算價值轉化》一書專門針對大數據分析和雲計算兩項內容選取不同企業進行專項調研,特別適合企業管理人員作為參考,以指導和應對數字時代的技術變革和產業轉型升級。
⑸ 大數據,也就是國外常說的Big Data。IBM把大數據概括成了三個V,請問是哪三個
大數據,也就是國外常說的Big Data。IBM把大數據概括成3個V,即大量化(Volume)、多樣化(Variety)和快速化(Velocity)。這些特點也反映了大數據潛藏的價值(Value),46V也高度概括了大數據的基本特徵。目前對大數據比較一致的定義是:大數據是指無法在—定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。
⑹ 大數據的基本介紹
1、大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
2、在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)
⑺ 大數據的邊界和大數據生存法則
大數據的邊界和大數據生存法則
「大數據」的洶涌澎湃,讓人們逐漸意識到,由此帶來的,極有可能是一場發生在幾乎所有領域的顛覆性革命。只是,雖然坊間有關大數據的論著很多,但敢於將這種趨勢上升到「主義」高度的,恐怕非史蒂夫·洛爾莫屬。身為在《紐約時報》撰稿長達二十餘年的非虛構寫作者和資深記者、編輯,因為長期從事數據科學報道,洛爾早在十多年前就敏銳地感受到「大數據」即將給人類帶來的變化。而眼前的這本《大數據主義》,不同於此前的大多數同類論著的動人之處在於,它以一個在數據分析行業找到人生價值的年輕人、曾為臉譜網建立了最初的數據科學家團隊的哈佛畢業生傑夫·哈梅巴赫的經歷,以及人類數據時代的標桿——IBM公司的大數據生存法則為主線,在敘事中又穿插了大量相關人物的故事和觀點,勾勒出了近幾年大數據浪潮對人類生活諸多方面的深刻影響。
早在2012年初,史蒂夫·洛爾便先知先覺地以「大數據主義」為題,在《紐約時報》「周日評論」板塊發表了一篇社論,網站點擊量激增,很多讀者還寫了關於這篇文章的評論。《大數據主義》便是對上述主題進一步挖掘的成果。
傑夫·哈梅巴赫,這位曾在華爾街這個聰明人匯集的行業做金融數據分析,之後又加盟臉譜網,在從事數據科學研究的同時也為自己的人生贏得了財務自由。離開臉譜網後,他自己創辦了一家名為Cloudera的公司,自任首席科學家,編寫用於數據科學研究的軟體。2012年夏天,年僅28歲的哈梅巴赫又轉戰醫療業,加入紐約西奈山伊坎醫學院,領導一個數據小組,從事遺傳信息的研究,為探索疾病模型的建立方法和治療手段尋找突破口,這是他認為的目前能將數據科學研究投入應用的最佳途徑。而作為一家有著上百年歷史的科技巨頭,IBM對數據技術的進展同樣甚為關注,他們在較早時候就組建了研究團隊,制定了戰略方針,投入了大量資金,招募大批該領域的專家,團隊人數至今已達2000人。其首席執行官甚至告訴洛爾:「我們把整個公司的前途都押在了大數據技術的應用上。」
大數據生存法則
自1946年計算機問世以來,便不可逆轉地加速改變著人類的生活方式和進程。時至今日,海量存在於互聯網及其他各處、能被人們獲取的信息,早已由千位元組(KB)、兆(MB)、千兆(GB)、太位元組(TB),躍升為拍位元組(PB)、艾位元組(EB)、澤位元組(ZB),乃至堯位元組(YB)。據測算,如果將人類現存的信息全部匯集並存貯起來,需要用到的ipad,疊加起來的厚度可繞地球三分之二圈。正是這驚人的數據總量,使人類在處理信息時能經歷從量變到質變的過程,就如同物質到了納米級別,各種原有的特性都會發生驚人的突變,「大數據」概念的誕生,正是數據存量不斷累積的必然結果。
面對不斷生成的各種數據,尤其同一個系統或平台上生成的數據,盡管以人類的大腦很難理清它們相互之間的關系,對這些數據得以如此產生的前因後果更無法給出合乎邏輯的解釋,但它們之間確實存在著一定的相關性。盡管以人類現有的理解能力看來,這種相關性並不十分清晰,甚至有幾分神秘,但通過總結這一系列數據之間的生成規律,人們仍然可以比過去更為有效地決策,而不是像過去通常所做的那樣,依靠個人直覺或是一些只可意會不可言傳的經驗來做出某個重要決定。因此,許多在過去看來無用的數據,今日都「變廢為寶」了。舉例來說,世界最大零售商沃爾瑪通過對大數據統計和研究發現,男性顧客在購買嬰兒尿片時,通常會順便買上幾瓶啤酒。盡管商家不知其中緣由,但還是果斷推出了啤酒與尿布捆綁銷售的促銷方式,提升了啤酒銷量。由此看來,正是大數據帶來的定量分析方法,為人們的決策帶來了新的參考依據。作為一種創新工具,它還催生了大量相關技術,如社交媒體、感測器信號、基因組信息等,不僅有利於經濟增長,還可以幫助我們重塑構建世界的方式,甚至在一定程度上改變我們世界觀。
盡管大數據技術剛剛起步,但如今可涵蓋的應用領域已十分廣泛:從挖掘數據幫助企業經營決策,到對社交媒體用戶展開細致入微的數據分析,提高網站的廣告點擊率;從利用大數據培育性能前所未有的智能機器人,到推動一些傳統產業的升級換代。此外,還有更為性命攸關的醫療行業的「大數據革命」。例如有人提出,許多慢性疾病並非個體基因引起,而是一種復雜的網路性紊亂,涉及從分子、細胞、組織、器官到人類社群的各個環節。因此他們將一組涉及年齡、病史、生活方式和環境等可能影響疾病的發生發展因素,通過復雜的數學模型,全部轉化為數字,以便試驗性地檢測一個人三年內患上某種疾病的可能性。盡管從定量分析角度看,精密科學,如物理學、化學等學科更為成熟,預測結果也更准確,但人們仍在努力引導醫療行業向定量分析的方向發展,而非僅僅依靠經驗對人的健康狀況定性。
在美國某些研究機構中,大數據應用幾乎可協助建立人類行為模型,幫助人們了解自身各種行為之間的關聯關系,那些不曾為人所知的人類行為的奧秘也將慢慢得到破解。
另一個很有意思的例子,發生在IBM公司研製的智能機器人沃森身上。這個「人」在《危險邊緣》節目中高超的信息處理速度,戰勝了面對人類對手戰無不勝的超級挑戰者,令人想起當年深藍戰勝棋王卡斯帕羅夫的故事。似乎顯得巧合的是,深藍的發明者,同樣是IBM公司,如今它又一次以輝煌戰績證明了在人工智慧領域的領先地位,所不同的是,這次的勝利,離不開大數據技術的鼎力相助。
在IBM沃森實驗室召開的一次學術會議上,人工智慧專家希利斯更提出了一個極具前瞻性的觀點:「機器人必須學會講故事。」在希利斯看來,如果一個計算機系統只會提供答案,而不會「思考」和「解釋」問題,那麼無論運算速度多快,都不會有突破性的前景。這里所說的「講故事」,其實就是在軟體糅合數據、想法、推斷,並形成決策時,對整個過程實施跟蹤,讓人們在使用過程中和過後都能知道計算機是如何一步一步完成其工作的。給出這樣的解釋,就能讓人們知道機器人與我們之間的關系,也就是弄清楚,在整個決策過程中,有哪些部分工作是機器人完成的,有哪些是由人類所做的。
大數據真果真無懈可擊?
既然如此神奇,大數據技術及其應用豈不是理應被當代渴望進步、增長的人們頂禮膜拜·史蒂夫·洛爾並不這樣認為。大數據技術的應用,僅從其可靠性而言,就亟待改進。在近年來一些大公司的錯誤經營行為中,常常可找到大數據應用的影子。此外,伴隨大數據技術滲透進人們生活的,還有個人隱私被泄露的風險。無論社交網路的使用,還是各種隨身軟體中內置的定位裝置,甚至連個人的基因信息,都會在人們並不知情的情況下,被大數據擁有者有意或無意地獲取,從而令個人信息的保護程序受到嚴重威脅。
這方面最典型的例子還要數安客誠公司。這家全美最大的數據代理商,在全球范圍內收集了數億名消費者的相關數據。這些公開或推斷所得的信息包括年齡、種族、性別,黨派,以及諸如對度假的期待、對健康的關注程度等非客觀信息。在將這些數據歸納之後,這家網站就可輕易推斷出大多數美國成年人在這些項目上的相關數據,其深入細致的程度無人可及。《紐約時報》的一位評論員甚至寫道:「訪問者登錄之後就會發現,該網站不僅有大量與自己有關的信息,甚至還有描述詳細的私生活,面對這種情況,他們可能會大吃一驚。」面對這種對個人隱私的嚴重侵犯,除了少數民間的隱私權倡導者提出抗議之外,無論從法律或技術層面,至今仍沒能設計出有效的預防措施加以制止。
更為本質的問題還在於:盡管很多大型現代企業早已進入了「無法計量就無法管理」的時代,但在人類生活的其他方面,仍有許許多多重要的東西無法只用數據就可以說明或解決的。事實上,至少迄今為止,幾乎所有能賦予我們的生活以終極意義的東西,如情感、信仰、人與人之間的愛,還有個體自身庄嚴闊大的精神世界,都絕不可能以數據來涵蓋或表達。因此單純的數據崇拜並非福音,面對人類生活的無數復雜微妙之處,任何形式的「大數據決策」,都有必要用謙卑來調和,以免誤入歧途。
以上是小編為大家分享的關於大數據的邊界和大數據生存法則的相關內容,更多信息可以關注環球青藤分享更多干貨
⑻ ibm對大數據處理定義的關鍵字
ibm對大數據處理定義的關鍵字5個V特性。
IBM IIG解決方案是推崇全方位,全能化的策略與思想:實現從源數據系統進行數據抽取/採集、數據轉換、數據交付、數據管理、數據分析,到洞察業務,全程地實現了端-到-端的信息使用和管理;胸懷大志地向企業級用戶提供可信賴的信息,為優化企業的業務和決策支持服務。以一個全面的信息集成服務平台為核心,為用戶提供全程的數據集成、元數據管理、任何數據源與任何平台上的任何應用程序之間的連接;提供強大並行處理技術轉換復雜邏輯的數據,並隨著數據量增大而無限制地擴展系統。從數據的質量提升、生命周期管理、信息安全訪問和合規,以及業務和IT技術人員的協同工作,這些都能幫助你最終獲取到所需要的「可信賴」信息。不但能在用戶所擁有的數據中心(on-premise)中建設,還能遷移到雲上(off-premise)部署和建設。