A. 大數據就業崗位有哪些
大數據方面的就業主要有三大方向:
一是數據分析類大數據人才,二是系統研發類大數據人才,三是應用開發類大數據人才。他們的基礎崗位分別是大數據系統研發工程師、大數據應用開發工程師、大數據分析師。
2大數據熱門專業
1、Hadoop開發 隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。
2、信息架構開發 大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以十分有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
3、數據安全研究 數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。
4、ETL研發 企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。
B. 在新時期,如何利用大數據成為不可或缺的人才
感謝悟空的邀請!
在新時期,談起大數據,相信很多人都不陌生了吧!其實大數據已經悄無聲息的走入了我們的生活,大數據也是未來互聯網發展的重要方向。
那麼在新時期,大數據對人才的能力有何要求?如何利用大數據成為新時代不可多得的人才?下面帶你詳細分析下:
大家都知道,其實現在的中國市場,最缺乏的就是復合型的大數據開發人才,我認為,在新時代,要想成為大數據人才,應該從以下幾方面著手:
1、大數據人才首先要擁有技術
大數據自然離不開人才,要想成為大數據不可或缺的人才 ,就必須要擁有相關大數據技能。大家都知道,大數據對人才的能力提出了更加高的要求,技術能力上大數據人才要具備java、大數據開發、大數據架構、軟體開發工程等技術背景,會用大數據分析工具,了解統計模型相關知識;在一定程度上掌握Python等一類通用型編程語言,特別是編程方面一定要精通,沒有哪一種大數據不需熟練掌握一門編程語言的。
2、大數據人才需要強大的跨學科學習
隨著大數據向各行業的滲透,大數據從業者往往身兼數職,需要同時掌握數據技術和業務知識。一個好的大數據人才,必須具備強大的數據分析、數據挖掘的能力,而一個既能做業務數據分析,又懂機器學習和工程開發的分析師就是數據科學家。
3、 大數據人才需要堅持
任何技術的掌握都不是一朝一夕的事情,當然大數據也不例外。大數據人才對人提出了更高的需要,不僅需要掌握相關的編程語言,還需要掌握數據分析能力,這就要求我們想要全方位提升自己的大數據業務水平,必須要堅持學習,只有具備大數據知識了,我們才能投入到大數據行業添磚加瓦。
4、 堅持學習的能力
大數據人才要有較強的溝通協調能力、學習能及推動能力、善於執行和監控,有較強的組織和責任意識,還需要強大的邏輯思維能力、歸納演繹能力幫助理解業務,能快速學習全新領域的商業模式和生態。
5、心態很重要
學習大數據的時候,一定要有良好的心態,大數據學習是一個枯燥的國產。要想學有所成,心態極其重要,不是什麼東西一學就會的。
總結:在新時期,目前大數據人才已經成為市場上不可或缺的人才,大數據已經悄無聲息的進入到很多行業了。但學習大數據不是一朝一夕的事情,需要有規劃有計劃的學習、要有堅持學習的能力,只有這樣,才會在新時期,成為新時代所需要的大數據不可多得的人才…
大數據是我的主要研究方向之一,同時也在帶大數據、機器學習方向的研究生,所以我來回答一下這個問題。
首先,當前正處在大數據時代,大數據未來將創造出一個巨大的新價值領域,而這個領域的核心就是圍繞數據價值化的一系列環節。從目前大數據領域所形成的初步產業鏈來看,涉及到數據採集、數據整理、數據存儲、數據安全、數據分析和數據引用,目前數據分析是比較常見的落地應用之一。所以,要想利用大數據成為不可或缺的人才應該從大數據產業鏈入手。
對於當前沒有進入職場的大學生來說,根據自身的知識結構來掌握相應的大數據技術能夠在一定程度上提升自身的職場競爭力。比如具備數學基礎的同學可以考慮學習一下大數據分析技術,未來對於大量的職場人來說,數據分析將是日常工作的一部分。對於動手能力比較強的同學,可以考慮學習一下大數據運維的相關技術,包括數據採集、大數據平台部署等。隨著大數據逐漸開始落地到傳統行業,大數據分析、大數據運維、大數據開發等崗位將有大量的人才需求。
對於當前的職場人來說,要想通過大數據成為不可或缺的人才,需要從三個方面入手,其一是掌握大數據技術;其二是把大數據技術與行業相結合;其三是能夠通過大數據技術創造出源源不斷的價值。
學習大數據技術要根據自身的知識結構來學習,對於職場人來說,可以從大數據分析工具開始學習,基本的學習路線是Excel、BI工具、資料庫、Python編程。大數據與行業的結合有多種不同的方式,目前場景大數據分析是比較常見的落地應用。要想通過大數據技術來創造出價值,一個重要的出發點就是通過大數據完成各自決策的制定,大數據不是目的,通過大數據完成各自決策才是目的。大數據一方面是給人力崗位使用,另一方面是給智能體使用,未來智能體的應用空間將非常廣闊。
我是從以前做淘寶天貓的,今年不做的。在我看來大數據有點類似淘寶的生意參謀,它會給您提供行業各種數據,只是現在應該這個數據維度更豐富了。比如這個行業同行的轉化率,有些行業的轉化率,進店訪客等等;在電商平台都是可以看到的,但是實體以前是做不到的。
現在隨著數字技術的發展,以及實體行業對消費反饋收集困難等原因,才有了大數據的概念。比如現在好多行業面臨的問題是自己設計的產品,消費者不喜歡,賣不出去。可以如果有了大數據,你就知道你的客戶男女比例多少,年齡分布、喜好什麼價位的產品等等,讓你設計的產品更精準。
其實在我看來,你成為數字化的運營高手,你就可以成為不可或缺的人才。
大數據在我看來就是「1+1=N」。
怎麼說呢,比如大數據提供給您行業轉化率是多少,你的實體轉化率是多少?等等,你想成為不可或缺的人才,那你就要有通過這些數據知道我公司現在問題出現在什麼地方了?是什麼因素刺激的出現了這種情況的能力,比如這周你店鋪成交額漲了多少?這是數據給您能提供的,但是為什麼漲了,數據給您提供不了,這你要自己分析,是有節氣,還是因為你做了一個什麼活動等,並針對現有數據對下一周做出計劃。
數據給你的是「1+1=N」你要做的就是把這個數據反映到實物上,並進行分析,並制定下一步公司運作計劃。
比如現在是數據給你1+1=3,那你就要分析為什麼是3,不是2或者1甚至0呢?是什麼刺激這個數據的增長了,是因為你在某些方面優化了還是因為有節氣等,下一步什麼安排等,也就是說你的每一步都能從數據反映出來,並能分析數據,做出下一步的安排等。
好了就說這么多吧,說太細我怕我理解的不準確,誤導人。
對於一個企業來說,大數據可以拓寬產品的銷售渠道和提升服務質量。有利於獲取市場的動態和了解分析用戶需求體驗。
大數據如何才能發揮其作用,最重要的還是得有相對應的人才為它進行分析整理。
大數據可以讓業內的情況變得清晰明了,是事實的支撐,通過數據可以知道業內的最新動態,根據數據分析,及時做出方案調整 有利於企業的發展。
大數據的工作中最重要的是什麼?
1. 細致精準的數據採集;
2. 同時具備邏輯性與適用性;
3. 數據標簽的規劃切實可行(務實);
4. 具備行業垂直度的商業性思維能力;
5. 能夠做到更強的擴展性構架。
總結來說,商業化的大數據最重要的價值便是邏輯性與適用性,而擴展性也能保證在實踐中更有競爭力,最後便是務實和思維能力的支撐。
任何時代的任何職業都需要面對競爭,所以能夠產生的價值決定了我們被需求的程度,如想成為那個不可或缺的人,不僅要具備能力,還要具備務實的心態!
感謝悟空邀請回答。當今世界是 科技 高速發展的時代,也同樣是大數據時代,競爭也是十分的激烈,要想成為大數據不可或缺的人才,必須要保證自己的專業知識過硬,這是一個看技術的活,弱者會被淘汰只有強者才能生存!
大數據可以拓寬產品的銷售渠道和提升服務質量。有利於獲取市場的動態和了解分析用戶需求體驗。
大數據如何才能發揮其作用,最重要的還是得有相對應的人才為它進行分析整理。
大數據可以讓業內的情況變得清晰明了,是事實的支撐,通過數據可以知道業內的最新動態,根據數據分析,及時做出方案調整 有利於企業的發展。
C. 大數據需要什麼人才
大數據需要以下六類人才:
一、大數據系統研發工程師。
這一專業人才負責大數據系統研發,包括大規模非結構化數據業務模型構建、大數據存儲、資料庫構設、優化資料庫構架、解決資料庫中心設計等,同時,還要負責數據集群的日常運作和系統的監測等,這一類人才是任何構設大數據系統的機構都必須的。
二、大數據應用開發工程師。
此類人才負責搭建大數據應用平台以及開發分析應用程序,他們必須熟悉工具或演算法、編程、優化以及部署不同的MapRece,他們研發各種基於大數據技術的應用程序及行業解決方案。其中,ETL開發者是很搶手的人才,他們所做的是從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要,將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫,成為聯機分析處理、數據挖掘的基礎,為提取各類型的需要數據創造條件。
三、大數據分析師。
此類人才主要從事數據挖掘工作,運用演算法來解決和分析問題,讓數據顯露出真相,同時,他們還推動數據解決方案的不斷更新。隨著數據集規模不斷增大,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長,具備Hadoop框架經驗的技術人員是最搶手的大數據人才,他們所從事的是熱門的分析師工作。
四、數據可視化工程師。
此類人才負責在收集到的高質量數據中,利用圖形化的工具及手段的應用,清楚地揭示數據中的復雜信息,幫助用戶更好地進行大數據應用開發,如果能使用新型數據可視化工具如Spotifre,Qlikview和Tableau,那麼,就成為很受歡迎的人才。
五、數據安全研發人才。
此類人才主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施,而對於數據安全方面的具體技術的人才就更需要了,如果數據安全技術,同時又具有較強的管理經驗,能有效地保證大數據構設和應用單位的數據安全,那就是搶手的人才。
六、數據科學研究人才。
數據科學研究是一個全新的工作,夠將單位、企業的數據和技術轉化為有用的商業價值,隨著大數據時代的到來,越來越多的工作、事務直接涉及或針對數據,這就需要有數據科學方面的研究專家來進行研究,通過研究,他們能將數據分析結果解釋給IT部門和業務部門管理者聽,數據科學專家是聯通海量數據和管理者之間的橋梁,需要有數據專業、分析師能力和管理者的知識,這也是搶手的人才。
D. 大數據人才需求有哪些趨勢
當前大數據領域的人才需求有三個較為明顯的趨勢,這些趨勢一定要引起從業者的重視,其一是大數據崗位的劃分逐漸行業化,更多行業領域出現了自己的大數據崗位,這些崗位不再僅僅以開發崗、演算法崗來劃分,而更趨向於全棧化,這就要求從業者的知識結構要更加全面化。
其次是大數據領域的創新會更趨向於數據價值出口的打造,這個過程會要求大數據與更多技術相結合,比如大數據與區塊鏈的結合就有很多創新點。從大的發展和創新趨勢來看,大數據未來將是互聯網(包括產業互聯網)價值的主要承載方式之一,所以互聯網的價值越大則大數據的價值就越大,基於這個創新思路,大數據技術必然要與眾多技術手段相結合。
除此之外,大數據的生產將從被動變為主動,傳統的數據採集方式將發生變化,傳統的數據採集概念會逐漸被數據生產概念所取代,而如何生產數據則是大數據從業者需要重點考慮的核心問題之一,所以掌握大數據生產技術將會有更大的發展空間。
最後,大數據不論如何發展,大數據的背後都是各種資源,隨著行業資源和社會資源紛紛向互聯網遷移,資源和數據的邊界也在逐漸模糊,資源即是數據,從這個角度來看,未來更多的行業從業者都可以看成是大數據從業者。
關於大數據人才需求有哪些趨勢,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
E. 大數據分析工程師發展前景怎樣
大數據就業前景
伴隨著大數據技術的成熟,大數據應用的普及和發展才剛剛開始,我們預計未來二十年,甚至更長一段時間都是大數據黃金發展階段,相關的行業將引來巨大的發展機遇。大部分行業都需要,市場、營銷、運營相關的需求很多。大數據不是職位,學完大數據認證後你可以從事大數據挖掘專家,高級行業分析師,大數據業務架構師,大數據架構師,大數據演算法工程師,大數據開發工程師,大數據運維工程師。不管是國內還是國外,大數據相關的人才都是供不應求的局面。目前市場急需運用大數據分析結果的大數據相關管理人才。
據數聯尋英發布《大數據人才報告》顯示,目前全國的大數據人才僅46萬,未來3-5年內大數據人才的缺口將高達150萬。
據職業社交平台LinkedIn發布的《2016年中國互聯網最熱職位人才報告》顯示,研發工程師、產品經理、人力資源、市場營銷、運營和數據分析是當下中國互聯網行業需求最旺盛的六類人才職位。其中研發工程師需求量最大,而數據分析人才最為稀缺。領英報告表明,數據分析人才的供給指數最低,僅為0.05,屬於高度稀缺。數據分析人才跳槽速度也最快,平均跳槽速度為19.8個月。根據中國商業聯合會數據分析專業委員會統計,未來中國基礎性數據分析人才缺口將達到1400萬,而在BAT企業招聘的職位里,60%以上都在招大數據人才。
大數據就業方向
1. Hadoop大數據開發方向
市場需求旺盛,大數據培訓的主體,目前IT培訓機構的重點。
對應崗位:大數據開發工程師、爬蟲工程師、數據分析師等。
2. 數據挖掘、數據分析&機器學習方向
學習起點高、難度大,市面上只有很少的培訓機構在做。
對應崗位:數據科學家、數據挖掘工程師、機器學習工程師等。
3. 大數據運維&雲計算方向
市場需求中等,更偏向於Linux、雲計算學科。
對應崗位:大數據運維工程師
F. 大數據就業方向
大數據系統研發類人才;
大數據應用開發類人才;
大數據分析類人才。
一、ETL研發
隨著數據種類的不斷增加,企業對數據整合專業人才的需求越來越旺盛。ETL開發者與不同的數據來源和組織打交道,從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要。
ETL研發,主要負責將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
目前,ETL行業相對成熟,相關崗位的工作生命周期比較長,通常由內部員工和外包合同商之間通力完成。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。
二、Hadoop開發
Hadoop的核心是HDFS和MapRece.HDFS提供了海量數據的存儲,MapRece提供了對數據的計算。隨著數據集規模不斷增大,而傳統BI的數據處理成本過高,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長。如今具備Hadoop框架經驗的技術人員是最搶手的大數據人才。
三、可視化(前端展現)工具開發
海量數據的分析是個大挑戰,而新型數據可視化工具如Spotifre,Qlikview和Tableau可以直觀高效地展示數據。
可視化開發就是在可視開發工具提供的圖形用戶界面上,通過操作界面元素,由可視開發工具自動生成應用軟體。還可輕松跨越多個資源和層次連接您的所有數據,經過時間考驗,完全可擴展的,功能豐富全面的可視化組件庫為開發人員提供了功能完整並且簡單易用的組件集合,以用來構建極其豐富的用戶界面。
過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。
四、信息架構開發
大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
五、數據倉庫研究
數據倉庫是為企業所有級別的決策制定過程提供支持的所有類型數據的戰略集合。它是單個數據存儲,出於分析性報告和決策支持的目的而創建。為企業提供需要業務智能來指導業務流程改進和監視時間、成本、質量和控制。
數據倉庫的專家熟悉Teradata、Neteeza和Exadata等公司的大數據一體機。能夠在這些一體機上完成數據集成、管理和性能優化等工作。
六、OLAP開發
隨著資料庫技術的發展和應用,資料庫存儲的數據量從20世紀80年代的兆(M)位元組及千兆(G)位元組過渡到現在的兆兆(T)位元組和千兆兆(P)位元組,同時,用戶的查詢需求也越來越復雜,涉及的已不僅是查詢或操縱一張關系表中的一條或幾條記錄,而且要對多張表中千萬條記錄的數據進行數據分析和信息綜合。聯機分析處理(OLAP)系統就負責解決此類海量數據處理的問題。
OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。
七、數據科學研究
這一職位過去也被稱為數據架構研究,數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。因此,數據科學家首先應當具備優秀的溝通技能,能夠同時將數據分析結果解釋給IT部門和業務部門領導。
總的來說,數據科學家是分析師、藝術家的合體,需要具備多種交叉科學和商業技能。
八、數據預測(數據挖掘)分析
營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。
九、企業數據管理
企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。然後,通過報表和分析技術,數據被切片、切塊,並交付給成千上萬的人。擔當數據管家的人,需要保證市場數據的完整性,准確性,唯一性,真實性和不冗餘。
十、數據安全研究
數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。數據安全研究員還需要具有較強的管理經驗,具備運維管理方面的知識和能力,對企業傳統業務有較深刻的理解,才能確保企業數據安全做到一絲不漏。
G. 大數據需要什麼人才
說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。
小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。一、計算機編碼能力實際開發能力和大規模的數據處理能力是作為大數據工程師的一些必備要素。舉例來說,現在人們在社交網路上所產生的許多記錄都是非結構化的數據,如何從這些毫無頭緒的文字、語音、圖像甚至視頻中拾取有意義的信息就需要大數據工程師親自挖掘。二、數學及統計學相關的背景國內BAT為代表的大公司,對於大數據工程師的要求都是希望是統計學和數學背景的碩士或博士學歷。缺乏理論背景的數據工作者,按照不同的數據模型和演算法總能捯飭出一些結果來,但如果你不知道那代表什麼,就並不是真正有意義的結果,並且那樣的結果還容易誤導你。只有具備一定的理論知識,才能理解模型、復用模型甚至創新模型,來解決實際問題。三、特定應用領域或行業的知識大數據工程師這個角色很重要的一點是,不能脫離市場,因為大數據只有和特定領域的應用結合起來才能產生價值。所以,在某個或多個垂直行業的經歷能為應聘者積累對行業的認知,對於之後成為大數據工程師有很大幫助。