1. 大數據時代商業銀行和客戶關系管理和維護怎麼寫論文
由於我國《商業銀行法》確立了對銀行業實行嚴格的分業管理法律模式,銀行不得經營證券、保險業務,商業銀前者如與保險、證券業相關的新產品開發,創新與資本市場相關且收費較高的表外業務,這些業務是國外商業銀行的高wsdxs.cn/html/touzi/20080409/15488_2.html
2. 淺談計算機與大數據的相關論文
在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。下面是我給大家推薦的計算機與大數據的相關論文,希望大家喜歡!
計算機與大數據的相關論文篇一
淺談“大數據”時代的計算機信息處理技術
[摘 要]在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。本文重點分析大數據時代的計算機信息處理技術。
[關鍵詞]大數據時代;計算機;信息處理技術
在科學技術迅速發展的當前,大數據時代已經到來,大數據時代已經佔領了整個環境,它對計算機的信息處理技術產生了很大的影響。計算機在短短的幾年內,從稀少到普及,使人們的生活有了翻天覆地的變化,計算機的快速發展和應用使人們走進了大數據時代,這就要求對計算機信息處理技術應用時,則也就需要在之前基礎上對技術實施創新,優化結構處理,從而讓計算機數據更符合當前時代發展。
一、大數據時代信息及其傳播特點
自從“大數據”時代的到來,人們的信息接收量有明顯加大,在信息傳播中也出現傳播速度快、數據量大以及多樣化等特點。其中數據量大是目前信息最顯著的特點,隨著時間的不斷變化計算機信息處理量也有顯著加大,只能夠用海量還對當前信息數量之大形容;傳播速度快也是當前信息的主要特點,計算機在信息傳播中傳播途徑相當廣泛,傳播速度也相當驚人,1s內可以完成整個信息傳播任務,具有較高傳播效率。在傳播信息過程中,還需要實施一定的信息處理,在此過程中則需要應用相應的信息處理工具,實現對信息的專門處理,隨著目前信息處理任務的不斷加強,信息處理工具也有不斷的進行創新[1];信息多樣化,則也就是目前數據具有多種類型,在龐大的資料庫中,信息以不同的類型存在著,其中包括有文字、圖片、視頻等等。這些信息類型的格式也在不斷發生著變化,從而進一步提高了計算機信息處理難度。目前計算機的處理能力、列印能力等各項能力均有顯著提升,尤其是當前軟體技術的迅速發展,進一步提高了計算機應用便利性。微電子技術的發展促進了微型計算機的應用發展,進一步強化了計算機應用管理條件。
大數據信息不但具有較大容量,同時相對於傳統數據來講進一步增強了信息間關聯性,同時關聯結構也越來越復雜,導致在進行信息處理中需要面臨新的難度。在 網路技術 發展中重點集中在傳輸結構發展上,在這種情況下計算機必須要首先實現網路傳輸結構的開放性設定,從而打破之前計算機信息處理中,硬體所具有的限製作用。因為在當前計算機網路發展中還存在一定的不足,在完成雲計算機網路構建之後,才能夠在信息處理過程中,真正的實現收放自如[2]。
二、大數據時代的計算機信息處理技術
(一)數據收集和傳播技術
現在人們通過電腦也就可以接收到不同的信息類型,但是在進行信息發布之前,工作人員必須要根據需要採用信息處理技術實施相應的信息處理。計算機採用信息處理技術實施信息處理,此過程具有一定復雜性,首先需要進行數據收集,在將相關有效信息收集之後首先對這些信息實施初步分析,完成信息的初級操作處理,總體上來說信息處理主要包括:分類、分析以及整理。只有將這三步操作全部都完成之後,才能夠把這些信息完整的在計算機網路上進行傳播,讓用戶依照自己的實際需求篩選滿足自己需求的信息,藉助於計算機傳播特點將信息數據的閱讀價值有效的實現。
(二)信息存儲技術
在目前計算機網路中出現了很多視頻和虛擬網頁等內容,隨著人們信息接收量的不斷加大,對信息儲存空間也有較大需求,這也就是對計算機信息存儲技術提供了一個新的要求。在數據存儲過程中,已經出現一系列存儲空間無法滿足當前存儲要求,因此必須要對當前計算機存儲技術實施創新發展。一般來講計算機數據存儲空間可以對當前用戶關於不同信息的存儲需求滿足,但是也有一部分用戶對於計算機存儲具有較高要求,在這種情況下也就必須要提高計算機數據存儲性能[3],從而為計算機存儲效率提供有效保障。因此可以在大數據存儲特點上完成計算機信息新存儲方式,不但可以有效的滿足用戶信息存儲需求,同時還可以有效的保障普通儲存空間不會出現被大數據消耗問題。
(三)信息安全技術
大量數據信息在計算機技術發展過程中的出現,導致有一部分信息內容已經出現和之前信息形式的偏移,構建出一些新的計算機信息關聯結構,同時具有非常強大的數據關聯性,從而也就導致在計算機信息處理中出現了新的問題,一旦在信息處理過程中某個信息出現問題,也就會導致與之關聯緊密的數據出現問題。在實施相應的計算機信息管理的時候,也不像之前一樣直接在單一數據信息之上建立,必須要實現整個資料庫中所有將數據的統一安全管理。從一些角度分析,這種模式可以對計算機信息處理技術水平有顯著提升,並且也為計算機信息處理技術發展指明了方向,但是因為在計算機硬體中存在一定的性能不足,也就導致在大數據信息安全管理中具有一定難度。想要為數據安全提供有效保障,就必須要注重數據安全技術管理技術的發展。加強當前信息安全體系建設,另外也必須要對計算機信息管理人員專業水平進行培養,提高管理人員專業素質和專業能力,從而更好的滿足當前網路信息管理體系發展需求,同時也要加強關於安全技術的全面深入研究工作[4]。目前在大數據時代下計算機信息安全管理技術發展還不夠成熟,對於大量的信息還不能夠實施全面的安全性檢測,因此在未來計算機信息技術研究中安全管理屬於重點方向。但是因為目前還沒有構建完善的計算機安全信息管理體系,因此首先應該強化關於計算機重點信息的安全管理,這些信息一旦發生泄漏,就有可能會導致出現非常嚴重的損失。目前來看,這種 方法 具有一定可行性。
(四)信息加工、傳輸技術
在實施計算機信息數據處理和傳輸過程中,首先需要完成數據採集,同時還要實時監控數據信息源,在資料庫中將採集來的各種信息數據進行存儲,所有數據信息的第一步均是完成採集。其次才能夠對這些採集來的信息進行加工處理,通常來說也就是各種分類及加工。最後把已經處理好的信息,通過數據傳送系統完整的傳輸到客戶端,為用戶閱讀提供便利。
結語:
在大數據時代下,計算機信息處理技術也存在一定的發展難度,從目前專業方面來看,還存在一些問題無法解決,但是這些難題均蘊含著信息技術發展的重要機遇。在當前計算機硬體中,想要完成計算機更新也存在一定的難度,但是目前計算機未來的發展方向依舊是雲計算網路,把網路數據和計算機硬體數據兩者分開,也就有助於實現雲計算機網路的有效轉化。隨著科學技術的不斷發展相信在未來的某一天定能夠進入到計算機信息處理的高速發展階段。
參考文獻
[1] 馮瀟婧.“大數據”時代背景下計算機信息處理技術的分析[J].計算機光碟軟體與應用,2014,(05):105+107.
[2] 詹少強.基於“大數據”時代剖析計算機信息處理技術[J].網路安全技術與應用,2014,(08):49-50.
[3] 曹婷.在信息網路下計算機信息處理技術的安全性[J].民營科技,2014, (12):89CNKI
[4] 申鵬.“大數據”時代的計算機信息處理技術初探[J].計算機光碟軟體與應用,2014,(21):109-110
計算機與大數據的相關論文篇二
試談計算機軟體技術在大數據時代的應用
摘要:大數據的爆炸式增長在大容量、多樣性和高增速方面,全面考驗著現代企業的數據處理和分析能力;同時,也為企業帶來了獲取更豐富、更深入和更准確地洞察市場行為的大量機會。對企業而言,能夠從大數據中獲得全新價值的消息是令人振奮的。然而,如何從大數據中發掘出“真金白銀”則是一個現實的挑戰。這就要求採用一套全新的、對企業決策具有深遠影響的解決方案。
關鍵詞:計算機 大數據時代 容量 准確 價值 影響 方案
1 概述
自從計算機出現以後,傳統的計算工作已經逐步被淘汰出去,為了在新的競爭與挑戰中取得勝利,許多網路公司開始致力於數據存儲與資料庫的研究,為互聯網用戶提供各種服務。隨著雲時代的來臨,大數據已經開始被人們廣泛關注。一般來講,大數據指的是這樣的一種現象:互聯網在不斷運營過程中逐步壯大,產生的數據越來越多,甚至已經達到了10億T。大數據時代的到來給計算機信息處理技術帶來了更多的機遇和挑戰,隨著科技的發展,計算機信息處理技術一定會越來越完善,為我們提供更大的方便。
大數據是IT行業在雲計算和物聯網之後的又一次技術變革,在企業的管理、國家的治理和人們的生活方式等領域都造成了巨大的影響。大數據將網民與消費的界限和企業之間的界限變得模糊,在這里,數據才是最核心的資產,對於企業的運營模式、組織結構以及 文化 塑造中起著很大的作用。所有的企業在大數據時代都將面對戰略、組織、文化、公共關系和人才培養等許多方面的挑戰,但是也會迎來很大的機遇,因為只是作為一種共享的公共網路資源,其層次化和商業化不但會為其自身發展帶來新的契機,而且良好的服務品質更會讓其充分具有獨創性和專用性的鮮明特點。所以,知識層次化和商業化勢必會開啟知識創造的嶄新時代。可見,這是一個競爭與機遇並存的時代。
2 大數據時代的數據整合應用
自從2013年,大數據應用帶來令人矚目的成績,不僅國內外的產業界與科技界,還有各國政府部門都在積極布局、制定戰略規劃。更多的機構和企業都准備好了迎接大數據時代的到來,大數據的內涵應是數據的資產化和服務化,而挖掘數據的內在價值是研究大數據技術的最終目標。在應用數據快速增長的背景下,為了降低成本獲得更好的能效,越來越趨向專用化的系統架構和數據處理技術逐漸擺脫傳統的通用技術體系。如何解決“通用”和“專用”體系和技術的取捨,以及如何解決數據資產化和價值挖掘問題。
企業數據的應用內容涵蓋數據獲取與清理、傳輸、存儲、計算、挖掘、展現、開發平台與應用市場等方面,覆蓋了數據生產的全生命周期。除了Hadoop版本2.0系統YARN,以及Spark等新型系統架構介紹外,還將探討研究流式計算(Storm,Samza,Puma,S4等)、實時計算(Dremel,Impala,Drill)、圖計算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新進展。在大數據時代,借力計算機智能(MI)技術,通過更透明、更可用的數據,企業可以釋放更多蘊含在數據中的價值。實時、有效的一線質量數據可以更好地幫助企業提高產品品質、降低生產成本。企業領導者也可根據真實可靠的數據制訂正確戰略經營決策,讓企業真正實現高度的計算機智能決策辦公,下面我們從通信和商業運營兩個方面進行闡述。
2.1 通信行業:XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取 措施 ,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。中國移動通過大數據分析,對 企業運營 的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
2.2 商業運營:辛辛那提動物園使用了Cognos,為iPad提供了單一視圖查看管理即時訪問的遊客和商務信息的服務。藉此,動物園可以獲得新的收入來源和提高營收,並根據這些信息及時調整營銷政策。數據收集和分析工具能夠幫助銀行設立最佳網點,確定最好的網點位置,幫助這個銀行更好地運作業務,推動業務的成長。
3 企業信息解決方案在大數據時代的應用
企業信息管理軟體廣泛應用於解決欺詐偵測、雇員流動、客戶獲取與維持、網路銷售、市場細分、風險分析、親和性分析、客戶滿意度、破產預測和投資組合分析等多樣化問題。根據大數據時代的企業挖掘的特徵,提出了數據挖掘的SEMMA方法論――在SAS/EM環境中,數據挖掘過程被劃分為Sample、Explore、Modify、Model、Assess這五個階段,簡記為SEMMA:
3.1 Sample 抽取一些代表性的樣本數據集(通常為訓練集、驗證集和測試集)。樣本容量的選擇標准為:包含足夠的重要信息,同時也要便於分析操作。該步驟涉及的處理工具為:數據導入、合並、粘貼、過濾以及統計抽樣方法。
3.2 Explore 通過考察關聯性、趨勢性以及異常值的方式來探索數據,增進對於數據的認識。該步驟涉及的工具為:統計 報告 、視圖探索、變數選擇以及變數聚類等方法。
3.3 Modify 以模型選擇為目標,通過創建、選擇以及轉換變數的方式來修改數據集。該步驟涉及工具為:變數轉換、缺失處理、重新編碼以及數據分箱等。
3.4 Model 為了獲得可靠的預測結果,我們需要藉助於分析工具來訓練統計模型或者機器學習模型。該步驟涉及技術為:線性及邏輯回歸、決策樹、神經網路、偏最小二乘法、LARS及LASSO、K近鄰法以及其他用戶(包括非SAS用戶)的模型演算法。
3.5 Assess 評估數據挖掘結果的有效性和可靠性。涉及技術為:比較模型及計算新的擬合統計量、臨界分析、決策支持、報告生成、評分代碼管理等。數據挖掘者可能不會使用全部SEMMA分析步驟。然而,在獲得滿意結果之前,可能需要多次重復其中部分或者全部步驟。
在完成SEMMA步驟後,可將從優選模型中獲取的評分公式應用於(可能不含目標變數的)新數據。將優選公式應用於新數據,這是大多數數據挖掘問題的目標。此外,先進的可視化工具使得用戶能在多維直方圖中快速、輕松地查閱大量數據並以圖形化方式比較模擬結果。SAS/EM包括了一些非同尋常的工具,比如:能用來產生數據挖掘流程圖的完整評分代碼(SAS、C以及Java代碼)的工具,以及交換式進行新數據評分計算和考察執行結果的工具。
如果您將優選模型注冊進入SAS元數據伺服器,便可以讓SAS/EG和SAS/DI Studio的用戶分享您的模型,從而將優選模型的評分代碼整合進入 工作報告 和生產流程之中。SAS模型管理系統,通過提供了開發、測試和生產系列環境的項目管理結構,進一步補充了數據挖掘過程,實現了與SAS/EM的無縫聯接。
在SAS/EM環境中,您可以從SEMMA工具欄上拖放節點進入工作區的工藝流程圖中,這種流程圖驅動著整個數據挖掘過程。SAS/EM的圖形用戶界面(GUI)是按照這樣的思路來設計的:一方面,掌握少量統計知識的商務分析者可以瀏覽數據挖掘過程的技術方法;另一方面,具備數量分析技術的專家可以用微調方式深入探索每一個分析節點。
4 結束語
在近十年時間里,數據採集、存儲和數據分析技術飛速發展,大大降低了數據儲存和處理的成本,一個大數據時代逐漸展現在我們的面前。大數據革新性地將海量數據處理變為可能,並且大幅降低了成本,使得越來越多跨專業學科的人投入到大數據的開發應用中來。
參考文獻:
[1]薛志文.淺析計算機網路技術及其發展趨勢[J].信息與電腦,2009.
[2]張帆,朱國仲.計算機網路技術發展綜述[J].光碟技術,2007.
[3]孫雅珍.計算機網路技術及其應用[J].東北水利水電,1994.
[4]史萍.計算機網路技術的發展及展望[J].五邑大學學報,1999.
[5]桑新民.步入信息時代的學習理論與實踐[M].中央廣播大學出版社,2000.
[6]張浩,郭燦.數據可視化技術應用趨勢與分類研究[J].軟體導刊.
[7]王丹.數字城市與城市地理信息產業化――機遇與挑戰[J].遙感信息,2000(02).
[8]楊鳳霞.淺析 Excel 2000對數據的安全管理[J].湖北商業高等專科學校學報,2001(01).
計算機與大數據的相關論文篇三
淺談利用大數據推進計算機審計的策略
[摘要]社會發展以及時代更新,在該種環境背景下大數據風潮席捲全球,尤其是在進入新時期之後數據方面處理技術更加成熟,各領域行業對此也給予了較高的關注,針對當前計算機審計(英文簡稱CAT)而言要想加速其發展腳步並將其質量拔高就需要結合大數據,依託於大數據實現長足發展,本文基於此就大數據於CAT影響進行著手分析,之後探討依託於大數據良好推進CAT,以期為後續關於CAT方面研究提供理論上參考依據。
[關鍵詞]大數據 計算機審計 影響
前言:相較於網路時代而言大數據風潮一方面提供了共享化以及開放化、深層次性資源,另一方面也促使信息管理具備精準性以及高效性,走進新時期CAT應該融合於大數據風潮中,相應CAT人員也需要積極應對大數據帶了的機遇和挑戰,正面CAT工作,進而促使CAT緊跟時代腳步。
一、初探大數據於CAT影響
1.1影響之機遇
大數據於CAT影響體現在為CAT帶來了較大發展機遇,具體來講,信息技術的更新以及其質量的提升促使數據方面處理技術受到了眾多領域行業的喜愛,當前在數據技術推廣普及階段中呈現三大變化趨勢:其一是大眾工作生活中涉及的數據開始由以往的樣本數據實際轉化為全數據。其二是全數據產生促使不同數據間具備復雜內部關系,而該種復雜關系從很大程度上也推動工作效率以及數據精準性日漸提升,尤其是數據間轉化關系等更為清晰明了。其三是大眾在當前處理數據環節中更加關注數據之間關系研究,相較於以往僅僅關注數據因果有了較大進步。基於上述三大變化趨勢,也深刻的代表著大眾對於數據處理的態度改變,尤其是在當下海量數據生成背景下,人工審計具備較強滯後性,只有依託於大數據並發揮其優勢才能真正滿足大眾需求,而這也是大數據對CAT帶來的重要發展機遇,更是促進CAT在新時期得以穩定發展重要手段。
1.2影響之挑戰
大數據於CAT影響還體現在為CAT帶來一定挑戰,具體來講,審計評估實際工作質量優劣依託於其中數據質量,數據具備的高質量則集中在可靠真實以及內容詳細和相應信息准確三方面,而在CAT實際工作環節中常常由於外界環境以及人為因素導致數據質量較低,如數據方面人為隨意修改刪除等等,而這些均是大數據環境背景下需要嚴格把控的重點工作內容。
二、探析依託於大數據良好推進CAT措施
2.1數據質量的有效保障
依託於大數據良好推進CAT措施集中在數據質量有效保障上,對數據質量予以有效保障需要從兩方面入手,其一是把控電子數據有效存儲,簡單來講就是信息存儲,對電子信息進行定期檢查,監督數據實際傳輸,對信息系統予以有效確認以及評估和相應的測試等等,進而將不合理數據及時發現並找出信息系統不可靠不準確地方;其二是把控電子數據採集,通常電子數據具備多樣化採集方式,如將審計單位相應資料庫直接連接採集庫進而實現數據採集,該種直接採集需要備份初始傳輸數據,避免數據採集之後相關人員隨意修改,更加可以與審計單位進行數據採集真實性 承諾書 簽訂等等,最終通過電子數據方面採集以及存儲兩大內容把控促使數據質量更高,從而推動CAT發展。
2.2公共數據平台的建立
依託於大數據良好推進CAT措施還集中在公共數據平台的建立,建立公共化分析平台一方面能夠將所有採集的相關數據予以集中化管理存儲,更能夠予以多角度全方面有效分析;另一方面也能夠推動CAT作業相關標准予以良好執行。如果將分析模型看作是CAT作業標准以及相應的核心技術,則公共分析平台則是標准執行和相應技術實現關鍵載體。依託於公共數據平台不僅能夠將基礎的CAT工作實現便捷化以及統一化,而且深層次的實質研究有利於CAT數據處理的高速性以及高效性,最終為推動CAT發展起到重要影響作用。
2.3審計人員的強化培訓
依託於大數據良好推進CAT措施除了集中在上述兩方面之外,還集中在審計人員的強化培訓上,具體來講,培訓重點關注審計工作於計算機上的具 體操 作以及操作重點難點,可以構建統一培訓平台,在該培訓平台中予以多元化資料的分享,聘請高技能豐富 經驗 人士予以平台授課,提供專業技能知識溝通互動等等機會,最終通過強化培訓提升審計人員綜合素質,更加推動CAT未來發展。
三、結論
綜上分析可知,當前大數據環境背景下CAT需要將日常工作予以不斷調整,依託於大數據促使審計人員得以素質提升,並利用公共數據平台建立和相應的數據質量保障促使CAT工作更加高效,而本文對依託於大數據良好推進CAT進行研究旨在為未來CAT優化發展獻出自己的一份研究力量。
猜你喜歡:
1. 人工智慧與大數據論文
2. 大數據和人工智慧論文
3. 計算機大數據論文參考
4. 計算機有關大數據的應用論文
5. 有關大數據應用的論文
3. 對銀行大數據應用的一點思考
對銀行大數據應用的一點思考
在《大數據時代》廣為流行之時,就拜讀了該書。當時的第一感覺是,大數據時代是對傳統統計學的一大挑戰,因為大數據的分析無需取樣,直接避開了傳統統計學的一大前提,也就避免了因樣本取樣本身帶來的誤差。得益於當前發達的網路技術和計算機性能,大數據時代的數據分析是全量的數據分析。我想,這也是該書為什麼一經推出就如此火熱並迅速推廣至各行各業的原因。梳理一下近期的思路,談一談自己對大數據於銀行業務的一點思考。
一、銀行擁有得天獨厚的大數據優勢
看完書後的很長一段時間,我都在思索大數據的思維和方法如何運用在工作中。因為自己每天都在與大量的數據、各類的報表、不同的系統打交道,深感銀行數據的全面、多樣與深不可測。網上銀行、手機銀行、財富管理、信用卡平台等系統內的客戶交易數據,核心系統、信貸系統、客戶關系維護系統、計價系統等客戶的基礎信息,這些是多少外部咨詢公司可望而不可及的數據。如此豐富的信息,如果只是讓她們停留在數據階段,真是太可惜了。雖然,我已經通過不斷提升excel的操作水平來簡化和分析數據,但深感其用途遠遠不應該只是每日通報而已。如何科學利用這些數據,並以此來推動工作開展,是自己一直在思索但總有點心有餘而力不足的問題。銀行的大數據,內容龐大,超出一般人的數據處理能力;大數據於銀行,是新的競爭領域,是新的思路也是新的挑戰,理應是新的工作重點。
二、銀行大數據應用的主要方面
銀行歸根到底是金融服務業,產品的研發、服務的開展無疑都是為了吸引和留住客戶,提升綜合競爭力,而數據則是服務好客戶的前提和保障。就自己淺顯理解,我覺得大數據可在如下幾個方面促進業務開展。
一是區域化管理。不可否認,大到國家、省份、地市,小到不同城區、不同社區、不同單位,文化差異和生活習慣是有所不同的。我們所轄的網點分布在不同的地方,如何因地制宜地推出適合當地居民的產品和政策,必須對不同片區、不同社區、不同商圈的客戶進行統計分析,分析區域之間客戶存在的工作、消費、生活習慣差異,尋求區域內部客戶之間存在的工作、消費、生活習慣共性,以提供有針對性的營銷計劃,根據地域優勢來分配主要的業務經辦行,打造專業的隊伍服務特定的人群,促成資源的合理配置。
二是差別化服務。從IT藍圖上線起,我們中行就提出了經營模式從「以產品為中心」向「以客戶為中心」的轉變,服務模式從「標准化服務」向「個性化服務」的轉變,這些轉變落實到具體工作中,就是服務形態和方法的轉變。通過我行自身的各種渠道、各類系統整合客戶信息,已經形成了一個基本的資料庫,這個資料庫里包含了客戶的工作、家庭、賬戶、聯系信息等客觀數據,如果能通過藉助外部平台,引入客戶喜好、情緒等主觀因素,則可以更加精準地判斷客戶的態度立場、情感傾向等,進而可以相應地分析可向客戶推薦的產品、服務、定價政策,既能迎合客戶的需求,又能提高營銷的效率和效益,真正實現「精準化營銷」。
三是風險管控。這是目前為止,我的日常工作中做得最多的。對於風險控制我們多數時候是被動的,到了貸款出現逾期才意識到借款人資金、信用出現了問題,對於這類現象首先追究的是客戶經理的貸後管理工作不到位。但很多逾期的貸款客戶在其資金鏈斷裂前,其經營實體和抵押物情況等是沒有太多變化的,為了盡早地發現問題,現在的貸後管理,不能僅僅局限於上門回訪,而應通過系統監控和數據分析加強預警防控能力,及時地發現客戶的資金異動,以便採取及時有效的措施防範風險。隨著信用卡的普及,信用卡的消費和還款情況一定程度上反映了持卡人的資金實力,通過分析貸款客戶的信用卡使用情況及時發現潛在風險,盡早開展貸後催收和訴訟工作,避免逾期後再催收的措手不及。
三、銀行大數據運用可採取的措施
有了數據,如何運用數據才是更加具有挑戰性的工作。對於如何運用大數據,我覺得首先要豐富數據採集渠道,拓寬數據來源,我們掌握的客戶信息多為金融信息,數據准確可靠,但缺乏客戶行為方面的信息,可依託互聯網、電商、微博微信等社交平台充實數據資源,以更加全面了解客戶的真實需求;其次要加強內部數據的整合運用,雖然目前我們的數據多,但是數據較分散,各自為政,缺乏交叉運用,各部門各條線應加強數據的資源共享;最後是要建立和培養一支專門的數據分析隊伍,整合各專業領域的員工,負責數據的採集、簡化、分析和應用。在保護客戶隱私的前提下,還可以委託專門的數據處理公司開發專門的程序,以利於更加方便快捷地開展各項工作。
以上是小編為大家分享的關於對銀行大數據應用的一點思考的相關內容,更多信息可以關注環球青藤分享更多干貨
4. 互聯網金融與大數據應用論文
在中國龐大的應用市場和人群下,深入觀察變化且復雜的市場,探索以大數據為基礎的解決方案成為了銀行提高自身競爭力的一大重要手段。大數據技術是互聯網金融的一大技術支撐,通過對人們在互聯網上活動信息形成的數據的收集、挖掘、整理、分析和進一步應用,來創新思維、產品、技術、風險管理和營銷。而數據是互聯網金融的核心,未來計算機網路互聯網金融業的競爭力將取決於數據的規模、有效性、真實性以及數據分析應用的能力。
一、我國互聯網金融的概況
互聯網金融作為二十一世紀高新產物,是傳統的金融行業與互聯網時代的有機結合,利用互聯網技術和信息通信技術實現資金融通、支付、投資和信息中介服務的新型金融業務模式。這種新型金融模式具有顛覆式的影響,創新型巨大改革,不僅推動了我國利率市場化的進程,甚至影響整個經濟與社會發展水平。
二、互聯網金融的運作模式
(一)第三方支付模式
第三方支付模式,即某些具有一定實力和信譽保障的第三方獨立機構,與各大銀行簽約後所提供的交易支持平台。
(二)P2P模式
又稱點對點信貸,即一方貸款,一方借款,通過互聯網作為中間平台的新型模式。這個模式對於微型小額的'信貸以及需要緊急周轉資金的創業者是一個很好的選擇。
(三)眾籌模式
眾籌就是大眾籌資,需要籌資的企業或個人通過互聯網這個眾籌平台運用自己獨特的號召力並發揮創意,獲得來自大眾的資金援助。
(四)互聯網金融門戶
互聯網金融門戶的核心就是「搜索比價」的模式,採用垂直比價的方法讓顧客在互聯網上「貨比三家」,選擇自己最滿意的商品。
(五)大數據金融
大數據金融就是從大量數據中提取有利用價值的信息,以雲計算為基礎來進行融資的模式。最具代表性的就是余額寶,用高於銀行的利率吸引消費者融資,不斷推動著金融業的發展與進步。
三、互聯網金融中的大數據應用及意義
(一)反映市場情況:電商和統計部門通過利用大數據對指數的編制來反映市場的基本情況,有效的分析交易數據,識別出市場交易模式,幫助決策者制定高效率的套利戰略。比如國家的統計局與網路、阿里巴巴等電商、電信、互聯網企業簽訂合作協議,共同開發利用大數據。
(二)金融產品定價:金融的核心內容之一就是金融產品定價問題(尤其是金融衍生產品定價),這一直是大家關心的重要領域,其中涉及有計算和數學建模等。以信用違約互換定價為例,除了考慮違約的傳染性和相關性,還要考慮違約過程的建模和估計,通常需要復雜的數學模型並且驗證困難。最近一種基於大數據的解決方法即利用實際交易數據估計違約概率使其簡單方便。因此大數據能為互聯網金融市場提供運營平台,有效的整合互聯網金融資源,,促進資源優化配置。
(三)精確營銷:通過對一些場景類環境數據、朋友關系和用戶經歷的人文數據、位置和購物等的行為數據,建立模型進行分析,進一步細分客戶。之後,可以定向推出產品並投放廣告,實現精確營銷。這也符合STP戰略思想。大數據通過分析社交網路市場的信息, 特別關注搜索引擎中的搜索熱點,從而制定投資策略,使互聯網金融實現了一種新的營銷模式。
(四)監管風險:互聯網金融雖提高了金融效率,但也使風險呈現出許多新形式。因此需要對互聯網金融活動產生的大數據進行分析,及時准確發現風險暴露,採取相應的措施加以規避、防範,提高互聯網金融安全性,促進互聯網金融的創新。
(五)信用:利用大數據,可以在法律和道德所容許的范圍內對評估對象的靜態動態信用行為進行收集、整理、分析挖掘,使人的信用立體化,進而評估個人或群體的信用,建立用戶的增信模型和信用評分,打破了金融機構壟斷用戶信息的狀況。
四、互聯網金融大數據應用中存在的問題
互聯網金融業本就擁有大數據,已成為自然產生大數據的重要領域,因此在互聯網金融大數據應用中體現出了一些問題和挑戰。
1、大數據處理速度滿足不了各方的需求,體量大,雜訊水平、數據來源和其他因素引起的內容和頻率變化快,增加了大數據問題的復雜性。
2、大數據中含有大量的雜訊信息甚至是虛假信息,出現信息過載的問題。
3、部分企業不願公開、上傳數據,造成不公開數據部門佔便宜、公開數據部門吃虧的狀況,形成了數據的公開、共享等方面不盡人意的局面。
4、容易泄露用戶信息,造成濫用法律法規建設及滯後的現象。如商家對客戶交易信息的過度營銷,下載不安全的APP、用戶掃描二維碼支付都可能泄露個人的信息,買賣用戶信息的不法交易等。
5、並非互聯網金融的所有參與者都具備大數據分析的能力,數據分析挖掘能力不平衡。
五、結論
通過對互聯網金融大數據的運行模式以及應用初步探究,我們發現還有很多問題等待我們去解決,嚴峻的考驗只會讓我們的路走得更穩固,金融業近些年的巨大發展和變革讓我們更加堅定的去深思時代產物與新型科技的碰撞帶來的豐碩成果,不斷更新互聯網金融時代,帶領我們進入更美好的時代。
5. 和大數據有關的畢業論文題目
大數據只是一個時代背景,具體內容可以班忙做
6. 商業銀行經營管理問題研究論文
商業銀行經營管理問題研究論文
當代,論文常用來指進行各個學術領域的研究和描述學術研究成果的文章,簡稱之為論文。下面是我整理的商業銀行經營管理問題研究論文,一起來看看吧。
一、商業銀行經營管理存在的問題
(一)銀行內控機制不健全,規避銀行風險不到位
健全的銀行內控機制能夠有效的對銀行風險進行規避,在我國近年來發生的金融事件中,都體現出我國商業銀行的內控機制存在問題,造成重大損失。建立健全我國商業銀行的內控機制,是銀行發展的關鍵。大部分銀行有針對自身發展特點的內控規章制度,但是這種機制在不合理的激勵約束下,在支行行長的權利過大,造成相應的監督機制不能夠順利進行的情況下,在電子化控制水平較低的情況下,造成商業銀行的內控機制不能夠很好地發揮效果,阻礙了商業銀行規避風險的能力②。
(二)經營管理的方法落後,無法滿足業務需求
盡管我國的商業銀行在國際影響下也實行了資產負債比例管理,但是沒有很好的進行落實,很多銀行都是吸收更多的存款,卻忽視了成本,這與外國銀行追求效益的目標所取得的效果是截然不同的。這種經營管理的落後,造成我國商業銀行的經營管理機制並不健全,使得不能夠很好地發揮作用,在競爭中處於不利地位。
(三)分業模式對商業銀行造成限制
為了降低風險,我國商業銀行實行了分頁的經營模式,但是這種方式卻導致了我國商業銀行的發展受到了限制。這種分頁的經營模式,使我國商業銀行難以滿足企業所需的國際水平的金融產品和業務服務,使一些企業選用外國的銀行作為自己的支持後盾。
(四)員工的專業水平不高,易造成風險
銀行的許多工作人員只是單純的完成數字任務,認為只要完成了任務就能夠保證銀行發展。忽略了員工素質對整體的發展提高作用。
二、商業銀行經營管理問題的對策
(一)建立健全適合銀行發展的內控體制
在經營管理的改革中,建立健全內控體系是商業銀行發展的必然趨勢,對於支行行長的權利要進行適當的控制,行長要明確自己的職責,不能盲目行使權利。要強化支行的內控體制建設,通過一系列的方法使支行的內控逐漸的科學化。
(二)改變經營管理模式,提高競爭力
商業銀行的根本目的是盈利,因此要在這一目標的趨勢下,不斷地進行經濟管理體制的改革,要運用現代管理技術,加強計算機技術的運用,進行精細的分工,對銀行上下進行系統的培訓,提高員工的經營管理理念,增強銀行的競爭能力。改變經營管理模式還要積極吸收國外的有利經驗為自己所用,並且不斷地進行創新③。
(三)提高員工的整體素質
要加強員工的思想教育,提高員工的素質,對於員工的崗位特點,進行系統、針對的培訓,對於員工的工作銀行要進行明確劃分,使銀行的崗位得到具體的落實,並且崗位責任有人可尋,對員工要進行獎勵與約束並存的管理機制,使員工意識到工作責任心的重要性,對員工的知識技能要進行定期的檢查,做到用員工之所長,謀銀行之發展。
三、結語
商業銀行的發展對於我國整個金融業的發展有著積極的推動作用,我國商業銀行的經濟管理在經濟全球化的背景下,競爭能力較弱,跟不上發展的步伐。加強我國商業銀行的經營管理,對於一些金融風險起到規避的作用,對於銀行自身的發展以及參與國際競爭能力都有很大的提高。
【摘 要】
隨著移動互聯網、雲計算、大數據挖掘技術的不斷發展,大數據在銀行業領域的應用日趨深入。論文以大數據時代為背景,對大數據在商業銀行中的應用現狀和存在的問題進行研究。論文運用SWOT分析法對商業銀行目前的優勢、劣勢、機遇和挑戰進行分析,發現現階段銀行業在經營管理上的問題,結合大數據應用,從精準營銷、客戶關系管理、風險控制和用戶信用管理四個方面,提出優化商業銀行經營管理的策略。
【關鍵詞】
大數據;商業銀行;經營策略
1.商業銀行業大數據應用的特點
2017年人民銀行和銀保監會分別在《中國金融業信息技術「十三五」發展規劃》中提出,商業銀行要引入大數據等新技術,推進大數據基礎設施建設,加快推動銀行業務創新,加強風險控制能力。大數據已經被提升到了國家戰略高度,在銀行業運用過程中取得了一定的成果[1]。
數據容量大。我國商業銀行長期的業務開展,使得銀行業「天然」擁有海量數據,商業銀行的主要數據是圍繞櫃面業務系統、信貸管理系統和風險控制系統等產生結構化數據。商業銀行推出的電子金融服務系統,使得一些非結構化的數據信息開始產生,包括指紋和人臉識別等。數據結構復雜,移動互聯的發展促使半結構化、非結構化數據爆發式增長。數據資產化,利用價值大。商業銀行在穩健經營中對數據的准確性有很高的要求,利用好銀行已有的海量數據,應用在客戶識別、風險識別和產品營銷等不同場景下,更好地實現數據資產的增值。
2.基於大數據應用的商業銀行經營策略的SWOT分析
2.1 擁有的優勢(Strength)
成本控制優勢。隨著信息技術發展,商業銀行能夠實現現有業務流程的自動化,大大降低了物理網點的工作人員數量,降低了銀行的運營成本。隨著雲計算能力的提高和技術的成熟,雲計算系統中的數據均保存在「雲」端,減少關於IT基礎設施的建設、單位數據存儲和處理的成本。
營銷效率優勢。商業銀行通過本身的海量數據進行深度挖掘,對客戶進行靜態特徵、行為特徵、傾向預測三個層次的刻畫,構建客戶體系,進行營銷活動的精確推送。通過分析客戶上下游相互關系,了解客戶間業務等往來情況,發掘新的潛在客戶,確定交叉銷售目標,提高了客戶服務效率及營銷精準度。
風險管理優勢。銀行在傳統風險控制方面積累了豐富經驗,這些為大數據挖掘、傳輸、存儲與安全應用提供了相對成熟的基礎環境。將大數據、人工智慧等技術作為風控工具應用到風險控制工作,提升風險控制效率和精準度。
2.2 存在的劣勢(Weakness)
業務同質化。我國商業銀行盈利的主要業務是貸款業務,少有針對客戶需求設計開發的特色產品。因此,大數據的應用范圍可以深入其他能夠盈利的業務,如銀行業的中間業務。利用大數據優勢,找准銀行的自身業務定位,打造差異化的競爭模式。
數據共享程度不高。各家商業銀行均擁有自己的系統,出於自身利益考慮,幾乎不存在分享機制,導致大數據基礎建設效率低、數據利用率低、在整體上缺乏系統性,各銀行只能描繪客戶在本行的交易畫像,不能展示出客戶的金融全貌。
2.3 擁有的機會(Opportunity)
強化優勢。商業銀行傳統所具備的安全、穩定、誠信等優勢可以通過大數據應用進一步鞏固強化。在風險管理中進一步利用大數據,提高銀行自身的安全性。在營銷方面,不斷完善客戶畫像,了解客戶真實需求,實現精準營銷。成本控制方面,隨著大數據技術的不斷成熟,人力成本、設備成本和運營成本也將不斷降低[2]。
金融產品的創新。在大數據時代,銀行業不斷進行產品創新,以滿足客戶個性化需求。這就需要深入了解客戶的核心需求,利用大數據建立數據模型,為其定製專屬於消費者自己的金融產品,提升用戶的體驗滿意度。
2.4 面臨的威脅(Threat)
銀行業與互聯網金融企業的競爭加劇。信息技術的快速發展,促使互聯網金融呈現出爆炸式的發展態勢。互聯網金融模式具有資金配置效率高、交易成本低、支付便捷、普惠性等特點。互聯網企業加快布局金融業,對整個銀行業的核心業務產生沖擊,擠佔了原本屬於傳統銀行業的利潤空間。
數據的安全性問題。首先,隨著互聯網技術的發展,數據量的大幅增加導致了數據的嚴重失真,大量無序低效的無用信息混進資料庫形成垃圾數據,增加信息誤讀的風險。其次,商業銀行運用雲平台也伴隨著一定的風險:一是網路系統與存儲中心可能存在漏洞引起技術安全風險;二是海量客戶信息與個人隱私信息的泄露風險。
3.基於大數據應用的商業銀行經營管理優化策略
3.1 精準營銷
大數據應用更強調相關關系釋放出的潛在價值。商業銀行擁有海量數據,可利用聚類分析,挖掘出更多數據中含有的潛在特性,幫助商業銀行進行市場細分。通過大數據挖掘中的關聯分析相關關系,發掘新的潛在客戶,確定交叉銷售目標。大數據不斷推進金融產品創新。商業銀行通過大數據挖掘為客戶提供差異化服務和定製化價格。根據對海量數據的分析預測,建立相應策略模型,掌握客戶的消費習慣和行為特徵,實現創新式的營銷、無縫多渠道的銷售、個性化的服務[3]。
3.2 客戶關系管理
商業銀行業務同質化嚴重,客戶管理十分重要。在互聯網背景下,金融脫媒現象加速,碎片化金融產品抓住了市場需求,提供差異化產品的同時也剝奪了銀行的客戶資源。因此,運用大數據挖掘方法可以為商業銀行提供更精確的客戶關系管理。商業銀行可以與其他行業或大數據公司形成合作關系,以獲取客戶出行、交易習慣等數據,進行客戶信用評分,當客戶提出需求時,商業銀行利用人工智慧進行判斷。商業銀行還可利用大數據更精準地預測客戶流失概率,並對相應超過客戶流失概率閾值的客戶實行定製化客戶挽留措施[4]。
3.3 風險控制
銀行業作為高經營風險的行業,風險控制是其生存和發展的基礎。通過大數據技術擴容傳統商業銀行風險管理的數據源並處理半結構化和非結構化的各類數據,構建大數據風險管控平台,全面收集客戶的數據。注重內外部數據的融合,整合銀行內部積累的金融信息,同時,獲取外部數據或公共信息等數據,降低信息不對稱程度,增強風險控制能力。建立風險管控模型,可以借鑒國內外同業的做法,設計符合實際要求的模型,根據實際情況開展訓練,輸入實際的數據進行模型訓練和驗證,合理地改進模型的配置參數,提高模型的准確度[5]。
3.4 信用管理
商業銀行信用風險管理對商業銀行的貸款決策具有顯著影響。商業銀行要構建人工和數據相結合的模式,運用大數據挖掘技術,集合內外信息資源,形成覆蓋所有機構、所有客戶、所有產品的實時監測分析和預警控制網路,提高信用風險預警水平。利用大數據,實現貸款業務的貸前、貸中和貸後全過程管理。強化貸前風險識別,在客戶審批階段,依託行內信用資料庫、評級系統及反欺詐平台,提前對客戶可能存在的違約風險進行精準判斷;強化貸中審批自主化,大數據信貸審批系統以風控評分卡模型的自動審核為主,加以人工審核進行輔助的模式;強化貸後風險監測,商業銀行要建立信貸投放、資產質量等多維度的信用風險日常監測指標體系。
【參考文獻】
【1】韓雪峰,朱青,馬文捷.商業銀行應用大數據的安全風險防範研究[J].江蘇商論,2017(11):88-92.
【2】齊貴柱,齊苑博.大數據時代商業銀行大數據分析研究[J].財經界,2019,500(01):128-129.
【3】屈波,王玉晨,楊運森.互聯網金融沖擊下傳統商業銀行的應對策略研究--基於SWOT分析方法[J].西部金融,2015(1):41-45.
【4】嚴文樞.關於商業銀行大數據應用的思考和探析[J].福建電腦,2014(7):68-69.
【5】信懷義.商業銀行大數據的應用現狀與發展研究[J].中國金融電腦,2016(8):26-28.
【摘要】
在經濟全球化迅速發展以及改革開放不斷擴大的機遇中,我國各行各業得以迅猛發展,其中我國銀行業的發展舉世矚目,取得了許多長足的進步。但是,機遇與挑戰通常是並存的,在銀行業場迅速發展的同時,商業銀行之間的角逐也逐漸激烈起來。因此,我國商業銀行也面臨著許多挑戰。比如,在商業銀行的經營管理中,還存在著許多風險與不足,與此相關的經營管理體制也未能及時的建立健全。商業銀行若是想在如此激烈的角逐佔有一席之地,就必須對其管理中存在或者潛在的風險加以預測並且進行防範。本論文根據商業銀行經營管理中的出現的情況進行分析,通過一些成功經驗,提出對風險的預測以及防範策略。
【關鍵詞】
商業銀行 經營管理 風險 防範措施
一、商業銀行經營管理中存在的風險
(一)銀行出現的不良貸款率較高
銀行經營管理中出現風險種類十分多,但是主要對銀行經營造成影響的是銀行資產的質量風險。而對於資產的質量起到關鍵性作用的.是貸款的質量,許多銀行存在的風險大多是由不良貸款引發的。依據近過去幾年的數據統計,我國商業銀行的不良貸款率相對於國外的主要商業銀行還是偏高的,因此得出不良貸款率仍舊是造成我國銀行資產質量風險的主要原因之一。
對不同種類企業的還貸能力進行准確評估存在一定難度,這給銀行貸款的發放與回收帶來困難。對於部分經營能力較強、企業規模大並且實力相對雄厚的企業,這部分企業絕大多數已經具備上市的資格,在相關行業中具有穩定地位。因此,在商業銀行放貸中十分搶手,銀行也十分願意向其發放貸款。但是,相對的一些企業經濟效益並不是十分理想,對於銀行的貸款不能及時返還,造成銀行信貸資金的危機,使其流動性受到限制。近年來由於經濟增速的下降,大量企業盈利能力降低,對於商業銀行的貸款質量造成了一定不利影響。
(二)員工的綜合素質不高
在銀行經營管理風險中,員工是主要的操作人員。但是,由於不少員工的綜合素質以及學習水平不足,也成為影響銀行經營管理風險的主要因素之一。員工的總體水平是企業競爭力的直接影響因素。但是我國銀行員工的綜合素質還不能滿足銀行業務發展的需求,更有甚者,有部分員工缺乏職業道德素養,利用個人的職位謀取或者侵犯銀行利益,在進行工作的同時,出現了挪用公款、貪污等違法行為,對銀行業務的發展造成不利影響。其次,就是銀行員工的個人工作水平以及經驗不足,對經營管理崗位的需求無法滿足,缺少長遠發展的眼光,不能應對隨時出現的風險,成為阻礙銀行發展的因素。
(三)個人信用系統的不完善
在銀行經營管理中存在的影響因素之一是個人信用系統的不完善。銀行業務中的重要組成部分是個人信貸,為了能夠讓個人信貸能夠及時的返還,銀行一般是要對貸款人的個人信用進行審查,對於一些沒有良好的個人信譽的客戶,將不會同意其貸款要求。但是,從銀行業務對於個人信用的審查流程來看,普遍存在的問題是,對個人信用審查的不嚴格以及相關的貸款信用管理體制尚未健全。如今信用系統中涉及貸款人的各種信息以及身份證明並不能對貸款人的信用情況進行真實有效的反映。個人信用系統的不完善以至於出現對貸款人的可支配資金、可抵押的資產或是其收入情況不能全面掌握,或是貸款人出現一些偽造信息的情況。個人信用系統的不完善最終導致的結果是銀行的貸款不能在規定時間內及時的收回,從而對整體運轉系統造成影響。
二、銀行經營管理中的防範策略
(一)資產配置進行優化,降低不良貸款率
對資產配置進行優化,從而降低不良貸款率。這不僅能降低銀行風險爆發的概率,還會銀行業務的發展有著促進作用。首先,要提高資產的質量,就要對資本的運作水平進行提高。要對銀行業務中長期貸款進行科學的設置,使銀行的流動性得以保障。其次,對金融科技的創新能力進行強化,將大數據、雲計算等技術運用到貸款過程中,收集、分析各類數據,使銀行能夠精確的了解貸款過程中各種信息,使不良貸款率降低。最後,對於出現的不良貸款採取相應的手段,對其進行約束,並且對審款、放款、貸款等流程進行嚴格把控,增強信用貸款的管理,推進銀行經營的進步以及銀行業務的發展。
(二)提高員工綜合素質
員工的綜合素質與銀行能否順利發展有著不可磨滅的聯系,根據這一實際狀況,銀行應當對員工的綜合素質引起重視,增強員工的綜合素質,建成一支高素質、復合型人才隊伍。第一,在招聘中進行嚴格要求,對人才的綜合素質進行嚴格的考察與測評,既要對其專業能力進行考評,還要對其職業道德素質以及道德水平進行測評,使其能夠保持對工作的熱情以及在工作中能夠發揮其能動性,積極的承擔自己的責任。第二,對銀行員工進行定期的培訓,提供外出學習先進經驗的機會,使其的專業知識不斷更新,不斷的積累先進經驗。第三,在金融市場風雲變幻中,銀行也必將隨之變動。因此,要求員工能夠及時掌握市場的行情,通過對市場行情的分析開拓自己的眼界,提高員工對風險的敏感度。第四,要提高員工的綜合素質水平,必須要定期的對員工進行考評,嚴格對其行為進行把關,有助於形成良好的學習氛圍,促進員工綜合素質的進步。
(三)建立健全信用系統
建立健全信用系統對推進銀行經營管理有著關鍵性的作用,同時也是信貸業務能否良好展開的必要保障。在貸款業務的進程中,信用系統能否建立健全對貸款人的信用審查部分有著重要的推動作用。第一,銀行在信貸業務中要完善信用審查環節,對其工作流程嚴格把關,對貸款人信息進行精確嚴格的問詢,保證其信息的准確性。第二,在建立健全信用系統的過程中,要求銀行員工在工作時,要對貸款人的信息填寫進行具體的指導,並且明確的對其進行提示,要求其填寫關於信用貸款的所有相關信息,包括其可抵押資產、收入來源、總體資金以及貸款資金的用途等詳細信息。第三,對於貸款人填寫的信息,銀行後期應該進行仔細核查,並定期對其進行追蹤,使信用系統的健全得以保障,從而降低潛在的信用風險。
三、結語
在經濟全球化帶動我國銀行發展的同時,我國銀行的競爭也日益激烈。在各種風險因素的影響下,銀行的經營管理也存在著各種不同的風險。在商業銀行經營管理中,風險的存在是不可迴避的問題。因此,銀行應該通過各種手段對已出現的或是潛在的風險採取解決措施或是提前預測,有效的規避風險。只有提高對風險認識的敏感度,才能對出現的風險坦然面對,繼而能夠使銀行能夠順利發展,為我國經濟發展做貢獻。
;7. 以大數據為主題,寫一篇1500字的文章
可參考下文9個關鍵字寫寫大數據行業2015年年終總結2015年,大數據市場的發展迅猛,放眼國際,總體市場規模持續增加,隨著人工智慧、物聯網的發展,幾乎所有人將目光瞄準了「數據」產生的價值。行業廠商Cloudera、DataStax以及DataGravity等大數據公司已經投入大量資金研發相關技術,Hadoop供應商Hortonworks與數據分析公司NewRelic甚至已經上市。而國內,國家也將大數據納入國策。我們邀請數夢工場的專家妹子和你來聊聊2015年大數據行業九大關鍵詞,管窺這一年行業內的發展。戰略:國家政策今年中國政府對於大數據發展不斷發文並推進,這標志著大數據已被國家政府納入創新戰略層面,成為國家戰略計劃的核心任務之一:2015年9月,國務院發布《促進大數據發展行動綱要》,大力促進中國數據技術的發展,數據將被作為戰略性資源加以重視;2015年10月26日,在國家「十三五」規劃中具體提到實施國家大數據戰略。挑戰:BI(商業智能)2015年對於商業智能(BI)分析市場來說,正由傳統的商業智能分析快速進入到敏捷型商業智能時代。以QlikView、Tableau和SpotView為代表的敏捷商業智能產品正在挑戰傳統的IBMCognos、SAPBusinessObjects等以IT為中心的BI分析平台。敏捷商業智能產品也正在進一步細化功能以達到更敏捷、更方便、適用范圍更廣的目的。崛起:深度學習/機器學習人工智慧如今已變得異常火熱,作為機器學習中最接近AI(人工智慧)的一個領域,深度學習在2015年不再高高在上,很多創新企業已經將其實用化:Facebook開源深度學習工具「Torch」、PayPal使用深度學習監測並對抗詐騙、亞馬遜啟動機器學習平台、蘋果收購機器學習公司Perceptio……同時在國內,網路、阿里,科大訊飛也在迅速布局和發展深度學習領域的技術。共存:Spark/HadoopSpark近幾年來越來越受人關注,2015年6月15日,IBM宣布投入超過3500名研究和開發人員在全球十餘個實驗室開展與Spark相關的項目。與Hadoop相比,Spark具有速度方面的優勢,但是它本身沒有一個分布式存儲系統,因此越來越多的企業選擇Hadoop做大數據平台,而Spark是運行於Hadoop頂層的內存處理方案。Hadoop最大的用戶(包括eBay和雅虎)都在Hadoop集群中運行著Spark。Cloudera和Hortonworks將Spark列為他們Hadoop發行的一部分。Spark對於Hadoop來說不是挑戰和取代相反,Hadoop是Spark成長發展的基礎。火爆:DBaaS隨著Oracle12cR2的推出,甲骨文以全新的多租戶架構開啟了DBaaS(資料庫即服務Database-as-a-Service)新時代,新的資料庫讓企業可以在單一實體機器中部署多個資料庫。在2015年,除了趨勢火爆,12c多租戶也在運營商、電信等行業投入生產應用。據分析機構Gartner預測,2012年至2016年公有資料庫雲的年復合增長率將高達86%,而到2019年資料庫雲市場規模將達到140億美元。與傳統資料庫相比,DBaaS能提供低成本、高敏捷性和高可擴展性等雲計算特有的優點。
8. 大學互聯網金融選修課論文,我可不可以寫:大數據背景下互聯網銀行是否會取代傳統銀行
這種論文,對題目沒多大要求
但是很難展開論述,數據安全是銀行的最大軟肋。原因很簡單,目前的網路都是控制在美國人手裡。如果網路銀行取代傳統銀行,那麼所有銀行的數據就都掌握在美國人手裡。事實上,目前銀行的數據是物理隔絕互聯網的。通常用的網路數據,只是和銀行交換數據
9. 大數據在銀行業的應用與實踐
大數據在銀行業的應用
一、輿情分析
對於銀行來說,輿情分析包括:銀行的聲譽分析、品牌分析和客戶質量分析。它主要是通過分析網路社交媒體的評論,對於客戶的流失情況進行預警,還可以通過對新聞熱點的跟蹤以及政府報道的分析,為銀行提供個性化的分析場所。
二、客戶信用評級
銀行可以通過手機客戶申請信用卡的數據,分析客戶的信用程度,從而幫助業務人員做出相應的決策。
三、客戶與市場洞察
銀行可以通過跟蹤社交媒體的評論信息,利用各種非結構化數據,對客戶進行細分,改進客戶的流失情況。這是銀行對於市場的趨勢分析。
四、運營優化
銀行通過大數據平台對各種歷史數據進行保存和管理,同時可以對系統日誌進行維護、預測系統故障,從而提升系統的運營效率。
五、風險與欺詐分析
主要包括財務風險分析、貸款風險分析、各種反洗錢和欺詐調查和實時欺詐分析等內容。所謂財務風險分析是分析信用風險和市場風險產生的數據;貸款風險分析是從媒體或者社會公眾信息中提取企業客戶和潛在客戶的信息。提高對於風險的預測能力和預警能力;反洗錢與欺詐調查是提取犯罪記錄的信息;實時欺詐分析則是對大量的欺詐數據進行分析。
銀行數據架構規劃
隨著銀行業務的擴展,可以對數據進行架構規劃。大數據的數據架構規劃可以採用Hadoop技術,即通過與節後或數據進行關聯,進一步拓展對非結構化數據的處理。其數據源包括結構化數據、半結構化數據和非結構化數據。半結構化數據和非結構化數據通過網路爬蟲的方式來搜集,再經過內容管理處理,將數據進行結構化處理,然後可以將內容管理處理得出的數據信息存放到基礎數據存儲中。這是基於HDFS存放的非結構化數據。
大數據為銀行創造的價值
當銀行客戶與銀行產生交易,會產生大量的數據,這些數據具有大量的業務價值,為銀行進行有針對性的營銷創造了機會。
在大部分的應用中,隨著數據量指數級的增長,特別是一些非結構化數據的快速增長,大量的數據導致分析時間增長,傳統的商業智能已經無法滿足需求,阻礙了業務的發展,以FineBI為代表的新型BI的涌現,無論在數據處理量和速度上都相比傳統BI有突破性的進步。
在很長的一段時間內,銀行的大部分業務是建立在客戶和銀行的交易過程中的,但是為了能更好地為客戶服務,光靠依賴這些數據是不夠的。隨著技術的進步,銀行可以通過很多途徑來搜集客戶的資料。從而進行有針對性的營銷。
隨著互聯網技術的發展,客戶可以通過電子渠道對銀行業務發表看法或者購買銀行產品。這些操作都是為增強對於客戶的了解,降低信息的不對稱性。
目前來說,在利率市場化的趨勢下,存款的穩定性降低,存貸款的利差收窄,數據分析已經逐漸成為銀行實現核心業務價值的重要手段。金融脫媒會導致大量客戶的流失和客戶忠誠度的降低。銀行作為「支付中介」的地位開始動搖,客戶對於銀行服務的要求越來越高。
在這種情況下,銀行需要通過大數據深入全名了解客戶的基本信息,提升業務運行的效率,逐步提高客戶的體驗。通過對大數據的加工以及挖掘,可能為銀行帶來極大的效益,特別是商業銀行。
對於銀行來說,風險管控和用戶營銷是未來最重要的兩個方向。而對客戶的信用評分是實現這兩個方向的重要條件之一。信用評分是根據申請人的申請信息和證明材料,幫助業務員作出決策,降低壞賬率。
比如:我們可以根據大數據的分析和查詢,有針對性地為客戶提供理財產品建議和提醒,同時通過對大數據的分析和挖掘,來評估客戶的信用風險和資金償還能力,降低了銀行的各種風險。
10. 大數據論文
大數據論文【1】大數據管理會計信息化解析
摘要:
在大數據時代下,信息化不斷發展,信息化手段已經在我國眾多領域已經得到較為廣泛的應用和發展,在此發展過程,我國的管理會計信息化的應用和發展也得到了非常多的關注。
同時也面臨著一些問題。
本文通過分析管理會計信息化的優勢和應用現狀以及所面臨的的問題,以供企業在實際工作中對這些問題的控制和改善進行參考和借鑒。
關鍵詞:
大數據;管理會計信息化;優勢;應用現狀;問題
在這個高速發展的信息時代,管理會計的功能已經由提供合規的信息不斷轉向進行價值創造的資本管理職能了。
而管理會計的創新作為企業管理創新的重要引擎之一,在大數據的時代下,管理會計的功能是否能夠有效的發揮,與大數據的信息化,高效性、低廉性以及靈活性等特點是密不可分的。
一、大數據時代下管理會計信息化的優勢及應用現狀
在大數據時代下,管理者要做到有效地事前預測、事後控制等管理工作,在海量類型復雜的數據中及時高效的尋找和挖掘出價值密度低但是商業價值高的信息。
而管理會計信息化就能夠被看做是大數據信息系統與管理會計的一個相互結合,可以認為是通過一系列系統有效的現代方法,
不斷挖掘出有價值的財務會計方面的信息和其他非財務會計方面的綜合信息,隨之對這些有價值的信息進行整理匯總、分類、計算、對比等有效的分析和處理,
以此能夠做到滿足企業各級管理者對各個環節的一切經濟業務活動進行計劃、決策、實施、控制和反饋等的需求。
需要掌控企業未來的規劃與發展方向就能夠通過預算管理信息化來實現;需要幫助管理者優化企業生產活動就能夠通過成本管理信息化對
供產銷一系列流程進行監控來實現;需要對客觀環境的變化進行了解以此幫助管理者為企業制定戰略性目標能夠通過業績評價信息化來實現。
(一)預算管理信息化
在這個高速發展的信息時代下,預算管理對於企業管理而言是必不可少的,同時對企業的影響仍在不斷加強。
正是因為企業所處的環境是瞬息萬變,與此同此,越來越多的企業選擇多元化發展方式,選擇跨行業經營的模式,經營范圍的跨度不斷增大。
這就需要企業有較強的市場反應能力和綜合實力,對企業的預算管理提出了新的發展挑戰要求。
雖然不同企業的經營目標各不相同,但對通過環境的有效分析和企業戰略的充分把握,從而進行研究和預測市場的需求是如出一轍的。
企業對需求的考量進而反應到企業的開發研發、成本控制以及資金流安排等各個方面,最終形成預算報表的形式來體現企業對未來經營活動和成果的規劃與預測,
從而完成對企業經營活動事後核算向對企業經營活動全過程監管控制的轉變。
然而從2013國務院國資委研究中心和元年諾亞舟一起做的一項針對大型國有企業的調研結果中得出,僅僅有4成的企業完成了預算管理的信息化應用,
大型的國有企業在預算管理信息化應用這方面的普及率都不高,足以說明我國整體企業的應用情況也不容樂觀。
所以從整體上來講,預算管理信息化的應用並未在我國企業中獲得廣泛的普及。
(二)成本管理信息化
企業由傳統成本管理企業向精益成本管理企業轉換是企業發展壯大的必然選擇。
而基於大數據信息系統能夠為企業提供對計劃、協調、監控管理以及反饋等過程中各類相關成本進行全面集成化管理。
而進行成本管理的重中之重就是對企業價值鏈進行分析以及對企業價值流進行管理。
企業能夠通過成本管理信息化對有關生產經營過程中的原材料等進行有效地信息記錄及進行標示,並結合在財務信息系統中產生的單獨標簽,
使與企業有關的供應商、生產經營過程和銷售等的過程全都處於企業的監控。
以此企業可以做到掌握生產經營的全過程,即能夠通過財務信息系統實時了解到原材料的消耗,產品的入庫及出庫等一切企業生產經營活動。
同時,結合價值鏈的分析和價值流管理,企業通過將生產過程進行有效地分解,形成多條相互連接的價值鏈,運用信息化手段對企業的
每條價值鏈的成本數進行有效的追蹤監管和綜合分析,以此為基礎為企業提出改進方案,並使用歷史成本進行預測,達到減少企業的不需要的損失及浪費,最終達到優化生產經營過程。
雖然成本管理信息化是企業發展的一個重要趨勢,以大數據信息技術為基礎的信息系統可以使得企業完成全面的成本管理,給企業的成本管理帶來了巨大的推動力。
然而信息化在成本控制方面的實施效果並不是很理想。
(三)業績評價信息化
業績評價是對企業財務狀況以及企業的經營成果的一種反饋信息,當企業的績效處於良好狀態,代表企業的發展狀況良好,
也反映了企業現階段人才儲備充足,發展處於上升期,由此企業定製擴張戰略計劃。
而當企業的績效不斷減少,代表企業的發展狀況在惡化,也反映了企業的人才處在流失狀態,企業在不斷衰退,此時企業應該制定收縮戰略計劃。
企業進行業績評價信息化的建設,通過對信息系統中的各類相關數據進行綜合分析,有效地將對員工的業績評價與企業的財務信息、顧客反饋、學習培訓等各方面聯系在一起。
對於企業而言,具備一套完善且與企業自身相適應的業績評級和激勵體系是企業財務信息系統的一個重要標志,也是企業組織內部關系成熟的一種重要表現。
然而,如今對於具備專業的業績評價信息化工具平衡分卡等在企業的發展過程中並未得到廣泛的應用。
其中最大的原因應該是對業績評價的先進辦法對於數據信息的要求比較簡單,通常可以由傳統方式獲得。
所以,現如今能夠完全將業績評價納入企業信息系統,並能夠利用業績評價信息化來提高企業管理效率的企業數量並不多。
二、大數據時代下管理會計信息化存在的主要問題
(一)企業管理層對管理會計信息化不重視
我國企業管理層對企業管理會計信息化建設存在著不重視的問題。
首先,對管理會計信息化概念和建設意義沒有正確的認識,有甚至由於對於企業自身的認識不夠充分,會對管理會計信息化的趨勢產生了質疑和抵觸心理。
再者,只有在一些發展較好的企業中進行了管理會計信息化的建設工作及應用,但是,企業應用所產生的效果並不是很理想,進而促使管理會計信息化在企業的發展速度緩慢。
(二)管理會計信息化程度較低
大數據時代下,信息化手段已經在我國眾多領域已經得到較為廣泛的應用和發展,在此發展過程,我國的管理會計信息化的應用和發展也得到了非常多的關注。
但是,由於管理會計在我國受重視程度不夠,企業在進行管理會計信息化建設的過程中對與軟體的設計和應用也要求較高,所以與管理會計信息化建設相關的基礎建設還相對較落後。
(三)管理會計信息化理論與企業經管機制不協調
雖然隨著國家政策鼓勵和扶持,很多行業的不斷涌現出新的企業,企業數量不斷增多,但是由於這些企業在規模以及效益等方面都存在著較大的差距,同時在管理決策方面也產生了顯著地差別。
很多企業在發展的過程中並沒有實現真正的權責統一,產生了管理層短視行為,沒有充分考慮企業的長遠利益等管理水平低下的問題。
三、管理會計信息化建設的措施
(一)適應企業管理會計信息化發展的外部環境
企業在進行管理會計信息化建設時,要結合企業所處的外部環境進行全方面的規劃和建設。
在企業進行規劃和建設時,國家的法律法規等相關政策占據著十分重要的位置,需要對市場經濟發展的相關法律法規進行充分理解和考慮,為企業管理會計信息化建設提供好的法律環境。
管理會計信息化系統的正常運轉要求企業處於相對較好的環境之中,以此充分發揮出其應有的作用。
(二)管造合適的管理會計信息化發展內部環境
企業管理會計信息化的良好發展要求企業能夠提供良好的內部環境。
樹立有效推進企業管理會計信息化建設的企業文化,企業文化作為企業股東、懂事、管理層以及每個員工的價值觀念體現,
有利於各級員工都能夠正確認識到管理會計信息化建設的重要性,接受管理會計信息化的價值取向。
再者,企業要儲備足夠的管理會計人才,為管理會計信息化的建設提供源源不斷的血液。
同時,為企業管理會計信息化建設提供強大的資金保障。
最後,對企業內部控制體系不斷完善,為企業創造長足的生命力,為管理會計信息化賴以生存的環境。
(三)開發統一的企業信息化管理平台
在大數據時代下,信息化不斷發展,對於企業而言,會同時使用多種不同的信息系統進行組合使用,並且這種情況在未來也可能將持續下去,企業需要建立綜合統一的企業信息化管理平台。
四、結束語
管理會計信息化已經成為企業發展的重要趨勢。
同時也面對著一些問題。
因此,相應的措施和不斷地完善和改進是必不可少的,以此才能夠促進管理會計信息化的不斷發展。
作者:李瑞君 單位:河南大學
參考文獻:
[1]馮巧根.
管理會計的理論基礎與研究範式[J].
會計之友,2014(32).
[2]張繼德,劉向芸.
我國管理會計信息化發展存在的問題與對策[J].
會計之友,2014(21).
[3]韓向東.
管理會計信息化的應用現狀和成功實踐[J].
會計之友,2014(32).
大數據論文【2】大數據會計信息化風險及防範
摘要:
隨著科學技術的不斷進步和社會經濟的不斷發展,大數據時代的發展速度加快,同時也推動著會計信息化的發展進程,提高了企業會計信息化工作的效率和質量,資源平台的共享也大大降低了會計信息化的成本。
但大數據時代下會計信息化的發展也存在一定的風險。
本文將會對大數據時代下會計信息化中所存在的風險給予介紹,並制定相應的防範對策,從而使大數據時代在避免給會計
信息化造成不良影響的同時發揮其巨大優勢來促進會計信息化的發展進程。
關鍵詞:
大數據時代;會計信息化;風險;防範
前言
近年來經濟全球化進程不斷加快,經濟與科技的迅猛發展,我國在經歷了農業、工業和信息時代以後終於踏入了大數據時代。
大數據是指由大量類型繁多、結構復雜的數據信息所組成的`數據集合,運用雲計算的數據處理模式對數據信息進行集成共享、
交叉重復使用而形成的智力能力資源和信息知識服務能力。
大數據時代下的會計信息化具有極速化、規模性、智能性、多元化、和即時高效等特點,這使得會計從業人員可以更方便快捷的使用數
據信息,並在降低經濟成本的同時有效實現資源共享,信息化效率逐漸增強。
但同時大數據時代下的會計信息化也面臨著風險,應及時有效地提出防範對策,以確保會計信息化的長久發展。
一、大數據時代對會計信息化發展的影響
(一)提供了會計信息化的資源共享平台
進入大數據時代以來,我國的科學技術愈加發達,會計信息化也在持續地走發展和創新之路,網路信息資源平台的建立使數據與信息資源可以共同分享,平台使用者之間可以相互借鑒學習。
而最為突出的成就便是會計電算化系統的出現,它改變了傳統會計手工做賬的方式,實現了記賬、算賬和報賬的自動化模式,
提高了會計數據處理的正確性和規范性,為信息化管理打下基礎,推進了會計技術的創新和進一步發展。
但是“信息孤島”的出現證明了會計電算化並沒有給會計信息化的發展帶來實質性的變化。