⑴ 讀《大數據時代》有感作文
不知從什麼時候開始,"大數據"這個詞悄然成為了我們的常用詞彙;我們也不知從什麼時候開始,邁進了"大數據時代"那麼,大數據時代究竟是一個怎樣的時代?英國"大數據時代的預言家"維克托邁爾·舍恩伯格和肯尼思庫克耶的《大數據時代》對此有著詳細而深刻的洞見。
一、什麼是大數據?
根據《大數據時代》中所說,"大數據是人們在大規模數據的基礎上可以做到的事情,而這些事情在小規模數據的基礎上是無法完成的。大數據是人們獲得新的認知、創造新的價值的泉,大數據還為改變市場、組織機構以及政府與公民關系服務。"、"大數據即一種新型的能力:以一種前所未有的方式,通過對海量數據進行分析,獲得有巨大價值的產品和服務,或深刻的洞見。"大數據有兩層含義,第一層含義,大數據是一個總結性的概念,是對海量數據的總稱;第二層含義即書本中所指出的,是一種新型的能力與方式。區別於小規模數據時代的抽樣分析,大數據時代,分析的樣本不再需要經過抽樣,直接將全體數據進行更快更准確地分析。
二、大數據的核心是什麼?
大數據的核心應當是減少冗餘,提高資配置效率。根據收集到的數據分析、挖掘出龐大資料庫獨有的價值,以便進行干預或提供相應的資與服務。自古以,人類社會的發展便是資配置不斷優化的過程,大數據作為一種新型的生產工具,它能讓我們通過分析海量的數據,得知該如何更有效地分配稀缺的資。
如醫院通過對某個病人病史、生活習慣、衣食住行、工作娛樂情況等進行全方位分析,便可以准確了解病人的生活情況與生活環境,精確地指出症結引起原因所在,只要建議病人針對引起病的因素做出調整或進行醫學干預,便可以了,避免了對病人過多的用葯與過大范圍的盲目干預。
同樣的道理,如果銀行通過分析某一申請人的家庭情況、消費歷史、生活習慣、財務習慣、網頁瀏覽記錄等各方面的數據,便可以清晰了解此申請人各方面的情況,甚至可推測其內心的真實想法與將要採取的做法,從而判斷申請人的貸款申請資格,決定該不該授信,授信多少等內容,所有的信息在大數據時代,能在系統中搜索一下,幾分鍾便能全部收集完成。相比以前,(fsir)申請人申請後,銀行得派出兩名客戶經理上門進行訪問、調查、收集電信、徵信等多方面的'信息,再進行人工分析、鑒別等過程,耗費的時間多不說,風險也相對更高。
可見,大數據的運用不但提高了工作效率,節省了機構與申請人的時間,更能基於精確的信息,確保風險可控,且保證了授信給該申請人的正確性,將有限的資金用在刀刃上,提高資配置質量。
三、什麼是大數據思維?
書中指出,大數據思維是一種意識,認為公開的數據一旦處理得當就能為千百萬人急需解決的問題提供答案。大數據與三個重大的思維轉變有關:首先,要分析與某事物相關的所有數據,而不再依靠分析少量的樣本;其次,樂於接受數據的紛繁復雜,而不再追求精確度;最後,我們的思維不再探求難以捉摸的因果關系,轉而關注事物的相關關系。
大數據思維應當是一種意識,認識到大數據的無窮威力,並積極擁抱這個繁榮的時代;世界上的一切都是信息,都是可以量化分析的信息。如果將相關的信息進行交互分析,便能獲得"上帝的視覺"——窺視知道分析對象的一切,包括所思所想;獲得的信息可以通過類比,准確推測分析對象的想法以及未行為;根據推測出的內容進行干預或服務,從而獲得商業機會;在一切均有記憶、一切均能收集、能更加准確預測未的時代,我們或許受困於過去的行為;在這個時代,對隱私權、公平與正義的探討上升至一個新的語境。
四、新的時代,我們該怎麼辦?
老子說,無為而治。因此,我們還是該吃飯就吃飯,該逛街就逛街,想吃甜點便吃甜點,過自己的生活,努力自己的工作。大數據是一種意識,更是一種工具,所有的工具最終都是為了讓我們生活得更加方便、更加如意,而作為最高智慧生物的我們,要做的,便是習學如何通過這新的工具,改造世界,創造生活。
當然,西方也有諺語:預測未最好的辦法是創造未。面對新的時代,我們,努力將生活過成自己想要的樣子,便是最好的信條。
⑵ 《大數據時代》的讀後感
當認真看完一本名著後,大家心中一定有很多感想,為此需要認真地寫一寫讀後感了。你想知道讀後感怎麼寫嗎?下面是我收集整理的《大數據時代》的讀後感範文(通用5篇),僅供參考,大家一起來看看吧。
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的.預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。
在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。
一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?
我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。
在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的.答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
首先,想談一談何為大數據,何為大數據時代。大數據是一種資源,也是一種工具。它提供一種新的思維方式去理解當今這個信息化世界。為何說是一種新的思維方式:在信息缺乏的時代或模擬時代,我們更傾向於精確性的思維方式,就像是」釘是釘,鉚是鉚」,而在這種傳統的思維方式下,我們得到問題的答案只有一個。
而在大數據時代下,我們打破了這種思維方式,換句話說,我們接受結果的不確定性。簡言概括之,我認為大數據是一種預測模型。在大數據時代下,我們關注的不是因果,即為什麼是這樣,而更關心」是什麼」這種相關關系。換句話說,在這種新思維的思考方式下,我們探究問題背後的原因也是不可行的。我們所做的是利用大數據這種工具,讓數據自己說話!
其次,我想談下如何利用大數據提升我軍戰鬥力。當然,大數據分析並不是精準的預測,精準的預測也是不存在的。大數據只能有利於我們理解現在和預測未來的可能性。
作為軍人,我所關注的是如何利用好大數據的工具提升我軍戰鬥力,打贏這場信息化戰爭。毫無疑問,現在我們打的不是刀對刀,槍對槍的戰爭,更不是模擬時代,當代乃是數字時代,打的是信息化戰爭!
四次戰爭的大勝,美軍的戰爭形態從機械化轉向信息化,而且相應的在戰場取勝的時間也越來越短,這正是大數據時代下的必然結果。而我軍正在轉向信息化的過程中。在此戰爭形態的過程中,我們需要更多的計算分析師,大數據分析師,數學家等高等技術性人才來打贏這場信息化戰爭。這正是大數據時代下我們不得不有的基礎。我軍戰鬥力的提升迫在眉睫!
當然大數據是一把雙刃劍,利用好了取勝也是得心應手,相反,利用不好會導致不可估量的損失。
畢竟,這只是一種預測模型,得不到精準的預測結果。我們更要讓數據為我們所用,不要被龐大的資料庫框住我們的思維。為適應時代的發展,在這個適者生存,弱肉強食的世界,大數據時代下的殘酷競爭已經給我們敲響警鍾,一場悄無聲息的信息化戰爭已經打響!
去年的「雲計算」炒得熱火朝天的,今年的「大數據」又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起「大數據」來了。於是乎,各企業的CIO也將熱度紛紛轉向關注「大數據」來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。
不過話又還得說回來,《大數據時代》是本好書。
當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。
看完此書,我心中的一些問題:
1、什麼是大數據?
查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity這個好像是IBM的定義吧。
以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。
2、大數據適合什麼樣的企業?
誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。
同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?
3、大數據帶來的影響
當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?
1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。
2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司
3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。
⑶ 大數據時代讀後感1000字(2)
大數據時代讀後感1000字(精選7篇)
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--」並非原子而是信息才是一切的本源「,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字
當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。
在附上一些事例的時候,用作者提供的」本質「去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,
大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。
第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)
第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度
第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們」是什麼「而不是」為什麼「。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。,出處:短美文,否則追究其責任,謝謝你的支持,我們會給做得更好!
正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與」過去的經驗或積累的部分知識「相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。
所以作者稱之為revolution。
講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是,預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡
公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。
扯到這里,順便扯一下,書中另一段關於自由意志的描述
在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。
書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,」哎喲,我居然看過這部電影,想想心裡還是有點小激動「,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。
最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。
大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。
「大數據」一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。
作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。
書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。
為什麼是清新的呢?因為書中的內容彷彿向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處於網路時代 ,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到「猜你喜歡」的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自於那些曾被忽略的大數據同時也在證明「預測,大數據的核心」這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像「猜你喜歡」欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網路時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。「本質上世界是由信息構成的」,面對這句話時,大數據時代彷彿就在眼前。
在感受驚嘆著大數據能為我們做到以往無法想像的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言「我們時刻暴露在『第三隻眼』下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什麼都知道」,而且利用大數據我們可以預測許多事情並且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年後就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什麼?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。
於是我繼續去探索作者對這問題的思考。「更大的數據在於人本身」,作者還說「我們是在創造更好的未來」,也說「在一個預測的時代里,人類的自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本」。人類學家克利福德吉爾茲曾說:「努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。」這些話語彷彿是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背後對人溫暖的光芒。
面對時代的變革,我會為堅守內心深處的自由意志而努力並「擁抱大數據」。
世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺於搖籃之中—這遠勝於"防患於未然"。
《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了 "大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落於世界進程之後,所以我們必須轉變我們的思想。
"我們不再熱衷於尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯繫到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷於"精確",而是"混亂",若不接受"混亂",那麼有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之後,我們就可以從這些數據之中發掘它們的相關關系,即以"是什麼"而不是"為什麼"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。
這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年h1n1流行之時,通過檢測檢索詞條,處理34。5億個不同的數據模型,通過預測並與2007、2008年的美國疾控中心記錄的實際流感病例進行對比後,確定了45條檢索詞條組合,並將其用於一個特定的數學模型後,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。
同時,雖然大數據可為人類造福、對抗病症,但這僅限於掌握這門技術而言,若不重視這種技術,當我們的對手早於我們一步構建這種數據網路之時,便是我們的災難,想想,大數據雖核心的在於預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的.導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控於敵手,敵方甚至可以藉此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。
對於我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網路共享化的時代,通過這些數據,建立數據模型,可以准確分析並給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好准備,去應對大數據時代的一切!
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。
我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。
如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。
與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。
舍恩伯格的《大數據時代》,讓我重新審視了"大數據"這個在信息時代異軍突起的熱點詞彙,作為信息安全專業的我,對大數據這個詞本身有著更多的熱忱。
在網路上搜索到的解釋是:"大數據",或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。
而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。
本書中,主要從三個方面論述,即思維變革、商業變革和管理變革。而舍恩伯格更是著重闡明三大觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。
對於觀點一,我不敢苟同,畢竟大數據的實現需要一定的技術支持,而顯然,現在這種技術還不夠成熟,同時一些簡單的事情運用大數據反倒是問題更加復雜化,因此這種大叔據的繁雜處理方式更適用於一些特定的情況,比如商業預測,人類dna的研究等。
而對第二種觀點,我是十分贊同舍恩伯格所說的"大數據的簡單演算法比小數據的簡單演算法有效"。在計算機行業迅速發展中,一種新的簡單可行的演算法的出現,遠沒有計算機在運算速度和存儲容量的發展快,而大數據演算法似乎更能迎合這種大趨勢。
觀點三中提到的相關關系在大數據中可是重量級的,它能較快找到事物規律和對應的解決措施,當然,也不能完全忽視因果關系,畢竟人們在思維上更能夠接受因果關系分析出的結果,而大數據預測的需要人們慢慢的適應才能接受。當我們完成相關關系的分析而又不滿足於只知道"是什麼"的時候,我們就可以轉而研究"為什麼"了,畢竟問題的根本在於因果。而舍恩伯格的全體數據和相關關系是大數據時代下的一種捷徑。
但是在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。
在這樣的大環境下,常引起我更多的思考和擔憂。
大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。
工業化、信息化,我們都向世界交出了一份讓世界不能小覷的答案;
大數據時代的數據化我們又將怎樣在新的風暴中所向披靡,如果大數據時代是一種必然趨勢,那這就是我們這一代人的責任,是我們新的戰場!
;⑷ 大數據時代讀後感5篇600字
去年的"雲計算"炒得熱火朝天的,今年的"大數據"又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起"大數據"來了。於是乎,各企業的CIO也將熱度紛紛轉向關注"大數據"來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀,下面是我為大家帶來的大數據時代 讀後感 ,希望你喜歡。
大數據時代讀後感1
舍恩伯格的《大數據時代》被人推崇為2012最佳書籍,今年安泰讀書會的重頭戲。雖然主講人最後放了個香港大黃鴨般的鴿子,但現場討論氛圍依舊非常熱烈——而且還是在沒幾個人讀完的情況下,也就意味著——大數據對我們的影響,已經深入到生活的方方面面。
無處不在的大數據:各種雲計算,谷歌的神通,亞馬遜的推送,天涯人肉,微博萬能等等等等,我們掌握了新的工具,也獲取了以前從未有過的各種信息。大數據拉近了我們與現實的距離,「地球村」變成了「地球屋」,彷彿所有人所有事物都觸手可及,而這些牛逼哄哄的互聯網巨頭就在客廳展示著世界的每一寸光景。
然而,事實真的是這樣嗎?首先,從應用角度出發,低廉的運算能力和存儲空間,讓以前的樣本分析顯得非常簡陋——一些從全體數據挖掘出來,忽略精確而從大量數據的簡單演算法得出來的結論顛覆了常識。但個人覺得,這只是統計學的終極目標——並沒有非常大的跨越,可能終結了回歸分析,有效性驗證等手段,但依舊還是統計。而革命性在於關注相關關系而非因果關系。現場討論從神學角度挑戰了因果關系的不可能——或者說人類用簡單思考的邏輯來定義因果,以及用之前小數據演繹出大概率事件來推導因果,都是不正確的。真正的因果關系應該屬於上帝的范疇,人類如果真的完全掌握之後,會統治整個宇宙。但我覺得,無需從神學觀點來討論,而可以借鑒量子力學對經典力學的顛覆——在原子層面上,經典力學會失效——那麼在大數據層面上,普通的抽樣調查直觀反映會失效。而且從量子力學角度是很難推導經典力學的公式,那麼從現在的慣有思維,也難以推導出大數據的因果關系。
大數據時代讀後感2
書中雖只是闡述了大數據帶來的信息風暴正在變革我們的生活、工作和思維,大數據開啟了一次重大的時代轉型,並未提及會對我們 教育 教學產生什麼影響,但在這樣的大環境之中,我們同樣可以獲得啟示,尋求大數據在教育工作中可實現的價值。
1.教師角度:從基於 經驗 到基於數據的教學轉型
「經驗主義」是指形而上學的思想 方法 和工作作風,其特點是在觀察和處理問題的時候,從狹隘的個人經驗出發,不是採用聯系、發展、全面的觀點,而是採取鼓勵、精緻、片面的觀點。在教學中,我們有時會憑藉以往經驗認定本節課學生的起點,從而制定教學目標、重難點以及教學過程。這往往忽略了上屆學生和這屆學生是有差異的,這班學生和另一班學生也是存在差異的,那如何准確把握學生的起點呢?我想可以藉助前測數據,它可以為有效教學指明了方向。
如教學「復式統計表」時,前期查找資料的時候就發現早在一年級上冊P96的時候學生就見過復式統計表,意讓學生初步認識統計表,滲透統計思想。而二三年級的書中練習也多有涉及,就是這種復式統計表沒有「表頭」,生活中的復式統計表也很多。既然在以前練習時碰到這么多次復式統計表,學生對復式統計表到底認識多少呢?我們對157名學生進行這樣的調查(如下圖),第1題:像上表這樣的統計表以前見過嗎?見過約佔65%,沒見過約佔35%,學生在練習中碰到過、生活中也經常看見,但還是約35%的學生回答自己沒見過,說明學生平時在看這個復式統計表的時候就浮於表面,所以這節課我們重點應該讓學生經歷復式統計表的產生過程,加深學生對復式統計表的印象。第2題:上表中的16表示什麼意思?能完整表達出二班身高在130~139厘米的學生有16人,約佔41%;表達一半,如二班16人,或130~139厘米16人,約佔22%,其他約佔37%,真正能正確讀懂復式統計表的學生一半不到,需要在課中進行讀圖方法的指導。而知道這個表叫做復式統計表的學生不到20%。
大數據時代讀後感3
這一章節,利用馬修莫里導航圖的例子引出了大數據的實踐方式,奇人莫里通過整理航海相關的邊角數據,把整個大西洋按照經緯度劃分了出來,並標注出了溫度、風速和風向,從而發現了洋流,也為船員提供了有效的航海路線,這就是數據的價值體現了。書中也提到了,量化我們周圍的一切,是數據化的核心,將文字變成數據、將方位變成數據,將溝通、情感變成數據,通過大數據,我們會意識到,世界在本質上是由信息構成的。
在工作中,這點也可以作為啟發點,通過對數據的整理,或者說以某種方式採集到相關數據,將數據整理出有價值的信息後,不斷的改善到工作流程、效率、服務方面,也是工作上的創新點。
筆者在書中提到了,數據的潛在價值,並提出了數據創新應用的方法,第一是數據的再利用,數據信息被採集用作特定分析後,在另一個領域或者角色立場下,或許會開發出新的有價值的信息;第二是數據的重組,將不同類別、類型的數據進行重組,產生一個新的數據集合出來,尋找其中的關聯性;第三是數據的擴展,這就需要在記錄數據的同時設計好他的可擴展性;第四是數據的折舊值,數據將會貶值,但是仍會有其潛在價值;第五是數據廢氣,即數據採集時的離散量、離散交互信號,舉例是谷歌與微軟的拼寫檢查;第六是開放數據,數據的開放將會有利於各行各業的使用,並促進全行業數據時代的發展。這其中又提到了數據估值的概念,在數據使用時價值才會體現出來,而不是在佔有本身。
根據所提供價值的不同來源,分別出現三種大數據公司,基於數據本身(採集大量數據的公司)、基於技能(提取用戶的需求,給出數據分析結果的公司)、基於思維(挖掘數據新的價值的公司)。
大數據時代讀後感4
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作--舍恩佰格的《大數據時代》。維克托.邁爾--舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家"的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,如果能做足功課又具備相應的理論功底,就能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分"大數據時代的思維變革"中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
大數據時代讀後感5
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出"不是因果關系,而是相關關系。"這一論斷時,他在書中還說道:"在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道「是什麼」時,我們就會繼續向更深層次研究的因果關系,找出背後的「為什麼」。"[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可"量化",大數據的定量分析有力地回答"是什麼"這一問題,但仍然無法完全回答"為什麼"。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節"掌控"中試圖回答,但基本上屬於老生常談。我想,或許凱文.凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:"大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。"謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
大數據時代讀後感5篇600字相關 文章 :
★ 走進網路時代作文600字:互聯網時代不應是「忽老」時代
⑸ 教師讀《大數據時代》有感
我們已經進入了大數據時代。《大數據時代》里用豐富翔實的例子告訴了我們這一點。書中所述,一個東西出故障不是瞬間的,而是一個漸變的過程。通過收集相關數據,可以預先捕捉到故障的信號,繼而可以事先採取措施預防。大數據時代,我們可以「通過找出一個關聯物並監控它,預測未來」。書中所給的大量例子可以看出,大數據時代,海量的數據分析被廣泛運用於商業、交通、公共衛生、企業管理和教育部門,它在悄然改變著我們的生活、工作與思維。正如馬雲所說,大家還沒搞清PC時代的時候,移動互聯網來了,還沒搞清移動互聯網的時候,大數據時代來了。
在大數據時代,需要的數據不再是隨機抽樣而是全體數據,即「樣本=總體」。這樣,忽視了精確性,但也避免了隨機采樣過程中存在的偏見和對某些細節進一步分析的`忽視。與小數據分析相比,混雜和模糊是海量的大數據分析的亮點而不是缺點。因為根據統計,只有5%的數字數據是結構化的且能適用於傳統資料庫,不過不接受混亂,剩下的95%的非結構化數據就無法被利用,比如網頁和視頻資源。通過接受不精確性,我們打開了一個從沒有涉足的世界的窗戶。文章引用了微軟數據設計專家帕特.赫蘭德的「略有瑕疵的答案並不會傷了商家的胃口,因為他們更看重高頻率」。和谷歌前任首席信息官道格拉斯.梅里爾的「寬容錯誤會給我們帶來更多的價值」來說明這一點。
這兩句話又何嘗不適用於生活中的方方面面呢?若想發揮一個人的優點,就要忽視他的缺點,要想一個人取得更大的進步,走個更遠,最有效的方法是寬容他的小錯誤。
在某些行業或某個行業的某個方面的確如此,但不是所有的事情都理應這樣。比如,商家利用數據預測人們需要什麼就可以,他們不需要原因,他們需要的是點擊率。但是,具體情況需要具體分析,如拿英語教學來說,就就學生學習英語來說,我們不主張他們探究為什麼而主張他們了解是什麼和怎麼樣,但如果某學校通過大數據分析得知很多人不喜歡英語,教師不僅僅需要知道有很多學生不學英語,而且還需要知道他們為什麼不學英語,是英語教學存在問題,還是學生對英語的認識不足,還是其他學科作業太多,這樣才能有效調整教學。就一些厭學的學生來講,只有找到厭學現象背後隱藏的真正原因,才能正確解決厭學這一問題。在一切都可以量化的大數據時代,以下幾個方面的問題值得我們思考和應對。首先,冷冰冰的數據代替了一切。這尤其是在對教師和學生的評價方面,其弊端是顯而易見的。有些重要的東西,比如教師和學生的品行是無法用數字來衡量的,死的單一的數字絕對不能全面衡量人活生生的豐富的人的特徵。其次,大數據時代,人喪失了個人隱私。無處不在的「第三隻眼」著實令人恐怖和煩惱,亞馬孫監視著我們的購物習慣,谷歌監視著我們的網頁瀏覽習慣,而微博似乎什麼都知道。你會不時收到一些不想看到的簡訊、郵件、廣告等等,人肉搜索無所不能,個人的隱私都被裸露在光天化日之下,這嚴重違背了強調個人意志,以人為本的理念。然而,毋容置疑,無論願不願意,每個人被置身於大數據時代中,它在改變著我們的生活、工作和思維。怎樣鼓勵其增長,遏制其危害是亟待解決的課題。需要建立新的模式法律使收集和使用數據的人為其行為承擔責任,而不是也不能阻止它的發展。
作為教師,必須將埋於作業和考試的頭抬起,了解世界教育的發展動向,轉變理念和教學方式。
⑹ 《大數據時代》讀後感
讀完這本書並不是一氣呵成的,第一次讀到大約五分之一的時候就放下了,第二次重新開始讀,讀到三分之二的時候又想放棄,可是想了想,還是堅持了下來,不為別的,看到三分之二的時候基本明白了書中要講的主要內容,而這內容並不是我想從書中獲知的,或者說,書中內容與我期待相去甚遠。而之所以能硬著頭皮讀完,完全是出於想著事後跟朋友評論這本書的時候更有資格而已,畢竟,沒有看完一本書而去評論它總是有失公正的。
大數據時代這本書按我自己的理解主要講了四個方面的內容,一是講什麼是大數據,舉了很多例子說明我們已經進入大數據時代了。二是講大數據的意義,文中大量舉例,論證大數據對人類發展的積極意義。三是講大數據若是用得不當所產生的消極影響。四是提醒我們如何避免大數據的消極作用,發揮它的優勢造福人類。記得高中學政治的時候,有一條回答問題的黃金法則,當要解決一個問題的時候得從三方面回答,那就是:是什麼,為什麼,怎麼樣;也就是先解釋事務的定義,再說解決問題方法,最後闡明這個事務的積極作用和消極作用。而大數據時代只說明了兩個問題,那就是,"是什麼」,以及「為什麼」。也許這本身就不是一本工具書。大數據時代,這個名字取的是夠大氣,內容卻不敢恭維。這本書在網上炒的也很火,受很多人追捧,不知道看完之後是不是跟我一樣,感覺看與不看似乎影響不大。
跟老公談論過這本書,剛開始我在京東上買它的時候很激動得對老公說,看完這本書我會更了解現在互聯網思維,對工作有幫助,而等我讀完,一點這樣的感覺都沒有了。老公也很形象描述了這本書,它就像美食節目《舌尖上的中國》一樣,告訴你哪裡有好吃的,但是不告訴你怎麼做。我覺得這個比喻很形象,真是要人命了,看著一道道美食而不得,只能拿起身邊的薯條可樂解解饞的痛苦就是如此。
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的;話題,鍾情於務虛的觀點;新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據;二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
近兩周用業余時間讀了《大數據時代》這本書,是聽培訓時杜威老師推薦的,我快速閱讀了一遍,覺得受到了一些啟發,發現了一些原來沒有想到看到的事情。
首先是大數據代表著數據的樣本=全體,這是一個與傳統統計學的顯著區別。大數據有能力獲得全體數據並對其進行分析。
第二就是相關性與因果性同樣重要。相關性說明了什麼事情與什麼什麼事情有關系,如商場周圍車流量的增多與商場銷售額的相關性,因果性說明什麼是什麼的原因,如睡10個小時是有精神的原因。在大數據中,相關性要比因果性容易獲得,而且相關性已經能為客戶帶來較大的收益。
第三就是大數據允許存在不精確性、混雜性,由於數據量巨大,存在少量的異變不會對結果產生任何影響,如收益是1個億與1億零1元的差別可能決策者不關心。
第四是大數據中的三個主要因素,思維、數據、技術,思維覺得你在哪些地方使用大數據。在這三個因素之中,會產生數據中間商,來處理加工數據並出售。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道20xx年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
3月11日下午兩節課後,我校全體教師和受邀而來的金南學區各友好學校的領導及教師匯聚於多媒體教室,共同分享、交流《大數據》讀後感。
老師們從:何謂大數據;立足國情對大數據進行探討;大數據在教育教學中的主要應用等幾個方面暢談了自己的感悟。
張萌老師說:大數據體量龐大、結構復雜、是產生巨大價值的數據集合。大數據這種方法在中國的國情下需要以更加科學、合適的方式進行實踐,不可生搬硬套。
董譯雯老師說:在你我感嘆《大數據》里深植於美國民眾血液中的自由、民主、嚴謹的價值觀的同時,可否想過中國教育體制下的孩子們身上還殘留多少獨立與自我意識?作為典型的八零後,我們這一代人身上最缺失的便是獨立思考能力。但願,我的學生哪怕是因為我所做的一點點努力而開始思考「我」這個字的含義,足矣!
張紅傑老師說:很感謝校長給我們推薦了《大數據》這本書。在教學工作中,應該有大數據意識,創新意識。學習一些專業的教學統計法、數據分析法,從中發現一些教育現象,並採取相應的策略。讓我們的教育教學工作少一些隨意和盲目,多一份嚴謹與科學。
白媛媛老師通過文中的三個事例,結合教學實際,談了自己教學中對數據使用的價值;結合自己的工作,談了如何實現工作的最高境界。
交流活動尾聲,身為閱讀《大數據》的倡議者、發起者、以及忠實的讀者韓校長幽默風趣的同大家分享了他讀後的感悟:我們心中要裝著學校,因為我們個人的'命運依賴群體的命運;工作要追求精細化,不能做胡適書中的「差不多」先生;尊重數據,擁有數據意識,建立數據團隊!
此次活動從寒假期間倡導讀《大數據》一書,到開學伊始的分組沙龍,再到今日的閱讀共享,現已圓滿告一段落。相信此次活動定會增強我校全體教師的數據意識,掌握大數據,運用大智慧助推我校的教育教學上一個新的台階!
去年的「雲計算」炒得熱火朝天的,今年的「大數據」又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起「大數據」來了。於是乎,各企業的CIO也將熱度紛紛轉向關注「大數據」來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。
不過話又還得說回來,《大數據時代》是本好書。
當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。看完此書,我心中的一些問題:
1.什麼是大數據?
查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity--這個好像是IBM的定義吧。
以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。
2.大數據適合什麼樣的企業?
誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?
3.大數據帶來的影響
當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?
1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。
2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司。
3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。
在看《大數據》之前,我只知道社會越來越數字化了,看完之後,才覺悟到:人類將迎來一個新的時代。
數字化已經把我們帶入一個信息時代,大數據卻把我們卷進了一場科技風暴之中,這本書中,作者為我們開啟了一個更包容更廣闊的新時代,大數據把社會的方方面面融合在了一起,曾經看似因果聯系緊密的事物,可能變得不再那麼重要;毫無關聯的事物,可能隱藏著重要的信息,從科技、商業,到醫療、政治、教育、文化,大數據一概席捲囊括,它改變著我們的傳統思維,為這個時代注入了新鮮的血液,就像作者書中所說:「這項技術終將改變我們所居住的星球上的許多東西。」
大數據最顯著的影響是對於電子商務,通過大數據,最先洞察出潛在市場的,也必然最先佔領市場。而電子商務對實業的沖擊又是勢不可擋,可見,掌握了大數據就主導了市場,擁有了先進的科技才能擁有堅實的競爭力。在醫療方面,曾經的非典時期,就是一個很好的例證,正是有大數據的預測功能,才使疫情得到了控制。在更小的方面,他也同樣改變著我們的生活,書中提到美國著名計算機專家奧倫·埃齊奧尼發明了飛機機票價格預測軟體,就是利用大數據造福我們生活的很好例子。
大數據不僅節省了時間,提高了效率,更將人類帶入一個新的文明階段。從分析因果總結經驗,轉變為搜集數據預測未來;由原來的滯後性變為現在的預見性——大大提高了人類認識世界、改造世界的能力,變被動為主動。大數據為我們掀開了歷史新紀元,不敢想像它將會為我們帶來什麼,或許會出現新奇的生活方式,從未有過的職業,聞所未聞的商業模式,百家爭鳴的文化高峰;也或許會解開更多未解之謎,探索到宇宙之外的秘密。總之,毫無疑問的是,大數據為我們帶來的未來是超乎想像的。
這本書中作者提到最多的是:改變我們的傳統思維,摒棄精確性轉向宏觀。從總結因果轉向預測。這個世界正以驚人的速度向前發展,數據大爆炸的波及范圍遠超乎我們的想像,單純靠人類的主觀判斷力是多麼的有限,大數據早晚會取而代之這一現象,這必將影響我們的生活和工作,我們也只有認清這種趨勢,改變思維,調整步伐,緊跟時代才行。即使不能與時代同步,也盡量做到避免固步自封,認識大數據、利用大數據趨利避害,為我們的生活造福!
知道"是什麼"就夠了,沒必要知道"為什麼"。在大數據時代,我們不必非得知道現象背後的原因,而是讓數據自己"發聲"。這個命題是我讀這本書最大的感觸。
對於大多數人來說,這的確是一場思維變革。對於理科學生來說,會認為這是一個錯誤的觀點,因為這無異於否定了他們對世界客觀物理化學規律探索的重要性;對於一名工科學生,其實這並不是一個多麼新穎的觀點,因為工科是講求時用性的,如何能更好地利用基本自然科學規律創造社會財富比探索自然科學知識顯得更重要。
這些天來,在讀大數據這本書的同時,也稍微重溫了一下自動控制原理,認識到控制系統中存在明顯的大數據時代思維方式,借讀書交流會之際,與大家分享。
對系統的有效控制需要對系統理解與建模。以一個日常生活中的例子說明。開車的時候一腳油門下去車就飛出去了,但並不知道這一腳油門下去能給多大車速,這就需要駕駛人員的熟練的駕駛技能了,不然超速被開罰單是很正常的。那麼,問題就來了:如何能實現速度的自動控制而不用駕駛人員踩油門?這就是控制系統最關鍵的環節——建立系統數學模型。大白話就是知道車速與燃油量的數學關系式。若是以探索為什麼的思維模式,不可避免的要列一大堆能量方程、動量方程等物理化學式子,經過繁雜的計算,還是能得到車速和燃油量的數學關系式的。很明顯這是一個繁瑣的過程,因為得知道現象背後的原因。這僅是對於這種簡單的系統,若是對於航空發動機這種復雜的系統,結構工藝過於復雜,分析各部分的物理化學過程是十分困難的,這時候可以通過實驗法得到數學模型。
實驗法主要有時域測定法、頻域測定法和統計相關法。與大數據時代思維最接近的是統計相關法,主要過程是對被研究對象施加某種隨機信號,根據被測對象各參數的變化,採用統計相關法確定被測系統或對象的動態特性。這種方法可以在被測系統或生產過程正常運行狀態下進行在線辨識,測試結果精度較高,但要求採集大量測試數據,並需要相關儀和計算機進行數據計算和處理。
若用開車實例來解釋,此時的系統為汽車動力系統,施加的隨機信號為燃油量,被測對象指車轉速,得到的動態特性就是指車速與燃油量函數關系式,從而不用探求背後的物理化學規律就得到了數學模型。
在沈陽黎明航空公司實習時去過試車間,除了發動機點火後震撼的場景動人心魄,控制室屏幕上海量的數據也同樣引人注目,我想這么多數據無非就是驗證數學模型或直接實驗法得到數學模型,結合航空發動機這種復雜的系統,對於搞控制的人來說,得到數學模型就夠了,現象背後的原因交給研發的人來探索更好。
⑺ 大數據時代讀後感1000字
大數據時代讀後感1000字(精選7篇)
當品味完一本著作後,大家心中一定有很多感想,現在就讓我們寫一篇走心的讀後感吧。怎樣寫讀後感才能避免寫成「流水賬」呢?下面是我精心整理的大數據時代讀後感1000字,僅供參考,大家一起來看看吧。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾——舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,如果能做足功課又具備相應的理論功底,就能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--」並非原子而是信息才是一切的本源「,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字
當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。
在附上一些事例的時候,用作者提供的」本質「去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,
大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。
第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)
第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度
第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們」是什麼「而不是」為什麼「。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。,出處:短美文,否則追究其責任,謝謝你的支持,我們會給做得更好!
正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與」過去的經驗或積累的部分知識「相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。
所以作者稱之為revolution。
講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是,預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡
公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。
扯到這里,順便扯一下,書中另一段關於自由意志的描述
在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。
書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,」哎喲,我居然看過這部電影,想想心裡還是有點小激動「,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。
最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。
大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。
「大數據」一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。
作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。
書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。
為什麼是清新的呢?因為書中的內容彷彿向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處於網路時代 ,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到「猜你喜歡」的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自於那些曾被忽略的大數據同時也在證明「預測,大數據的核心」這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像「猜你喜歡」欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網路時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。「本質上世界是由信息構成的」,面對這句話時,大數據時代彷彿就在眼前。
在感受驚嘆著大數據能為我們做到以往無法想像的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言「我們時刻暴露在『第三隻眼』下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什麼都知道」,而且利用大數據我們可以預測許多事情並且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年後就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什麼?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。
於是我繼續去探索作者對這問題的思考。「更大的數據在於人本身」,作者還說「我們是在創造更好的未來」,也說「在一個預測的時代里,人類的.自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本」。人類學家克利福德吉爾茲曾說:「努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。」這些話語彷彿是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背後對人溫暖的光芒。
面對時代的變革,我會為堅守內心深處的自由意志而努力並「擁抱大數據」。
世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺於搖籃之中—這遠勝於"防患於未然"。
《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了 "大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落於世界進程之後,所以我們必須轉變我們的思想。
"我們不再熱衷於尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯繫到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷於"精確",而是"混亂",若不接受"混亂",那麼有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之後,我們就可以從這些數據之中發掘它們的相關關系,即以"是什麼"而不是"為什麼"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。
這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年h1n1流行之時,通過檢測檢索詞條,處理34。5億個不同的數據模型,通過預測並與2007、2008年的美國疾控中心記錄的實際流感病例進行對比後,確定了45條檢索詞條組合,並將其用於一個特定的數學模型後,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。
同時,雖然大數據可為人類造福、對抗病症,但這僅限於掌握這門技術而言,若不重視這種技術,當我們的對手早於我們一步構建這種數據網路之時,便是我們的災難,想想,大數據雖核心的在於預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控於敵手,敵方甚至可以藉此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。
對於我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網路共享化的時代,通過這些數據,建立數據模型,可以准確分析並給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好准備,去應對大數據時代的一切!
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。
我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。
如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。
與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。
舍恩伯格的《大數據時代》,讓我重新審視了"大數據"這個在信息時代異軍突起的熱點詞彙,作為信息安全專業的我,對大數據這個詞本身有著更多的熱忱。
在網路上搜索到的解釋是:"大數據",或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。
而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。
本書中,主要從三個方面論述,即思維變革、商業變革和管理變革。而舍恩伯格更是著重闡明三大觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。
對於觀點一,我不敢苟同,畢竟大數據的實現需要一定的技術支持,而顯然,現在這種技術還不夠成熟,同時一些簡單的事情運用大數據反倒是問題更加復雜化,因此這種大叔據的繁雜處理方式更適用於一些特定的情況,比如商業預測,人類dna的研究等。
而對第二種觀點,我是十分贊同舍恩伯格所說的"大數據的簡單演算法比小數據的簡單演算法有效"。在計算機行業迅速發展中,一種新的簡單可行的演算法的出現,遠沒有計算機在運算速度和存儲容量的發展快,而大數據演算法似乎更能迎合這種大趨勢。
觀點三中提到的相關關系在大數據中可是重量級的,它能較快找到事物規律和對應的解決措施,當然,也不能完全忽視因果關系,畢竟人們在思維上更能夠接受因果關系分析出的結果,而大數據預測的需要人們慢慢的適應才能接受。當我們完成相關關系的分析而又不滿足於只知道"是什麼"的時候,我們就可以轉而研究"為什麼"了,畢竟問題的根本在於因果。而舍恩伯格的全體數據和相關關系是大數據時代下的一種捷徑。
但是在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。
在這樣的大環境下,常引起我更多的思考和擔憂。
大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。
工業化、信息化,我們都向世界交出了一份讓世界不能小覷的答案;
大數據時代的數據化我們又將怎樣在新的風暴中所向披靡,如果大數據時代是一種必然趨勢,那這就是我們這一代人的責任,是我們新的戰場!
;⑻ 《大數據時代》讀後感怎麼寫
寫作思路:首先解釋大數據時代的意思,然後討論如何利用大數據時代,最後總結大數據時代的利弊。《大數據時代》讀後感正文如下:
首先,想談一談何為大數據,何為大數據時代。大數據是一種資源,也是一種工具。它提供一種新的思維方式去理解當今這個信息化世界。為何說是一種新的思維方式:在信息缺乏的時代或模擬時代,我們更傾向於精確性的思維方式,就像是「釘是釘,鉚是鉚」,而在這種傳統的思維方式下,我們得到問題的答案只有一個。
而在大數據時代下,我們打破了這種思維方式,換句話說,我們接受結果的不確定性。簡言概括之,我認為大數據是一種預測模型。在大數據時代下,我們關注的不是因果,即為什麼是這樣,而更關心「是什麼」這種相關關系。換句話說,在這種新思維的思考方式下,我們探究問題背後的原因也是不可行的。我們所做的是利用大數據這種工具,讓數據自己說話!
其次,我想談下如何利用大數據提升我軍戰鬥力。當然,大數據分析並不是精準的預測,精準的預測也是不存在的。大數據只能有利於我們理解現在和預測未來的可能性。
作為軍人,我所關注的是如何利用好大數據的工具提升我軍戰鬥力,打贏這場信息化戰爭。毫無疑問,現在我們打的不是刀對刀,槍對槍的戰爭,更不是模擬時代,當代乃是數字時代,打的是信息化戰爭!
四次戰爭的大勝,美軍的戰爭形態從機械化轉向信息化,而且相應的在戰場取勝的時間也越來越短,這正是大數據時代下的必然結果。而我軍正在轉向信息化的過程中。在此戰爭形態的過程中,我們需要更多的計算分析師,大數據分析師,數學家等高等技術型人才來打贏這場信息化戰爭。這正是大數據時代下我們不得不有的基礎。我軍戰鬥力的提升迫在眉睫!
當然大數據是一把雙刃劍,利用好了取勝也是得心應手,相反,利用不好會導致不可估量的損失。
畢竟,這只是一種預測模型,得不到精準的預測結果。我們更要讓數據為我們所用,不要被龐大的資料庫框住我們的思維。為適應時代的發展,在這個適者生存,弱肉強食的世界,大數據時代下的殘酷競爭已經給我們敲響警鍾,一場悄無聲息的信息化戰爭已經打響!
⑼ 維克托邁爾舍恩伯格《大數據時代》讀後感
當仔細品讀一部作品後,大家一定都收獲不少,是時候寫一篇讀後感好好記錄一下了。千萬不能認為讀後感隨便應付就可以,以下是我幫大家整理的維克托邁爾舍恩伯格《大數據時代》讀後感範文,僅供參考,希望能夠幫助到大家。
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲,此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。
他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。
對於第一個觀點,我不敢苟同。
一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?
我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的.方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
⑽ 《大數據時代》的讀後感
認真品味一部名著後,你有什麼領悟呢?現在就讓我們寫一篇走心的讀後感吧。那麼如何寫讀後感才能更有感染力呢?以下是我幫大家整理的《大數據時代》優秀讀後感範文,希望能夠幫助到大家。
這書讀起來不費勁,沒有太多晦澀的理論,所以也比較快速的用了幾天的中午休息時間讀完了。
網上到處都是推薦此書的文章,贊為大數據的經典之作。可是,我讀了一遍下來,卻沒有這種經典之感,只是必須嘆服作者思維嚴密、涉獵廣泛,書中有關大數據的例子真是不少,會給我們的閱讀帶來一定的舒適感和現實感。
已經看過太多網上的關於大數據的文章、案例分析,但是我認為大數據僅僅是一種手段,是我們分析認識世界的諸多手段中的一種。我們既不要拒絕排斥大數據的應用,但也沒必要神話大數據。
在讀此書過程中,稍帶也看了幾部關乎大數據分析的影片,有本書中提到的《少數派報告》,還有《永無止境》、《源代碼》。少數派報告中,人類藉助先知的超能力獲取對犯罪的預測和提前打擊,但是書中和影片中都提到的有一個悖論的問題:如果你預測某犯罪要發生,所以去提前抓捕,阻止了案件的發生,但案件沒有發生,又以什麼為依據來抓捕嫌疑人呢?!所以,我認為大數據的應用在預測方面的作用,不應該涉及任何行政司法等嚴肅方向。因為,人是善變的,也許在預測之後的時間里,由於其它因素影響,t她的決定就突然改變,預測就徹底無效了。大數據,更應該在提供思路、途徑方向,在我們還沒有發現其原理之前,先依照大數據的分析去做些突破常規、有創造性的事情。
從古至今,對數據的統計應用一直沒有中斷過,我們人類在發揮聰明才智的過程中,創造了文字記錄歷史,通過積累和總結為人類的文明發展做出了極大的貢獻。只不過,現在我們利用計算機系統對日益暴漲的數據信息能夠處理的數據量更大、想法更多了。在這個角度上,大數據其實不過是人類信息化發展歷史中的一個必然過程。
大數據爆發的背景,是計算機普及應用、工作和生活信息化、網路尤其是互聯網的發達等因素,為之提供了能夠使用的超大規模數據化信息。就如計算機與人下棋的程序一樣,掌握了足夠的棋局數據、能夠推算每一步之後的可能,快速的運算能力是實現這些的基礎。
大數據本身是無意識的,或者叫無目的,是因為使用的人的發現或主觀意識,才從中抓取到符合所想或支持所想的一些數據和比例。人才是核心。別以為有個所謂的大數據中心就能夠揮斥方遒、指點江山了。這也是我說要對大數據去神化的一點。書中所舉例子,成功的案例其實都基本是一個打破常規、奇思異想的人或一個具備創新思維的團隊,而這個人或團隊一旦陷入對現有模式的僵化應用或崇拜,失敗的結果也是必然。我想說的是,無論是大數據還是快數據什麼的玩意,都僅僅是我們了解世界了解社會的一個角度一種手段,都始終無法擺脫依賴於人的思考這個根本。別一葉障目不見泰山的意味有了大數據就擁有了整個世界,你的心有多大,舞台才有多大。只有當你的思考抵達,那些個曾經沒有價值的數據垃圾,才會煥發出價值!不要荒廢了你的思考這個核心!
作者說大數據只講結果不講原因。這個狀態我認為僅僅是一個過渡時期的表現,如果要實現對大數據分析應用的更加精準、甚至可以作為某種依據,必然要獲得對大數據分析的果的可靠解釋,也從而能對我們現有的行為、制度等獲得新的認識,來進行可行的改變、升級或者重造,大數據的指導意義才發揮更深。
人們都說,中外著述的差距有時是很大的,中國的作家習慣鋪墊和描繪,將簡單的事情復雜化;國外的就相反,喜歡直搗要害,將復雜的事情抽象簡單化。不知道是不是我不很適應國外這類書籍的緣故,對大數據時代一書,我沒有感受到很多的震撼和腦洞大開感,也許和現在各類大數據的文章太多有關,已經把此書的觀點各自領用發揮了一番,也許是我還沒有領會到精華所在。既然人們都奉為經典,那我想或許我應該隔一段時間、換個姿勢,再重讀此書,看看是不是會有新的感受吧。
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。
三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?
我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。
在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的答案。此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的.數據資源,可見大數據時代對公共衛生也產生了重大的影響!在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
現在已經進入到了二十一世紀了,當今社會已經擺脫了上個世紀的那種消息滯後的時代了,我們最應該感謝的就是科學的進步為我們帶來了這么多便利。與此同時,科學的進步還為我們帶來了「大數據」這個讓人類減少了很多工作量的東西。
在這個學期的名著導讀課上我們就被要求讀:《大數據時代》這本書。《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托·邁爾·舍恩伯格被譽為「大數據時代的預言家」,他是一個特別厲害的人,他作為一個教師,他曾經在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多所世界前列名校任教的經歷。他作為一個科學家,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。他是十餘年潛心研究數據科學的技術權威。他是最早洞見大數據時代發展趨勢的數據科學家之一,也是最受人尊敬的權威發言人之一。現任牛津大學網路學院互聯網治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人,哈佛國家電子商務研究中網路監管項目負責人;曾任新加坡國立大學李光耀學院信息與創新策略研究中心主任。並擔任耶魯大學、芝加哥大學、弗吉尼亞大學、聖地亞哥大學、維也納大學的客座教授。
他作為一個研究學者,他的學術成果斐然,有一百多篇論文公開發表在《科學》《自然》等著名學術期刊上,他同時也是哈佛大學出版社、麻省理工出版社、通信政策期刊、美國社會學期刊等多家出版機構的特約評論員。他是備受眾多世界知名企業信賴的信息權威與顧問。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業;"大數據"在網路上搜索到的解釋是:稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。
大數據不僅改變了公共衛生領域,整個商業領域都因為大數據而重新洗牌。購買飛機票就是一個很好的例子。就像書中寫到2003年,奧倫·埃齊奧尼准備乘坐從西雅圖到洛杉磯的飛機去參加弟弟的婚禮。他知道飛機票越早預訂越便宜,於是他在這個大喜日子來臨之前的幾個月,就在網上預訂了一張去洛杉磯的機票。在飛機上,埃齊奧尼好奇地問鄰座的乘客花了多少錢購買機票。當得知雖然那個人的機票比他買得更晚,但是票價卻比他便宜得多時,他感到非常氣憤。於是,他又詢問了另外幾個乘客,結果發現大家買的票居然都比他的便宜。
飛機著陸之後,埃齊奧尼下定決心要幫助人們開發一個系統,用來推測當前網頁上的機票價格是否合理。作為一種商品,同一架飛機上每個座位的價格本來不應該有差別。但實際上,價格卻千差萬別,其中緣由只有航空公司自己清楚。
埃齊奧尼表示,他不需要去解開機票價格差異的奧秘。他要做的僅僅是預測當前的機票價格在未來一段時間內會上漲還是下降。這個想法是可行的,但操作起來並不是那麼簡單。這個系統需要分析所有特定航線機票的銷售價格並確定票價與提前購買天數的關系。
在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。在這樣的大環境下,常引起我更多的思考和擔憂。
大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。