導航:首頁 > 網路數據 > 雲台大數據

雲台大數據

發布時間:2022-12-16 22:51:02

大數據技術

隨著信息技術的發展,新型信息發布方式的不斷涌現,數據正以前所未有的速度在不斷地增長和累積,大數據時代正式到來。2012年被稱為「大數據元年」,因為在這一年「大數據」這個概念引起了人們的空前關注。首先是美國政府公布「大數據研發計劃」,緊接著世界各國以及各大商業公司也對「大數據」給予了極大的關注。美國在「大數據研發計劃」中,與空間數據關系最為密切的是聯邦地質調查局和航空和航天局。

聯邦地質調查局的科學家們合作完成對全面、長期數據的最新綜合,進一步把大數據集和地球科學理論的大構想轉換成科學發現,提高對地球系統科學問題的理解和應對能力,例如物種應對氣候變化、地震復發率、下一代生態指標等。NASA用先進信息系統技術尋求成熟的大數據能力,以支持未來的地球觀測任務,使得地球信息能為NASA氣候中心的體系結構所識別,減少地球科學部的空基和陸基信息系統的風險、成本、規模和開發時間,提高科學數據的可訪問性和實用性。NASA的地球科學數據和信息系統項目已經活躍了15年以上,旨在對地球衛星數據和空中與實地活動的數據進行處理存檔和發布,努力確保科學家和社會公眾可以滿意地訪問從地球到太空的數據,提升應對氣候和環境變化的能力。NASA與Cray公司制定的太空行動協議,允許一個或多個項目圍繞發展和應用低延遲「大數據」系統合作,使用高度集成的非SQL資料庫傳輸數據,來加速建模和分析軟體的運行,以測試混合計算機系統的實用性。此外,各種專用減災衛星、遙感衛星、通信與導航衛星已廣泛應用於地震、海嘯、台風(颶風)、洪災、旱災、地質災害和火災等各種不同類型的災害管理。

在我國,地學大數據的研究也已開始,國土資源部地質信息技術重點實驗室地學大數據高性能計算應用環境搭建成功,已經對外開放。利用搭建的大數據及高性能地理數據計算平台,開展地質大數據綜合處理、分析和應用研究,對於推進地質數據開發應用、提高服務效率具有重要作用。

㈡ 什麼叫大數據

什麼叫大數據?
大數據-網路

大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
大數據-維基網路
大數據(英語:Big data或Megadata),或稱巨量數據、海量數據、大資料,指的是所涉及的數據量規模巨大到無法通過人工,在合理時間內達到截取、管理、處理、並整理成為人類所能解讀的信息[3][4]。在總數據量相同的情況下,與個別分析獨立的小型數據集(data set)相比,將各個小型數據集合並後進行分析可得出許多額外的信息和數據關系性,可用來察覺商業趨勢、判定研究質量、避免疾病擴散、打擊犯罪或測定實時交通路況等;這樣的用途正是大型數據集盛行的原因。
截至2012年,技術上可在合理時間內分析處理的數據集大小單位為艾位元組(exabytes)。在許多領域,由於數據集過度龐大,科學家經常在分析處理上遭遇限制和阻礙;這些領域包括氣象學、基因組學[9]、神經網路體學、復雜的物理模擬,以及生物和環境研究。這樣的限制也對網路搜索、金融與經濟信息學造成影響。數據集大小增長的部分原因來自於信息持續從各種來源被廣泛收集,這些來源包括搭載感測設備的移動設備、高空感測科技(遙感)、軟體記錄、相機、麥克風、無線射頻辨識(RFID)和無線感測網路。自1980年代起,現代科技可存儲數據的容量每40個月即增加一倍;截至2012年,全世界每天產生2.5艾位元組(2.5×1018)的數據。
大數據幾乎無法使用大多數的資料庫管理系統處理,而必須使用「在數十、數百甚至數千台伺服器上同時平行運行的軟體」。大數據的定義取決於持有數據組的機構之能力,以及其平常用來處理分析數據的軟體之能力。「對某些組織來說,第一次面對數百GB的數據集可能讓他們需要重新思考數據管理的選項。對於其他組織來說,數據集可能需要達到數十或數百兆位元組才會對他們造成困擾。」
隨著大數據被越來越多的提及,有些人驚呼大數據時代已經到來了,2012年《紐約時報》的一篇專欄中寫到,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。但是並不是所有人都對big data感興趣,有些人甚至認為這是商學院或咨詢公司用來嘩眾取寵的buzzword,看起來很新穎,但只是把傳統重新包裝,之前在學術研究或者政策決策中也有海量數據的支撐,大數據並不是一件新興事物。
大數據時代的來臨帶來無數的機遇,但是與此同時個人或機構的隱私權也極有可能受到沖擊,大數據包含了各種個人信息數據,現有的隱私保護法律或政策無力解決這些新出現的問題。有人提出,大數據時代,個人是否擁有「被遺忘權」,被遺忘權即是否有權利要求數據商不保留自己的某些信息,大數據時代信息為某些互聯網巨頭所控制,但是數據商收集任何數據未必都獲得用戶的許可,其對數據的控制權不具有合法性。2014年5月13日歐盟法院就「被遺忘權」(right to be forgotten)一案作出裁定,判決Google應根據用戶請求刪除不完整的、無關緊要的、不相關的數據以保證數據不出現在搜索結果中。這說明在大數據時代,加強對用戶個人權利的尊重才是時勢所趨的潮流。

㈢ 大數據是指什麼

大數據又稱為巨量資料,指需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。「大數據」概念最早由維克托·邁爾·舍恩伯格和肯尼斯·庫克耶在編寫《大數據時代》中提出,指不用隨機分析法(抽樣調查)的捷徑,而是採用所有數據進行分析處理。大數據有4V特點,即Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。

對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
根據維基網路的定義,大數據是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
它們按照進率1024(2的十次方)來計算:
1 Byte =8 bit
1 KB = 1,024 Bytes = 8192 bit
1 MB = 1,024 KB = 1,048,576 Bytes
1 GB = 1,024 MB = 1,048,576 KB
1 TB = 1,024 GB = 1,048,576 MB
1 PB = 1,024 TB = 1,048,576 GB
1 EB = 1,024 PB = 1,048,576 TB
1 ZB = 1,024 EB = 1,048,576 PB
1 YB = 1,024 ZB = 1,048,576 EB
1 BB = 1,024 YB = 1,048,576 ZB
1 NB = 1,024 BB = 1,048,576 YB
1 DB = 1,024 NB = 1,048,576 BB
特徵
容量(Volume):數據的大小決定所考慮的數據的價值的和潛在的信息;
種類(Variety):數據類型的多樣性;
速度(Velocity):指獲得數據的速度;
可變性(Variability):妨礙了處理和有效地管理數據的過程。
真實性(Veracity):數據的質量
復雜性(Complexity):數據量巨大,來源多渠道
意義
有人把數據比喻為蘊
藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的價值體現在以下幾個方面:1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;2) 做小而美模式的中長尾企業可以利用大數據做服務轉型;3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

㈣ 什麼是大數據它有哪些特點

1、大數據(Big Data)又稱為巨量資料,指需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。

2、特點:大數據分析相比於傳統的數據倉庫應用,具有數據量大、查詢分析復雜等特點。

㈤ 什麼叫大數據

大數據概述
專業解釋:大數據英文名叫big data,是一種IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
通俗解釋:大數據通俗的解釋就是海量的數據,顧名思義,大就是多、廣的意思,而數據就是信息、技術以及數據資料,合起來就是多而廣的信息、技術、以及數據資料。
大數據提出時間
「大數據」這個詞是由維克托·邁爾-舍恩伯格及肯尼斯·庫克耶於2008年8月中旬共同提出。
大數據的特點
Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)-由IBM提出。
大數據存在的意義和用途是什麼?
看似大數據是一個很高大上的感覺,和我們普通人的生活相差甚遠,但是其實不然!大數據目前已經存在我們生活中的各種角落裡了,舉個例子,我們現在目前最關心的疫情情況數據,用的就是大數據的技術,可以實時查看確診人數以及各種疫情數據。
大數據存在的意義是什麼?
從剛才的舉例中我們基本可以了解,大數據是很重要的,其存在的意義簡單來說也是為了幫助人們更直觀更方便的去了解數據。而通過了解這些數據後又可以更深一步的去挖掘其他有價值的數據,例如今日頭條/抖音等產品,通過對用戶進行整理和分析,然後根據用戶的各種數據來判斷用戶的喜愛,進而推薦用戶喜歡看的東西,這樣做不僅提升了自身產品的體驗度,也為用戶提供了他們需要的內容。
大數據的用途有哪些?
要說大數據的用途,那可就相當廣泛了,基本各行各業都可以運用到大數據的知識。如果簡單理解的話,可分為以下四類:
用途一:業務流程優化
大數據更多的是協助業務流程效率的提升。能夠根據並運用社交網路數據信息 、網站搜索及其天氣預告找出有使用價值的數據信息,這其中大數據的運用普遍的便是供應鏈管理及其派送線路的提升。在這兩個層面,自然地理精準定位和無線通信頻率的鑒別跟蹤貨物和送大貨車,運用交通實時路況線路數據信息來選擇更好的線路。人力資源管理業務流程也根據大數據的剖析來開展改善,這這其中就包含了職位招聘的調整。
用途二:提高醫療和研發
大型數據分析應用程序的計算能力允許我們在幾分鍾內解碼整個dna。可以創造新的治療方法。它還能更好地掌握和預測疾病。如同大家配戴智能手錶和別的能夠轉化成的數據信息一樣,互聯網大數據還可以協助病人盡快醫治疾患。現在大數據技術已經被用於醫院監測早產兒和生病嬰兒的狀況。通過記錄和分析嬰兒的心跳,醫生預測可能的不適症狀。這有助於醫生更好地幫助寶寶。
用途三:改善我們的城市
大數據也被用於改進我們在城市的生活起居。比如,依據城市的交通實時路況信息,運用社交媒體季節變化數據信息,增加新的交通線路。現階段,很多城市已經開展數據分析和示範點新項目。
用途四:理解客戶、滿足客戶服務需求
互聯網大數據的運用在這個行業早已廣為人知。重點是如何使用大數據來更好地掌握客戶及其興趣和行為。企業非常喜歡收集社交數據、瀏覽器日誌、分析文本和感測器數據,以更全面地掌握客戶。一般來說,建立數據模型是為了預測。
如何利用大數據?
那我們了解了這么多關於大數據的知識,既然大數據這么好,我們怎麼去利用大數據呢?那這個就要說到大數據的工具BI了,BI簡單理解就是用來分析大數據的工具,從數據的採集到數據的分析以及挖掘等都需要用到BI,BI興起於國外,比較知名的BI工具有Tableau、Power BI等;而國內比較典型的廠家就是億信華辰了。雖然BI興起於國外,但是這些年隨著國內科技的進步以及不斷的創新,目前國內BI在技術上也不比國外的差,而且因為國內外的差異化,在BI的使用邏輯上,國內BI更符合國內用戶的需求。
希望對您有所幫助!~

㈥ 大數據時代什麼最重要

隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
簡言之,從各種各樣類型的數據中,快速獲得有價值信息的能力,就是大數據技術。明白這一點至關重要,也正是這一點促使該技術具備走向眾多企業的潛力。 大數據的4個「V」,或者說特點有四個層面:第一,數據體量巨大。從TB級別,躍升到PB級別;第二,數據類型繁多。前文提到的網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質
的不同。業界將其歸納為4個「V」——Volume,Variety,Value,Velocity。 物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式 著雲台
例子包括網路日誌,RFID,感測器網路,社會網路,社會數據(由於數據革命的社會),互聯網文本和文件;互聯網搜索索引;呼叫詳細記錄,天文學,大氣科學,基因組學,生物地球化學,生物,和其他復雜和/或跨學科的科研,軍事偵察,醫療記錄;攝影檔案館視頻檔案;和大規模的電子商務。
大的數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
一些但不是所有的MPP的關系資料庫的PB的數據存儲和管理的能力。隱含的負載,監控,備份和優化大型數據表的使用在RDBMS的。
斯隆數字巡天收集在其最初的幾個星期,比在天文學的歷史,早在2000年的整個數據收集更多的數據。自那時以來,它已經積累了140兆兆 位元組的信息。這個望遠鏡的繼任者,大天氣巡天望遠鏡,將於2016年在網上和將獲得的數據,每5天沃爾瑪處理超過100萬客戶的交易每隔一小時,反過來進口量資料庫估計超過2.5 PB的是相當於167次,在美國國會圖書館的書籍 。
FACEBOOK處理400億張照片,從它的用戶群。解碼最初的人類基因組花了10年來處理時,現在可以在一個星期內實現。
「大數據」的影響,增加了對信息管理專家的需求,甲骨文,IBM,微軟和SAP花了超過15億美元的在軟體智能數據管理和分析的專業公司。這個行業自身價值超過1000億美元,增長近10%,每年兩次,這大概是作為一個整體的軟體業務的快速。 大數據已經出現,因為我們生活在一個社會中有更多的東西。有46億全球行動電話用戶有1億美元和20億人訪問互聯網。
基本上,人們比以往任何時候都與數據或信息交互。 1990年至2005年,全球超過1億人進入中產階級,這意味著越來越多的人,誰收益的這筆錢將成為反過來導致更多的識字信息的增長。思科公司預計,到2013年,在互聯網上流動的交通量將達到每年667艾位元組。
最早提出「大數據」時代已經到來的機構是全球知名咨詢公司麥肯錫。麥肯錫在研究報告中指出,數據已經滲透到每一個行業和業務職能領域,逐漸成為重要的生產因素;而人們對於海量數據的運用將預示著新一波生產率增長和消費者盈餘浪潮的到來。
「麥肯錫的報告發布後,大數據迅速成為了計算機行業爭相傳誦的熱門概念,也引起了金融界的高度關注。」隨著互聯網技術的不斷發展,數據本身是資產,這一點在業界已經形成共識。「如果說雲計算為數據資產提供了保管、訪問的場所和渠道,那麼如何盤活數據資產,使其為國家治理、企業決策乃至個人生活服務,則是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。」
事實上,全球互聯網巨頭都已意識到了「大數據」時代,數據的重要意義。包括EMC、惠普(微博)、IBM、微軟(微博)在內的全球IT 巨頭紛紛通過收購「大數據」相關廠商來實現技術整合,亦可見其對「大數據」的重視。
「大數據」作為一個較新的概念,目前尚未直接以專有名詞被我國政府提出來給予政策支持。不過,在12月8日工信部發布的物聯網「十二五」規劃上,把信息處理技術作為4項關鍵技術創新工程之一被提出來,其中包括了海量數據存儲、數據挖掘、圖像視頻智能分析,這都是大數據的重要組成部分。而另外3項關鍵技術創新工程,包括信息感知技術、信息傳輸技術、信息安全技術,也都與「大數據」密切相關。

㈦ 大數據是什麼意思,大數據概念怎麼理解

1、大數據(bigdata,megadata),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。

2、在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。

3、大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。

4、從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。

5、大數據的特點。數據量大、數據種類多、要求實時性強、數據所蘊藏的價值大。

6、大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。

㈧ 大數據是什麼意思,大數據概念怎麼理解

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

閱讀全文

與雲台大數據相關的資料

熱點內容
微信中秋節動態祝福語 瀏覽:703
練英語的網站哪個好 瀏覽:894
科來網路分析系統報價 瀏覽:437
哪裡可以上傳自己的php網站 瀏覽:373
安卓手機如何打開zx文件 瀏覽:531
app攻擊是什麼 瀏覽:888
app上有把鎖是什麼意思 瀏覽:611
如何用c語言編程五角星 瀏覽:183
thinkpadwin10一鍵恢復 瀏覽:498
excel資料庫的數據結構是樹形嗎 瀏覽:225
templatewebjs下載 瀏覽:774
note3應用程序未安裝 瀏覽:714
dos看圖工具 瀏覽:15
微信直接加為好友 瀏覽:467
可以用微信傳送的文件app 瀏覽:294
pdf文件解析亂碼 瀏覽:479
光照無關圖代碼 瀏覽:688
Linux讀寫文件前八位 瀏覽:597
word如何繪制餅狀圖 瀏覽:172
w7系統搜索文件夾 瀏覽:618

友情鏈接